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Abstract: The use of biofuel has been researched and announced by scientists to bring benefits in
terms of environmental protection. However, studies continue to be conducted to achieve stable
results and confirm biofuels as an effective alternative fuel for internal combustion engines. In this
study, the fuel used is biodiesel derived from fish oil and conventional diesel fuel. Specifically, the
test fuel is conventional diesel mixed with fish oil biodiesel in different ratios, including B0, B10,
B20, B30, B40, and B50 (respectively 0%, 10%, 20%, 30% 40%, and 50% biodiesel in the mixture).
Research was carried out by both simulation (from B0 to B50) and experiment (from B0 to B30) on a
single cylinder common rail diesel engine. Test modes were at 25%, 50%, and 75% load respectively
at maximum torque (at 1400 revolutions per minute (rpm)) and minimum fuel consumption (at
2200 rpm). Compared with B0, the average reduction in brake power of the biodiesel decreased
relative to the proportion of biodiesel in the fuel mixture. Specific fuel consumption of the brakes
(BSFC) and NOx emissions increased with decreasing emissions of smoke, hydrocarbon (HC), and
carbon monoxide (CO) emissions when the biodiesel ratio increased.

Keywords: common rail engine; trend changes; fish oil; emission; blended ratio

1. Introduction

In the historical trend of improving heavy diesel performance and emission formation,
diesel combustion and the development of innovative combustion systems able to improve
the CO2 and improve the NOx–Soot trade-offs such as specific bowl design [1], innovative
fuel injection systems (2750+ bar of injection pressure), and injection strategy [2] was
presented as the effective method. On the other hand, using the alternative fuels such as
biofuels are known as the most effective method with the most potential in recent years.
Biofuels used for vehicles have received great interest from scientists and governments
around the world, as biofuels contribute to the problem of energy shortages in the future.
Biodiesel is a potentially very potent alternative to diesel. Biodiesel is a straight chain
alkyl ester, so it has a higher Cetane number than mineral diesel. Diesel fuels typically
have a Cetane value of 50 to 54, while biodiesel is usually 56 to 58. Thus, biodiesel can
completely meet the Cetane requirement without additives; it is also used as an additive
for the mineral diesel [3].

Biodiesel is obtained from the transesterification of vegetable oils and from animal
fats [4–6]. Biodiesel contains very little aromatic hydrocarbons and very low sulfur content,
about 0.001%. This feature of biodiesel is good for use as a fuel, because it significantly
reduces SOx emissions that corrode the equipment and pollute the environment. At the
same time, the biodiesel fuel contains about 11% oxygen, so the combustion of the fuel
occurs completely, reducing the amount of hydrocarbons in the exhaust gas. With biodiesel
emissions of SO2, CO2 is significantly reduced, CO is reduced by 20%, and there is more
free oxygen [7]. Biodiesel has already been commercialized in the transport sector and can
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be used in diesel engines with little or no modification [8]. Biodiesel and its blends with
conventional diesel are environmentally friendly, and their use in diesel engine results in
reduced exhaust pollutants as compared to conventional diesel fuel [9,10]. Vietnam is a
country that has potential and a big aquatic product market.

Vietnam is a country with strong seafood advantages. In particular, the output of
exported catfish is very large, about 1.2 million tons per year. During processing, most
of the fish’s appendages are removed, accounting for about 75% by weight [11]. These
subsections will be a source of environmental pollution if left untreated. Therefore, ways
have been sought to recycle these appendages into biodiesel fuel [12–14].

The low heat value combined with the injection rate will determine the rate at which
the heat is radiated in the cylinder. Since biodiesel (B100) has a lower calorific value than
diesel (B0), the biodiesel mixture will also have a lower calorific value than B0. It will reduce
the maximum temperature and pressure in the cylinder when using biodiesel blends. This
will affect the economy, energy, and environment of the diesel engine. The self-ignition
ability of diesel fuel can be determined by Cetane value. The number of Cetanes has a
decisive influence on the delay time of the fuel and therefore directly affects the temperature
and pressure in the cylinder. When there is more oxygen in its chemical composition,
biodiesel mixtures generally have higher experimental actions than conventional diesel [15].
This is an advantage of biodiesel when mixing and burning.

