Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = fish biodiesel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1453 KiB  
Article
Performance and Environmental Sustainability of Fish Waste Biodiesel on Diesel Engines
by Mehmood Ali, Muhammad Shakaib, Asad A. Zaidi, Muhammad Asad Javed, Sohaib Z. Khan and Ashraf Aly Hassan
Sustainability 2025, 17(12), 5385; https://doi.org/10.3390/su17125385 - 11 Jun 2025
Viewed by 523
Abstract
The harmful environmental impacts of fossil fuel combustion, particularly greenhouse gas (GHG) emissions, have driven global interest in developing sustainable biodiesel alternatives. Pakistan imports 294.46 million tons of high-speed diesel (HSD) annually, costing approximately USD 140.237 million. A 10% biodiesel blend could save [...] Read more.
The harmful environmental impacts of fossil fuel combustion, particularly greenhouse gas (GHG) emissions, have driven global interest in developing sustainable biodiesel alternatives. Pakistan imports 294.46 million tons of high-speed diesel (HSD) annually, costing approximately USD 140.237 million. A 10% biodiesel blend could save 29.446 million tons of HSD and USD 14.023 million annually. Fish waste, a significant byproduct of Pakistan’s fishing industry, offers a promising feedstock for biodiesel production. This study explores its conversion into biodiesel and evaluates performance in diesel engines, supporting sustainability and circular economy goals. This study produced fish waste biodiesel through two-step transesterification reactions, achieving a 68% conversion yield. The biodiesel exhibited properties within ASTM D6751 standards, with a calorific value of 40.47 MJ/kg and a cetane number of 55.92. Engine performance and emission tests on LOMBARDINI 15LD225 diesel engines showed significant CO emission reductions with B10 and B20 blends compared to conventional diesel. Simulation using Ricardo Wave software 2019.1 demonstrated a 90% model accuracy for predicting CO emissions. The findings highlight the viability of fish waste-derived biodiesel as a cleaner, renewable alternative to fossil diesel, supporting sustainability and circular economy goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