The C:H:O ratio is one of the important parameters when assessing the chemical
composition of a diesel fuel. However, the analysis and accurate determination of C:H:O
ratio has high cost and high demand for experimental equipment. Since B100 has an
increase in oxygen (O), the decrease in carbon (C) and hydrogen (H) as compared to B0
will have different effects on combustion and the formation of pollutants of diesel engine.
On the one hand, the biodiesel mixture contains more oxygen, leading to the maximum
temperature of the combustion process, increasing the oxygen content in the combustion
zone, which tends to increase the NOx concentration in the exhaust gas. On the other
hand, also due to higher combustion zone and oxygen content, it improves smoke quality
(decrease in PM content) [16,17].

From the above analysis, it can be seen that for each biodiesel mixture, there are
changes in physical and chemical properties and combustion properties compared to
conventional diesel fuel. The variation of these parameters tends to be different, and
their impact on the performance target and pollution level of a diesel engine is complex
and intertwined. Correlation between biodiesel blend ratio with economic, energy, and
environmental indicators has been clearly shown in this study by both simulation and
experiment. The study was performed on a common rail engine.

2. Methodology
2.1. Combustion Model

Models with controlled combustion mixture (MCC) are used to build properties in
diesel combustion. The model can be calculated by:

dQtoltal
dα

=
dQMcc

dα
+

dQPMC
dα

(1)

With Qtotal: total heat release [kJ];
QPMC: total fuel heat input [kJ];
QMCC: cumulative heat release [kJ];
Ignition delay model:
The ignition delay is calculated using the Andree and Pachernegg [18] model:

dIid
dα

=
TUB − Tre f

Qre f
. (2)
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The ignition delay integral Iid reaches a value of 1.0 (=at αid), and the ignition delay
τid is calculated from: τid = αid − αSOI.

Here, Iid: ignition delay integral (−); Tref: reference temperature = 505.0 (K); TUB:
unburned zone temperature (K); Qref: reference activation energy, f(droplet, diameter,
oxygen content, . . . ) (K); τid: ignition delay; αSOI: start of injection timing (degCA); αid:
ignition delay timing (degCA).

2.2. Heat Transfer Model

The heat transfer is calculated from the following equation [19,20].

Qwi = Ai · αw · (Tc − Twi) (3)

where Qwi: wall heat flow; Ai: surface area; αw: heat transfer coefficient; Tc: gas temperature
in the cylinder; Twi: wall temperature.

Heat transfer coefficient (αw) is usually calculated by WOSCHNI Model [19]:

αw = 130× D−0.2 × P0.8
c × T−0.53

c × [C1 × Cm + C2 ×
VD × Tc.1

pc.1 ×Vc.1
× (pc − pc.0)]

0.8
(4)

where C1 = 2.28 + 0.308. Cu/Cm; C2 = 0.00324 for DI engines; D: cylinder bore, Cm: mean
piston speed; Cu: circumferential velocity, Cu = π.D.nd/60; VD: displacement per cylinder;
pc,o: cylinder pressure of the motored engine (bar); Tc,1: temperature in the cylinder at
intake valve closing (IVC); pc,1: pressure in the cylinder at IVC (bar).

2.3. Emission Model
2.3.1. NOx Formation Model

NOx formed from the oxidation reaction of nitrogen in high-temperature conditions
of combustion. The 6 reactions introduced in Table 1, which are based on the well-known
Zeldovich mechanism, are taken into account.

Table 1. NOx formation reactions.

Rate Stoichio Metry Equation ki=k0,i.Ta.e
−TAi

T

r1 N2+ O = NO + N r1 = k1.CN2.CO

r2 O2+ N = NO + O r2 = k2.CO2.CN

r3 N + OH = NO + H r3 = k3.COH.CN

r4 N2O + O = NO + NO r4 = k4.CN2O.CO

r5 O2+ N2= N2O + O r5 = k5.CO2.CN2

r6 OH + N2= N2O + H r6 = k6.COH.CN2

where ri: reactions rates (mole/cm3s); Ci: molar concentrations under equilibrium conditions (mole/cm3); ki:
reactions constant; T: reaction temperature.

The concentration of N2O is calculated according to:

N2O
N2
√

O2
= 1.1802.10−6.T0.6125

1 . exp[
−18.71

RT
] (5)

where T1: temperature at the beginning of the compression stroke (K).
NO formation rate is calculated as follows:

d[NO]

dt
= 2(1− α2)

[
R1e

1 + αK2
+

R4e
1 + K4

]
P

RT
. (6)
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The final rate of NO production/destruction in [mole/cm3s] is calculated as:

rNO = CPostProcmult.CkineticMult.2.(1− α2).
r1

1 + α.AK2
.

r4

1 + AK4
(7)

with α =
CNO,act
CNO,equ

. 1
CPostProMult

; AK2 = r1
r2+r3

; AK4 = r4
r5+r6

.

2.3.2. CO Formation Model

CO formation following the two reactions given in Table 2 is taken into account.

Table 2. CO formation reactions.

Reactions Rates Stoichio Metry Rate

r7 CO + OH = CO2+ H r7 = 6.76× 1010 × e
T

1102.0 × CCO × COH

r8 CO2+ O = CO + O2 r8 = 2.51× 1012 × e
−24055.0

T × CCO × CO2

The final rate of CO production/destruction in [mole/cm3s] is calculated as:

rCO = Cconst.(r7 + r8). (1 − α) (8)

with α = CCO, act/CCO, equ.

2.3.3. Soot Formation Model

Soot formation is described by two steps including formation and oxidation. The net
rate of change in soot mass (m) is the difference between the rates of soot formed (ms.f ) and
oxidized (ms,ox).

dms

dt
=

dms, f

dt
− dms,ox

dt
(9)

with
dms, f

dt = A f .m f ,v.p0.5 exp
[−Es, f

RT

]
soot formation rate

dms,ox
dt = Aox.ms.

PO2
P p1.8 exp

[
−Es,ox

RT

]
oxidation rates

ms: soot mass; mf,v: fuel evaporation volume; PO2: pressure of O2 molecules;
Es,f = 52,335 kJ/kmol: activation energy; Es,ox = 58,615 kJ/kmol: oxidation energy; Af, Aox:
the constant empiric selection and specific engine types.

2.3.4. Fuel Model

The properties of the experimental fuel have a great influence on the performance as
the engine emissions. Table 3 presents some properties of test fuels.

First, it is necessary to define fuel B100; B100 fuel is 100% pure biodiesel including
the chemical compound with the ratio by volume and is presented in Table 4. B10, B20,
B30, B40, and B50 have a percentage of volume, respectively 10%, 20%, 30%, 40%, and 50%
of B100.
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Table 3. Properties of test fuel.

Property Unit Method B0 B10 B20 B30 B40 B50 B100

Heating value MJ/kg ASTM
D240 42.76 42.26 41.84 41.29 41.03 41.29 37.58

Cetane value ASTM
D613 49 50 51 52 53 54 56

Density at 15 ◦C kg/m3 ASTM
D1298 838 840 845 848 852 857 866

Kinematic viscosity at 40 ◦C ASTM
D445 3.22 3.31 3.47 3.56 3.67 3.76 4.40

Flash point cSt ASTM
D93 67 71 75 80 84 89 142

Sulfur content ppm ASTM
D5453 428 430 433 436 439 441 26

Water content ppm ASTM
D6304 62 84 96 110 122 136 215

Table 4. Chemical composition of fuel B100.

Chemical Compound Ratio (% Volume)

C15H30O2 0.0107
C17H34O2 0.146
C19H38O2 0.0655
C19H36O2 0.399
C19H34O2 0.376
C19H32O2 0.0028

2.4. Modeling Diesel Engine AVL 5402

The AVL 5402 engine is a single-cylinder, four-stroke, common rail diesel engine. The
engine specification is shown in Table 5, and the engine is modeled by AVL Boost software
(Figure 1). AVL Boost software is powerful software in simulation combustion engine, this
helps simulate the heavy duty engine or small engine [21].

Table 5. Specifications of the engine.

No Parameter Value

1 Cylinder diameter (D) 85 mm
2 Stroke (S) 90 mm
3 Displacement volume 510.7 cm3

4 Compression ratio 17:1
5 Rate power/speed 9/3200 kW/rpm
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The general control data of the model as well as the elements are shown in Table 6 below.

Table 6. General data controller model AVL-5402 engine.