22 pages, 1491 KiB  
Article
Unveiling the Lipid Features and Valorization Potential of Atlantic Salmon (Salmo salar) Heads
by João Pedro Monteiro, Tiago Sousa, Tânia Melo, Carla Pires, António Marques, Maria Leonor Nunes, Ricardo Calado and M. Rosário Domingues
Mar. Drugs 2024, 22(11), 518; https://doi.org/10.3390/md22110518 - 15 Nov 2024
Cited by 4 | Viewed by 2655
Abstract
The sustainable utilization of co-products derived from the salmon processing industry is crucial for enhancing the viability and decreasing the environmental footprint of both capture and aquaculture operations. Salmon (Salmo salar) is one of the most consumed fish worldwide and a [...] Read more.
The sustainable utilization of co-products derived from the salmon processing industry is crucial for enhancing the viability and decreasing the environmental footprint of both capture and aquaculture operations. Salmon (Salmo salar) is one of the most consumed fish worldwide and a major species produced in aquaculture. As such, significant quantities of salmon co-products are produced in pre-commercialization processing/steaking procedures. The present study characterized a specific co-product derived from the processing of salmon: minced salmon heads. More specifically, this work aimed to reveal the nutritional profile of this co-product, with a special focus on its lipid content, including thoroughly profiling fatty acids and fully appraising the composition in complex lipids (polar lipids and triglycerides) for the first time. The antioxidant potential of lipid extracts from this salmon co-product was also studied in order to bioprospect lipid functional properties and possibly unveil new pathways for added-value applications. Our analysis indicated that these minced salmon heads are exceptionally rich in lipids. Oleic acid is the most prevalent fatty acid in this co-product, followed by palmitic acid, stearic acid, and linoleic acid. Moreover, relevant lipid indexes inferred from the fatty acid composition of this co-product revealed good nutritional traits. Lipidome analysis revealed that triglycerides were clearly the predominant lipid class present in this co-product while phospholipids, as well as ceramides, were also present, although in minimal quantities. The bioprospecting of antioxidant activity in the lipid extracts of the minced salmon heads revealed limited results. Given the high concentration of triglycerides, minced salmon heads can constitute a valuable resource for industrial applications from the production of fish oil to biodiesel (as triglycerides can be easily converted into fatty acid methyl esters), as well as possible ingredients for cosmetics, capitalizing on their alluring emollient properties. Overall, the valorization of minced salmon heads, major co-products derived from the processing of one of the most intensively farmed fish in the world, not only offers economic benefits but also contributes to the sustainability of the salmon processing industry by reducing waste and promoting a more efficient use of marine bioresources. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3193 KiB  
Review
Production of Sustainable Liquid Fuels
by Nathan Ormond, Dina Kamel, Sergio Lima and Basudeb Saha
Energies 2024, 17(14), 3506; https://doi.org/10.3390/en17143506 - 17 Jul 2024
Cited by 2 | Viewed by 1454
Abstract
As the world aims to address the UN Sustainable Development Goals (SDGs), it is becoming more urgent for heavy transportation sectors, such as shipping and aviation, to decarbonise in an economically feasible way. This review paper investigates the potential fuels of the future [...] Read more.
As the world aims to address the UN Sustainable Development Goals (SDGs), it is becoming more urgent for heavy transportation sectors, such as shipping and aviation, to decarbonise in an economically feasible way. This review paper investigates the potential fuels of the future and their capability to mitigate the carbon footprint when other technologies fail to do so. This review looks at the technologies available today, including, primarily, transesterification, hydrocracking, and selective deoxygenation. It also investigates the potential of fish waste from the salmon industry as a fuel blend stock. From this, various kinetic models are investigated to find a suitable base for simulating the production and economics of biodiesel (i.e., fatty acid alkyl esters) and renewable diesel production from fish waste. Whilst most waste-oil-derived biofuels are traditionally produced using transesterification, hydrotreating looks to be a promising method to produce drop-in biofuels, which can be blended with conventional petroleum fuels without any volume percentage limitation. Using hydrotreatment, it is possible to produce renewable diesel in a few steps, and the final liquid product mixture includes paraffins, i.e., linear, branched, and cyclo-alkanes, with fuel properties in compliance with international fuel standards. There is a wide range of theoretical models based on the hydrodeoxygenation of fatty acids as well as a clear economic analysis that a model could be based on. Full article
(This article belongs to the Special Issue Biomass Resources and Bio-Energy Potential—2nd Edition)
Show Figures

Figure 1

17 pages, 734 KiB  
Review
Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed
by Cândida Rita de Barros, Luís Miguel Mendes Ferreira, Irene Fraga, José Luís Mourão and Miguel António Machado Rodrigues
Fermentation 2024, 10(5), 256; https://doi.org/10.3390/fermentation10050256 - 14 May 2024
Cited by 2 | Viewed by 2540
Abstract
Jatropha seed cake (JSC) derived from Jatropha curcas seeds is a by-product of biodiesel production and, due to its high protein content, has been considered as a potential animal feed ingredient. However, the presence of toxic compounds such as phorbol esters and other anti-nutritional [...] Read more.
Jatropha seed cake (JSC) derived from Jatropha curcas seeds is a by-product of biodiesel production and, due to its high protein content, has been considered as a potential animal feed ingredient. However, the presence of toxic compounds such as phorbol esters and other anti-nutritional factors limits its use in animal feeding. Several detoxification approaches have been used to tackle these constraints and this review aims to summarize the recent advances in JSC treatment aiming to enhance its potential as an animal feedstuff. The review first provides an overview of the structure and composition of phorbol esters and other anti-nutritional compounds, discussing its toxic effects on different animal species. It then explores several detoxification methodologies giving special emphasis to its effects on the nutritional composition of JSC and on the use of the treated substrate as a feed ingredient in fish, poultry, pigs, and ruminants, highlighting their growth performance, nutrient utilization, and animal health issues. Overall, the review concludes that these treatments hold great potential for the detoxification and utilization of JSC as an animal feed ingredient. However, further research is needed to optimize the treatment conditions, evaluate the economic feasibility, and assess the long-term effects of treated JSC on animal health and product quality. Full article
(This article belongs to the Special Issue Bioconversion of Agricultural Wastes into High-Nutrition Animal Feed)
Show Figures