No Parameter Parameter Unit

1 Type of engine 4 Stroke
2 Environmental pressure 1 at
3 Environment temperature 25 ◦C
4 Theoretical A/F ratio 14.7
5 Fire model AVL MCC
6 Number of injuction holes 5
7 Injuction hole diameter 0.17 mm
8 Injection pressure 600 bar
9 Early Injector angle at 1400 (rpm) 14 degrees

10 Early Injector angle at 2200 (rpm) 18 degrees

2.5. Experimental Setup

The experimental system includes a Dyno-AMK electric test band, researching 1 cylinder
engine AVL5402, cooling water and lubricating oil cooling system AVL577, fuel consump-
tion meter (Fuel Balance 733S), throttle control device THA100, test tape control and
monitoring system PUMA, and control system. The ECU supplies fuel to INCA engines,
the cylinder pressure gauge INDICATING CEB-II, opacimeter 439 opacimeter smoke me-
ter, smoke meter, and some other devices. Regarding other auxiliary equipment, the
experimental diagram is shown in Figure 2.
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2.5.1. Power Measuring Equipment

Dyno-AMK is an electric brake that functions as a generator in which the reciprocal
magnetic field between Roto and Stato creates a resistance torque with ROTO and is
balanced with the drive torque from ROTO. Brake assembly is connected to the drive shaft
from the engine. The reciprocal magnetic field strength between Roto and Stato is adjusted
to increase or decrease the momentum on the drive shaft from the motor. The ability to
change brake torque is suitable for automatic control in the test mode of the engine. Brake
assembly has the function of working in the generator mode (braking for the engine) and
the engine mode (pulling the rotary engine). When the test strips work in transmitter mode,
the generated power will pass through the inverter to output and connect to the grid.

The tester can test a maximum torque of 150 Nm, a maximum power of 28 kW, and a
speed of 0 to 8000 rpm.

2.5.2. Fuel Balance AVL733S

The AVL733S fuel gauge is used to measure the fuel consumption of the engine by
weighing the fuel in the fuel tank. The AVL733S can continuously measure the amount of
fuel for a period of time from filling the tank until the fuel in the tank drops to zero.

The AVL733S has basic parameters such as Fuel temperature range (−100 ◦C ÷ 700 ◦C);
Measuring range (0 ÷ 150 kg/h); Supply fuel pressure (0.1 ÷ 0.8 at); Working voltage
(24 V); Maximum measuring frequency (10 Hz); and Device accuracy (±0.12%).

2.6. Simulation and Experimental Testing Condition

Simulations are performed for fuels with blend ratios of 0%, 10%, 20%, 30%, 40%, and
50% respectively with symbols B0, B10, B20, B30, B40, and B50. Meanwhile, an experiment
is done with fuel with mixing ratios of 0%, 10%, 20%, and 30% respectively with symbols B0,
B10, B20, and B30. An experiment is conducted with a lower blending ratio to reduce costs.

The amount of fuel supplied to the cycle will be fixed with all tested fuels. The amount
of fuel supplied to the cycle according to the working modes for each load is presented in
Table 7.

Table 7. Fuel injection at engine loads.

Speed
(rpm) Fuel Mass Injection, gct (g)

75% Load 50% Load 25% Load

1400 0.0173 0.0115 0.00675
2200 0.0175 0.01225 0.00715

There are 2 speed modes 1400 (rpm) and 2200 (rpm) with 2 early injection angle values
of 140 and 180 determined from the outer characteristic curve with changing injection time
so that the torque achieved is corresponding to the load values (75%, 50%, and 25%). For
each mode, the amount of fuel supplied to the cycle is determined corresponding to the
injection time for diesel fuel (B0). The amount of fuel supplied to the cycle will be fixed
with all tested fuels.

We constructed the external characteristic curve for diesel fuel with constant injec-
tion pressure (600 bar) to determine the maximum torque value (Memax). The actual
performance curve of the AVL-5402 engine is shown in Figure 3.
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The injection time for each type of fuel to ensure the same amount of fuel supplied to
the cycle when changing injection pressure is also done similarly. The injection time for
each fuel to achieve GCT corresponds to the load modes (25%, 50% and 75%) and is shown
in Table 8. The spraying process is a single injection pulse.

Table 8. Injection duration.

Speed
(rpm)

Consumption Fuel
(g/cycle) B0 B10 B20 B30 B40 B50

Injection Duration (ms)

1400
0.00675 361 366 370 378 383 388
0.0115 465 481 484 488 494 501
0.0173 585 612 641 644 648 653

2200
0.00715 372 376 378 387 391 394
0.01225 480 497 503 508 513 519
0.0175 581 607 636 639 643 648

3. Results and Discussion

From the actual full load characteristic curve of the AVL-5402, the 1400 (rpm) mode
gives the maximum torque, while at 2200 (rpm), the fuel consumption is in the lowest
value. Thus, these two speed regimes will be selected for conducting survey calculations
on the model.

3.1. Model Validation

In order to determine the reliability of the model, before applying on a large scale, it is
necessary to use the model to calculate in a certain mode, to compare the simulation results
with the experimental results, and to correct the model if it is necessary that the difference
between the calculated result and the measured result is within what the limit will allow.

Figure 4 presents the results of the comparison in capacity between simulation and
experiment for fuels B0, B10, B20, and B30 while keeping GCT corresponding to 75% load.
The results showed that the largest deviation for B0 fuel specifically at 1400 (rpm) was
7.96%; at 2200 (rpm), it is 6.0%. Meanwhile, the smallest deviation for B30 fuel specifically
at 1400 (rpm) is 4.04%; at 2200 (rpm), it is 2.61%.
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Figure 4 presents the results of the comparison of capacity between simulation and
experiment for fuels B0, B10, B20, and B30 while keeping GCT corresponding to 75% load.
The results showed that the largest difference for B0 fuel, specifically, at 1400 (rpm) was
7.96%; while at 2200 (rpm), it is 6.0%. Meanwhile, the smallest deviation for B30 fuel,
specifically at 1400 (rpm), is 4.04%; at 2200 (rpm), it is 2.61%.

Figure 5 presents the comparison results in fuel consumption rate between simulation
and experiment for fuel types B0, B10, B20, and B30 while keeping GCT corresponding
to 75% load. The results show the maximum deviation for B0 fuel at both speed modes.
Specifically, at 1400 (rpm), it is 5.05%, and at 2200 (rpm), it is 6.48%. The smallest deviation
occurs at fuel B30, namely, at 1400 (rpm), it is 3.88%, and at 2200 (rpm), it is 4.77%.
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From the comparison in capacity and fuel consumption above, it shows that the
average deviation in the capacity for B0, B10, B20, and B30 fuels respectively reaches
the values 6.00%, 5.71%, 5.10%, and 4.76%. Meanwhile, the fuel consumption rates are
respectively −5.77%, −5.19%, −4.52%, and −4.33%.

Thus, the calculation by simulation models for the fuels with errors below 10% com-
pletely meets the reliability needed to conduct calculations on a wider range later.

3.2. Combustion Characteristics

Figure 6 compares the pressure in engine cylinder when using six kinds of fuel: B0,
B10, B20, B30, B40, and B50. The pressure trend in the cylinder when using B10, B20, B30,
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B40, and B50 was presented. However, the timing has a change; specifically, the real time
of burning (the rapid burning phase) and reaching the peak pressure (reaching extreme) of
the biodiesel fuel earlier with biodiesel blending increased. This is because biodiesel fuel
has a higher solute value, which should shorten the delay time, resulting in the combustion
process tending to take place earlier and shifting forward according to the crankshaft
rotation angle. On the other hand, when increasing the biodiesel blending ratio, the values
of peak pressure and pressure in the expansion process decrease, respectively. The cause of
this phenomenon is due to the decline in the low calorific value of biodiesel fuels [22,23].
The parameters of the time of starting fire, the time of reaching the maximum pressure,
and the value of the maximum pressure are presented in Table 9.
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Table 9. Comparisons parameters of combustion process 6 type of fuel.

Combustion Parameters Unit B0 B10 B20 B30 B40 B50

Cylinder pressure max MPa 75.46 75.25 74.91 74.52 74.31 74.08

Pressure angle max after TDC ◦TK 3.29 3.02 2.80 2.67 2.23 2.01

Speed of increasing pressure max MPa/◦TK 5.68 5.67 5.60 5.58 5.53 5.48

Combustion starting angle before TDC ◦TK 5.20 5.28 5.35 5.48 5.50 5.58

The rate of heat release max kJ/◦TK 37.5 36.7 36.0 35.3 34.8 34.4

Heat release angle max before TDC ◦TK 0.5 0.6 0.7 0.85 1.0 1.1

The amount of fuel supplied to a cycle is the same for all fuels; on the other hand, the
calorific value of biodiesel fuel is lower than that of diesel fuel, so the heat rate of biodiesel
fuel will be lower. Figure 7 shows the time of a sharp increase in the exothermic rate for
biodiesel fuel earlier. This is also explained by the higher Cetane value of biodiesel fuel [24].
The parameters of the heat rate of the fuels are shown in Table 9.
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The specific parameters of combustion process are shown in Table 9.
Figure 7 and Table 9 show that the maximum heating rate of B0 fuel reaches the