Figure 1

18 pages, 1862 KiB  
Review
Fish Waste: A Potential Source of Biodiesel
by Vankara Anu Prasanna, Thummala Chandrasekhar, Khateef Riazunnisa, Pula Rajendra Kumar, Shegu Venkata Ravi Teja, Dasari Rajeswari, Madhava C. Reddy, Young-Jung Wee and Veeranjaneya Reddy Lebaka
Fermentation 2023, 9(9), 861; https://doi.org/10.3390/fermentation9090861 - 21 Sep 2023
Cited by 10 | Viewed by 9310
Abstract
The continuously increasing energy requirement on one hand and the incessant depletion of non-renewable fossil fuels on the other urge us to focus on alternative renewable energy sources such as biofuels. Biofuels including biodiesel, bioethanol, biobutanol, biohydrogen, etc., are generated from different biological [...] Read more.
The continuously increasing energy requirement on one hand and the incessant depletion of non-renewable fossil fuels on the other urge us to focus on alternative renewable energy sources such as biofuels. Biofuels including biodiesel, bioethanol, biobutanol, biohydrogen, etc., are generated from different biological sources, and their waste which stands as the best alternative in the present scenario. Specifically, the utilization of biological wastes as raw materials for the production of biofuels is considered as best waste management practice. To date, most of the biodiesel production research has been carried out with plant, algal, and microbial samples, or their waste. It is a well-known fact that diesel can also be produced from specific oily fish and their waste using different methods. In addition, fish waste constitutes a major quantity compared to other food waste which is a serious concern. Furthermore, the disposal of fish waste shows an impact on both the environment and the economy. Hence, the development of protocols for the efficient production of biodiesel from fish waste is the ultimate goal. However, insufficient knowledge and less effort in the conversion of fish waste to biodiesel impede the achievement of this goal. Therefore, this review intends to summarize the mechanism of biodiesel production from fish waste. Also, various physico-chemical factors involved in biodiesel production from fish waste were discussed. In addition, research on biodiesel generation from various fish wastes or waste fish oil was also emphasized in detail, which will be helpful for commercial practice. Overall, this information will be useful for improvement in biodiesel production from fish waste. Full article
(This article belongs to the Special Issue Biofuels Production from Solid Waste)
Show Figures

Graphical abstract

14 pages, 501 KiB  
Article
Application of Machine Learning Techniques to Discern Optimal Rearing Conditions for Improved Black Soldier Fly Farming
by John Muinde, Chrysantus M. Tanga, John Olukuru, Clifford Odhiambo, Henri E. Z. Tonnang and Kennedy Senagi
Insects 2023, 14(5), 479; https://doi.org/10.3390/insects14050479 - 19 May 2023
Cited by 4 | Viewed by 5441
Abstract
As the world population continues to grow, there is a need to come up with alternative sources of feed and food to combat the existing challenge of food insecurity across the globe. The use of insects, particularly the black soldier fly (BSF) Hermetia [...] Read more.
As the world population continues to grow, there is a need to come up with alternative sources of feed and food to combat the existing challenge of food insecurity across the globe. The use of insects, particularly the black soldier fly (BSF) Hermetia illucens (L.) (Diptera: Stratiomydiae), as a source of feed stands out due to its sustainability and reliability. Black soldier fly larvae (BSFL) have the ability to convert organic substrates to high-quality biomass rich in protein for animal feed. They can also produce biodiesel and bioplastic and have high biotechnological and medical potential. However, current BSFL production is low to meet the industry’s needs. This study used machine learning modeling approaches to discern optimal rearing conditions for improved BSF farming. The input variables studied include the cycle time in each rearing phase (i.e., the rearing period in each phase), feed formulation type, length of the beds (i.e, rearing platforms) at each phase, amount of young larvae added in the first phase, purity score (i.e, percentage of BSFL after separating from the substrate), feed depth, and the feeding rate. The output/target variable was the mass of wet larvae harvested (kg per meter) at the end of the rearing cycle. This data was trained on supervised machine learning algorithms. From the trained models, the random forest regressor presented the best root mean squared error (RMSE) of 2.91 and an R-squared value of 80.9%, implying that the model can be used to effectively monitor and predict the expected weight of BSFL to be harvested at the end of the rearing process. The results established that the top five ranked important features that inform optimal production are the length of the beds, feed formulation used, the average number of young larvae loaded in each bed, feed depth, and cycle time. Therefore, in that priority, it is expected that tuning the mentioned parameters to fall within the required levels would result in an increased mass of BSFL harvest. These data science and machine learning techniques can be adopted to understand rearing conditions and optimize the production/farming of BSF as a source of feed for animals e.g., fish, pigs, poultry, etc. A high production of these animals guarantees more food for humans, thus reducing food insecurity. Full article
(This article belongs to the Special Issue Breakthrough Technologies for Future Entomology)
Show Figures

Figure 1

27 pages, 6302 KiB  
Article
Influence of Injection Pressure and Aluminium Oxide Nano Particle-Added Fish Oil Methyl Ester on the Performance and Emission of Compression Ignition Engine
by K. M. Akkoli, S. C. Kamate, S. N. Topannavar, A. R. Bhavimani, N. R. Banapurmath, Ibham Veza, Manzoore Elahi M. Soudagar, T. M. Yunus Khan, A. S. El-Shafay, M. A. Kalam, M. M. Shivashimpi and Archana M. Gulli
Energies 2022, 15(24), 9491; https://doi.org/10.3390/en15249491 - 14 Dec 2022
Cited by 3 | Viewed by 2104
Abstract
The present experimental examination was carried out to suggest a better fuel blend with an optimised dosage level of alumina nanoparticles (Al2O3)—in a mixture of Fish Oil Methyl Ester (FOME) biodiesel and diesel—and injection pressure, wherein enhanced performance and [...] Read more.
The present experimental examination was carried out to suggest a better fuel blend with an optimised dosage level of alumina nanoparticles (Al2O3)—in a mixture of Fish Oil Methyl Ester (FOME) biodiesel and diesel—and injection pressure, wherein enhanced performance and reduced emissions were obtained via a diesel engine. The aluminium nanoparticles were added to the mixture in 5 mg/l steps through varying concentrations from 5 to 20 mg/L. The experimental results showed that engine performance quietly reduces with increased emission characteristics with the addition of raw FOME biodiesel compared to diesel. Furthermore, the addition of aluminium nanoparticles (Al2O3) improved the performance as well as the emission characteristics of the engine. Among all the test blends, the B40D60A20 blend provided a maximum brake thermal efficiency of 30.7%, which is 15.63% superior to raw FOME and 3.90% inferior to diesel fuel. The blend also showed reduced emissions, for instance, a reduction of 48.38% in CO, 17.51% in HC, 16.52% in NOx, and 20.89% in smoke compared to diesel fuel. Lastly, it was concluded that B40D60A20 at 260 bar is the optimised fuel blend, and 20 mg/l is the recommended dose level of aluminium nanoparticles (Al2O3) in the FOME–diesel mixture biodiesels in order to enhance the performance and emission parameters of a diesel engine. Full article
(This article belongs to the Special Issue Biomass Resources and Bio-Energy Potential)
Show Figures