maximum and decreases gradually as the mixing ratio increases, the peak heat rate of
B0, B10, B20, B30, B40, and B50 are 37.5, 36.7, 36.0, 35.3, 34.8, and 34.4 (kJ), respectively.
However, the earliest moments of the B50 fuel’s peak exothermic speed appear (according
to the crankshaft angle) and later on as the mixing ratio decreases. There is a negligible
difference between the different mixing ratios in the end stage of the heat generation.
The decrease in the exothermic rate when the mixing ratio increases is due to the lower
calorific value of the biodiesel fuel, while the increase in the mixing ratio causes the peak
exothermic rate to appear earlier due to the value of the value of the biodiesel fuel. The
higher dissolution of biodiesel fuels shortens the delay in burning time and causes the
exothermic process to shift forward with a crankshaft rotation.

3.3. Engine Performance

The capacity (Ne) of the engine decreases compared to that when using diesel fuel (B0)
and decreases as the biodiesel blend ratio (% Biodiesel) increases. With the same amount
of fuel supplied to a cycle for all fuels, the reduced capacity is due to lower biodiesel fuel
calorific value. On the other hand, due to the reduced delay time, the phenomenon of
both burning and compression occurs when using biodiesel fuel, resulting in reduced
capacity [25–28]. Averaging in all modes shows that for simulation, the average power
reduction is 0.99%, 2.01%, 2.88%, 3.82%, and 4.98%, respectively. For the experiment,
the average reduction capacity is 1.08%, 2.16%, and 3.01%, respectively. The relationship
and trend of capacity change according to the biodiesel blending ratio are shown in
Figures 8 and 9.
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Figure 9. Trend of capacity changes according to biodiesel blend ratio of simulation (SI) and experi-
ment (EX).

The relationship between the change of capacity and the biodiesel blending ratio is
shown through the following function:

Simulation: y1 = −0.0797x + 0.0005; Squared value (R2 = 0.9987)
Experiment: y2 = −0.1011x − 0.046; Squared value (R2 = 0.9969)
Figures 10 and 11 show the relationship between fuel consumption rate (BSFC) and

biodiesel blend ratio. The BSFC increases gradually as the biodiesel blend ratio increases.
Since the amount of fuel supplied to the cycle remains constant for the fuels, due to the
decrease in engine power, fuel consumption increases. Specifically, the average in all modes
shows that for the simulation, the average fuel consumption rate increases by 1.30%, 2.30%,
3.28%, 4.24%, and 5.58%, respectively. For the experiment, the average increase in fuel
consumption rate is 1.21%, 2.45%, and 3.40%.
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The relationship between the change of fuel consumption rate and the biodiesel
blending ratio is shown through the following function:

Simulation: y1 = 0.1077x + 0.0905; Squared value (R2 = 0.9967)
Experiment: y2 = 0.1144x + 0.049; Squared value (R2 = 0.9966).

3.4. Exhaust Emission
3.4.1. CO Emission

CO is a combustion product in the lack of oxygen condition. As the mixing ratio
increased, the CO emissions also decreased proportionally. On average, for all testing
modes, the simulation results show that CO reduction is 4.7%, 9.0%, 15.1%, 19.3%, and
26.7%, respectively, in which the experimental results also show that CO reduction is 4.2%,
8.3%, and 14.3%.

The reduction in CO emissions when using biodiesel can be explained by the oxy-
gen component in the biodiesel fuel, which helps to reduce local areas with small A/F
ratios [29,30]. Figures 12 and 13 show the relationship between CO emissions and biodiesel
blend ratio.
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The relationship between CO emissions and biodiesel blend ratio is presented through
the following function:

Simulation: y1 = −0.524x + 0.6333; Squared value (R2 = 0.9928)
Experiment: y2 = −0.47x + 0.35; Squared value (R2 = 0.9909).