Figure 1

23 pages, 2604 KiB  
Article
MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization
by Impha Yalagudige Dharmegowda, Lakshmidevamma Madarakallu Muniyappa, Parameshwara Siddalingaiah, Ajith Bintravalli Suresh, Manjunath Patel Gowdru Chandrashekarappa and Chander Prakash
Sustainability 2022, 14(18), 11132; https://doi.org/10.3390/su141811132 - 6 Sep 2022
Cited by 29 | Viewed by 4458
Abstract
In India, a densely populated country, fossil fuel depletion affects the energy sector that fulfils the industrial and human needs. Concerning greenhouse gas emissions and pollutants, and sustainability, there is a great demand to search for alternate feedstocks to produce alternate fuels at [...] Read more.
In India, a densely populated country, fossil fuel depletion affects the energy sector that fulfils the industrial and human needs. Concerning greenhouse gas emissions and pollutants, and sustainability, there is a great demand to search for alternate feedstocks to produce alternate fuels at a low cost. The present work focuses on waste coconut and fish oil as potential inexpensive feedstock for biodiesel production. Two-stage transesterification processes for biodiesel production from hybrid oils mixed in a 1:1 volume ratio by employing solid nano-catalyst Magnesium Oxide (MgO). Response surface methodology (RSM) was used to analyze the effects of the physics of transesterification variables, such as methanol-to-oil molar ratio (M:O), MgO catalyst concentration (MgO CC), and reaction temperature (RT), on biodiesel yield, based on experimental data gathered in accordance with the matrices of central composite design (CCD). MgO CC showed the highest contribution, followed by M:O and RT, to maximize biodiesel yield. All interaction factors showed a significant effect except the M:O with RT. Grasshopper optimization algorithm (GOA) determined optimal conditions (M:O: 10.65; MgO CC: 1.977 wt.%; RT: 80 °C) based on empirical equations, resulting in maximum biodiesel yield conversion experimentally equal to 96.8%. The physical stability of the MgO nano-catalyst and reactivity up to 5 successive cycles can yield 91.5% biodiesel yield, demonstrating its reusability for sustainable biodiesel production at low cost. The optimized biodiesel yield showed better physicochemical properties (tested according to ASTM D6751-15C) to use practically in diesel engines. Full article
(This article belongs to the Special Issue Sustainable and Advanced Remanufacturing Processes)
Show Figures

Figure 1

18 pages, 42628 KiB  
Review
A Review of the Existing Potentials in Biodiesel Production in Iran
by Behdad Shadidi, Gholamhassan Najafi and Mohammad Ali Zolfigol
Sustainability 2022, 14(6), 3284; https://doi.org/10.3390/su14063284 - 11 Mar 2022
Cited by 16 | Viewed by 5039
Abstract
Petroleum fuel plays an important role in industry, transportation, agriculture and other related industries in Iran. Iran has about 9.5% of the world’s total oil reserves in 2020 and is ranked 4th in the world. The presence of sufficient conventional fossil fuels for [...] Read more.
Petroleum fuel plays an important role in industry, transportation, agriculture and other related industries in Iran. Iran has about 9.5% of the world’s total oil reserves in 2020 and is ranked 4th in the world. The presence of sufficient conventional fossil fuels for internal combustion engines has caused environmental problems. If these Iranian fossil fuels were to run out right now, there is no suitable alternative that is just as effective. The need to research alternative fuels in Iran is therefore unavoidable. In this study, the potential and available resources of raw materials, including rapeseed oil, palm oil, fish oil, waste oil, algae, animal fat, olive oil and jatropha oil for biodiesel production in different regions of Iran, have been reviewed. Given the potentials and resources described in this study, it is hoped that the findings of this study will play an important role in biodiesel production in Iran in the future and stimulate more researchers to create biodiesel from existing sources. It is also expected that this study will increase the attention of the governmental and non-governmental organizations in Iran to the existing resources for biodiesel production and development of these resources and get rid of the existing problems of fossil fuels by investing in this field. Full article
(This article belongs to the Special Issue Emerging Renewable and Sustainable Energy Technologies)
Show Figures

Figure 1

14 pages, 5671 KiB  
Article
A Comparison in Combustion Characteristics in a CVCC with Biodiesel Blends
by Nguyen Tuan Nghia, Nguyen Phi Truong, Nguyen Xuan Khoa, Le Anh Tuan and Nguyen Van Tuan
Energies 2022, 15(3), 1017; https://doi.org/10.3390/en15031017 - 29 Jan 2022
Cited by 2 | Viewed by 3197
Abstract
This paper presents the comparison of combustion characteristics in a constant volume combustion chamber (CVCC) with alternative fuel biodiesel blends. To achieve this goal, a CVCC experimental was established, and the biodiesel was made from fish oil and was used as test fuel. [...] Read more.
This paper presents the comparison of combustion characteristics in a constant volume combustion chamber (CVCC) with alternative fuel biodiesel blends. To achieve this goal, a CVCC experimental was established, and the biodiesel was made from fish oil and was used as test fuel. The combustion process of diesel fuel (B0) and bio-diesel 10% (B10) will be investigated based on doing experiments with two conditions: air-fuel mixed before and after ignition timing. The influence of the oxygen concentration on the burning process is also being investigated. The results of the research show that the heat release rate of B0 is faster and higher than that of B10 in the case of air-fuel mixed before ignition timing. In the case of after ignition timing, these values are almost similar to B0 and B10. Full article
Show Figures