3.4.2. HC Emission

HC emission is a mixture of unburnt fuel and lubricating oil. Figures 14 and 15 show
the relationship and trend of HC emissions according to biodiesel blending ratio. The
simulation results showed that HC decreased by 8.5%, 17.6%, 25.1%, 31.5%, and 39.6%
respectively, while the experimental results also showed that HC decreased by 9.1%, 18.1%,
and 26.2%, respectively. The reduction in HC emission is not caused by oxygen content
but also due to the higher Cetane value of biodiesel fuel compared to diesel fuel. The high
value of Cetane makes it easier for the fuel to ignite and burn more completely [31].
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The relationship between HC emission and biodiesel blends is shown through the
following functions:

Simulation: y1 = 0.7843x + 0.7762; Squared value (R2 = 0.9971)
Experiment: y2 = 0.876x + 0.21; Squared value (R2 = 0.9966).

3.4.3. NOx Emission

Figures 16 and 17 shows the relationship between NOx emissions according to
biodiesel blending ratio. Simulation results show that NOx increases by 2.4%, 3.9%,
5.4%, 8.2%, and 10.4% respectively, while the experimental results also showed that NOx
increased by 2.2%, 3.7%, and 5.1%. This change is due to the higher air residue coefficient
of biodiesel fuel, which facilitates the formation of NOx, because the mixture of biodiesel
fuel burns faster, resulting in heat. The degree of the combustion chamber is also higher.
On the other hand, with the numeric value of the Cetane, the larger the length of the carbon
molecular chain makes the diffusion burning more intense [32]. The result is an increase in
NOx emissions.
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following functions:

Simulation: y1 = 0.2026x + 0.0143; Squared value (R2 = 0.9903)
Experiment: y2 = 0.168x + 0.23; Squared value (R2 = 0.9875).

3.4.4. Smoke Emission

Smoke is a typical component only found in diesel engines exhaust gas. Figures 18 and 19
show the between smoke and biodiesel blending ratio. The simulation results showed
that smoke decreased by 6.3%, 12.3%, 18.6%, 23.9%, and 30.1% respectively, while the
experimental results also showed that smoke decreased by 5.6%, 11.4%, and 17.5%. Diffuse
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combustion in diesel engines is very favorable for soot formation. However, with engines
using biodiesel fuel, it significantly reduces soot emissions because the oxygen element in
the fuel component helps to oxidize soot more thoroughly [33,34]. Moreover, the diffuse
combustion of the engine when using biodiesel is more intense, helping to over-oxidize the
combustion products more thoroughly. In addition, with a higher A/F ratio and higher
Cetane value, it also helps the burning process more smoothly, resulting in a sharp decrease
in black smoke.
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The relationship between smoke emission and biodiesel blends is showed through the
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Simulation: y1 = 0.7843x + 0.7762; Squared value (R2 = 0.9971)
Experiment: y2 = 0.876x + 0.21; Squared value (R2 = 0.9993).

4. Conclusions

The simulation results have shown the evolution of the combustion process through
the pressure changes in the cylinder and the heat rate. These graphs show that the com-
bustion of the engine starts earlier when using biodiesel fuel due to the increase in the
Cetane value.

Engine power decreases as the biodiesel blend ratio increases due to the lower
biodiesel fuel calorific value. Meanwhile, fuel consumption increases with an increase in
blend ratio. Fuel consumption for the B30 fuel decreased by 3% and decreased by 3.98%
for the B50, while the fuel consumption for the B30 increased by 3.4% and by 4.98% for the
B50. The power loss is due to the lower calorific value of biodiesel fuel; on the other hand,
the decrease in combustion delay results in both combustion and compression.

CO, HC emissions, and smoke levels are reduced most when using B50 fuel by 26.7%,
39.6%, and 30.1%, respectively, while maximum NOx increased by 10.4%. The reason is
that biodiesel fuel has an additional oxygen component and a large carbon molecular chain
length that helps the burning process run smoothly; the results of this study report that the
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biodiesel studied could have a positive impact on efficiencies (NOx–Soot trade-offs) and
GHG, especially for a heavy-duty engine application.

Fuel consumption and engine emissions have sensitive relationships with biodiesel
blend ratios. When the biodiesel blending ratio changes, it changes the physicochemical
properties of the fuel, thereby changing the mixture formation and combustion of the
engine. In particular, the biggest benefit is to reduce some of the toxic components of the
exhaust gas.
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