Figure 1

15 pages, 3926 KiB  
Article
Evaluation of Thermochemical Characteristics and Pyrolysis of Fish Processing Waste for Renewable Energy Feedstock
by Md Sumon Reza, Abul K. Azad, Muhammad S. Abu Bakar, Md Rezaul Karim, Mohsen Sharifpur and Juntakan Taweekun
Sustainability 2022, 14(3), 1203; https://doi.org/10.3390/su14031203 - 21 Jan 2022
Cited by 23 | Viewed by 4533
Abstract
The necessity of energy is continuously increasing, whereas fossil fuel sources are gradually depleting. To mitigate this problem, fish processing waste of the bluespotted stingray (Neotrygon kuhlii), available in the Borneo region, was investigated for an alternative feedstock of bioenergy production. [...] Read more.
The necessity of energy is continuously increasing, whereas fossil fuel sources are gradually depleting. To mitigate this problem, fish processing waste of the bluespotted stingray (Neotrygon kuhlii), available in the Borneo region, was investigated for an alternative feedstock of bioenergy production. The fish wastes are hazardous for the environment, whereas the biodiesel from fish waste is pollution-free and produces less contaminant gas and carbon dioxide than fossil fuel. From the proximate analysis, the moisture content, volatile matter, fixed carbon, and ash content of the fish waste were achieved as 4.88%, 63.80%, 15.03%, and 16.29%, respectively. The proportion of carbon, hydrogen, nitrogen, sulfur, and oxygen was found as 42.06%, 5.99%, 10.77%, 0.91%, and 40.27%, respectively, from the ultimate analysis. The calorific value was 21.53 MJ/kg, which would be highly effective in biofuel production. The morphology analysis results of the biomass are favorable for renewable energy sources. The major bondage between carbon and hydrogen and oxygen was found using Fourier transform infrared spectroscopy. The thermogravimetric analysis and derivative thermogravimetry revealed that the highest weight loss occurred at 352 °C temperature with a decomposition rate of 4.57 wt.%/min in pyrolysis circumstances, and at 606 °C temperature with a decomposition rate of 3.77 wt.%/min in combustion conditions. In the pyrolysis process for 25 °C/min heating rate, the yield of biochar, bio-oil, and bio-syngas was found as 33.96, 29.34, 23.46% at 400 °C, 47.72, 49.32, 33.87% at 500 °C, and 18.32, 21.34, 42.37% at 600 °C, respectively. The characteristics and pyrolysis yields of fish waste are suitable for being an effective renewable energy source. Full article
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Property Determination, FA Composition and NMR Characterization of Palm Oil, Used Palm Oil and Their Methyl Esters
by Omojola Awogbemi, Daramy Vandi Von Kallon, Victor Sunday Aigbodion and Vuyisa Mzozoyana
Processes 2022, 10(1), 11; https://doi.org/10.3390/pr10010011 - 22 Dec 2021
Cited by 19 | Viewed by 3851
Abstract
The search for a cost-effective, environmentally friendly and sustainable feedstock for biodiesel production has attracted attention among researchers. After frying, palm oil may become thermally degraded and unsuitable for consumption. In the current effort, neat palm oil (NPO), waste palm oil earlier utilized [...] Read more.
The search for a cost-effective, environmentally friendly and sustainable feedstock for biodiesel production has attracted attention among researchers. After frying, palm oil may become thermally degraded and unsuitable for consumption. In the current effort, neat palm oil (NPO), waste palm oil earlier utilized for frying fish and chips (WPOFC) and waste palm oil previously utilized to fry sausage and chips (WPOSC) were transesterified into waste palm oil methyl ester, namely, WPOMEFC and WPOMESC, respectively. The PO, WPOs and their ester derivatives were subjected to physicochemical properties, fatty acid (FA) compositions and 1H and 13C nuclear magnetic resonance (NMR) analyses. The thermal degradation, transesterification process and the foods the palm oil was used to fry affected the density, kinematic viscosity, acid value, pH, iodine value and FA profile of the samples. The outcome of the characterization reveals that the 1H and 13C NMR spectra of NPO, WPOFC and WPOSC show clear similarity, but NPO exhibits different intensities from that of the WPO samples. The absence of the peaks between δ 4.6 ppm and 5.0 ppm in the 1H NMR spectrum signifies the complete transformation of triglycerides in the WPO samples into biodiesel. The 13C NMR spectrum indicates the presence of ester carbonyl carbon (C=O) in WPOMEFC and WPOMESC, peculiar to ester, at a chemical shift ranging from 174.8 ppm to 174.9 ppm. Full article
Show Figures

Figure 1

22 pages, 793 KiB  
Review
Bioactive Compounds of Nutraceutical Value from Fishery and Aquaculture Discards
by Mirko Mutalipassi, Roberta Esposito, Nadia Ruocco, Thomas Viel, Maria Costantini and Valerio Zupo
Foods 2021, 10(7), 1495; https://doi.org/10.3390/foods10071495 - 28 Jun 2021
Cited by 60 | Viewed by 8321
Abstract
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the [...] Read more.
Seafood by-products, produced by a range of different organisms, such as fishes, shellfishes, squids, and bivalves, are usually discarded as wastes, despite their possible use for innovative formulations of functional foods. Considering that “wastes” of industrial processing represent up to 75% of the whole organisms, the loss of profit may be coupled with the loss of ecological sustainability, due to the scarce recycling of natural resources. Fish head, viscera, skin, bones, scales, as well as exoskeletons, pens, ink, and clam shells can be considered as useful wastes, in various weight percentages, according to the considered species and taxa. Besides several protein sources, still underexploited, the most interesting applications of fisheries and aquaculture by-products are foreseen in the biotechnological field. In fact, by-products obtained from marine sources may supply bioactive molecules, such as collagen, peptides, polyunsaturated fatty acids, antioxidant compounds, and chitin, as well as catalysts in biodiesel synthesis. In addition, those sources can be processed via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, to obtain compounds with antioxidant, anti-microbial, anti-cancer, anti-hypertensive, anti-diabetic, and anti-coagulant effects. Here, we review the main discards from fishery and aquaculture practices and analyse several bioactive compounds isolated from seafood by-products. In particular, we focus on the possible valorisation of seafood and their by-products, which represent a source of biomolecules, useful for the sustainable production of high-value nutraceutical compounds in our circular economy era. Full article
Show Figures

Figure 1

18 pages, 7002 KiB  
Article
The Correlation of Biodiesel Blends with the Common Rail Diesel Engine’s Performance and Emission Characteristics
by Tuan Nghia Nguyen, Nguyen Xuan Khoa and Le Anh Tuan
Energies 2021, 14(11), 2986; https://doi.org/10.3390/en14112986 - 21 May 2021
Cited by 12 | Viewed by 3074
Abstract
The use of biofuel has been researched and announced by scientists to bring benefits in terms of environmental protection. However, studies continue to be conducted to achieve stable results and confirm biofuels as an effective alternative fuel for internal combustion engines. In this [...] Read more.
The use of biofuel has been researched and announced by scientists to bring benefits in terms of environmental protection. However, studies continue to be conducted to achieve stable results and confirm biofuels as an effective alternative fuel for internal combustion engines. In this study, the fuel used is biodiesel derived from fish oil and conventional diesel fuel. Specifically, the test fuel is conventional diesel mixed with fish oil biodiesel in different ratios, including B0, B10, B20, B30, B40, and B50 (respectively 0%, 10%, 20%, 30% 40%, and 50% biodiesel in the mixture). Research was carried out by both simulation (from B0 to B50) and experiment (from B0 to B30) on a single cylinder common rail diesel engine. Test modes were at 25%, 50%, and 75% load respectively at maximum torque (at 1400 revolutions per minute (rpm)) and minimum fuel consumption (at 2200 rpm). Compared with B0, the average reduction in brake power of the biodiesel decreased relative to the proportion of biodiesel in the fuel mixture. Specific fuel consumption of the brakes (BSFC) and NOx emissions increased with decreasing emissions of smoke, hydrocarbon (HC), and carbon monoxide (CO) emissions when the biodiesel ratio increased. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

12 pages, 3285 KiB  
Project Report
Production of Biodiesel from Waste Cooking Oil via Deoxygenation Using Ni-Mo/Ac Catalyst
by Nor Shafinaz Azman, Tengku Sharifah Marliza, Nurul Asikin Mijan, Taufiq Yap Yun Hin and Nozieana Khairuddin
Processes 2021, 9(5), 750; https://doi.org/10.3390/pr9050750 - 23 Apr 2021
Cited by 15 | Viewed by 4149
Abstract
Waste cooking oil (WCO) from palm oil is one of the most prospective biodiesel feedstock when compared to other oil seeds. Thus, WCO has great potential as a green source of diesel fuel for engines in motor vehicles and machinery. This project aimed [...] Read more.
Waste cooking oil (WCO) from palm oil is one of the most prospective biodiesel feedstock when compared to other oil seeds. Thus, WCO has great potential as a green source of diesel fuel for engines in motor vehicles and machinery. This project aimed to study the potential of three randomly selected types of WCO, namely; sample A (used 1× once to fry an egg), sample B (used 3–5× to fry salted fish), and sample C (used repeatedly to fry banana fritter) for the production of green diesel fuel over Ni-Mo/AC (nickel and molybdenum oxides incorporated with activated carbon) catalyst through the deoxygenation (DO) process. The prepared catalyst was characterized through X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM). The DO process was performed at 350 °C to remove oxygen from the WCO samples. The liquid products were analysed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID), to measure the yields of straight-chain hydrocarbons and fractions in the range C8‒C20. Results showed that the highest n-(C8‒C20) hydrocarbon fractions were produced in the order of sample B (89.93%) > C (88.84%) > A (82.81%). Full article
(This article belongs to the Special Issue Biotechnology for Sustainability and Social Well Being)
Show Figures

Figure 1

Back to TopTop