Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = fine narrow fractions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 35270 KiB  
Article
Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
by Elena V. Fomenko, Galina V. Akimochkina and Natalia N. Anshits
Molecules 2025, 30(12), 2600; https://doi.org/10.3390/molecules30122600 - 15 Jun 2025
Viewed by 456
Abstract
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development [...] Read more.
Developing resource-efficient technologies for producing ceramic materials with specific properties and performance characteristics is one of the most important tasks in modern materials science. As natural resources face depletion, the use of anthropogenic wastes, including fly ash from coal combustion, for the development of new compositions and the production of ceramics with an improved microstructure is of particular significance. The use of PM10 fly ash microspheres in ceramic production will help to reduce particulate matter emissions. In this study, fine narrow fractions of PM10 microspheres were successfully separated from coal fly ash using aerodynamic and magnetic separation. Glass–ceramic materials with a homogeneous microstructure, an open porosity of 0.4–37%, a compressive strength of 5–159 MPa, and acid resistance of up to 99.9% were obtained using narrow fractions. The materials obtained are promising for application as highly porous ceramics, effective microfiltration membranes, and fine-structured technical ceramics, which can be used in installations operating in aggressive media and/or at high temperatures. The ceramic membranes were characterised by high liquid permeability values up to 1194 L·m−2·h−1·bar−1. Filtration tests showed that the retention coefficient for dispersed microsilica particles with dav = 1.9 μm is 0.99. Full article
Show Figures

Figure 1

18 pages, 9105 KiB  
Article
Effect of Size-Distribution Environment on Breakage Parameters Using Closed-Cycle Grinding Tests
by Evangelos Petrakis
Materials 2023, 16(24), 7687; https://doi.org/10.3390/ma16247687 - 17 Dec 2023
Cited by 5 | Viewed by 1987
Abstract
The so-called population balance model (PBM) is the most widely used approach to describe the grinding process. The analysis of the grinding data is carried out using—among others—the one-size fraction BII method. According to the BII method, the breakage parameters can be determined [...] Read more.
The so-called population balance model (PBM) is the most widely used approach to describe the grinding process. The analysis of the grinding data is carried out using—among others—the one-size fraction BII method. According to the BII method, the breakage parameters can be determined when a narrow particle size fraction is used as feed material to the mill. However, it is commonly accepted that these parameters are influenced by changing the particle size distribution in the mill. Thus, this study examines the breakage parameters through kinetic testing in different natural-size distribution environments generated by closed-cycle grinding tests that simulate industrial milling conditions. The differentiation of the milling environments was accomplished using various reference sieves in the closed-cycle tests. The experimentally determined breakage parameters were back-calculated and then used to simulate the closed-cycle tests using the MODSIMTM software. Additionally, the energy efficiency was evaluated based on the specific surface area of the grinding products and the energy consumption. The results of the kinetic tests showed that the breakage rate of the coarse particles increases as the aperture size of the reference sieve decreases, and consequently, the content of fines in the mill increases. The back-calculated breakage parameters can be reliably used to simulate closed-cycle circuits, thus helping control industrial milling operations. Full article
Show Figures

Figure 1

15 pages, 10883 KiB  
Article
Comprehensive Analysis of Microstructure and Hot Deformation Behavior of Al-Cu-Y-Mg-Cr-Zr-Ti-Fe-Si Alloy
by Sayed M. Amer, Maria V. Glavatskikh, Ruslan Yu. Barkov, Alexander Yu. Churyumov, Irina S. Loginova, Maxim G. Khomutov and Andrey V. Pozdniakov
Metals 2023, 13(11), 1853; https://doi.org/10.3390/met13111853 - 5 Nov 2023
Cited by 3 | Viewed by 2236
Abstract
Low sensitivity to hot cracking is very important not only for casting but also for ingots of wrought alloys. Doping of Al-Cu-(Mg) alloys by eutectic forming elements provides an increasing resistance to hot cracking susceptibility, but it also leads to a decrease in [...] Read more.
Low sensitivity to hot cracking is very important not only for casting but also for ingots of wrought alloys. Doping of Al-Cu-(Mg) alloys by eutectic forming elements provides an increasing resistance to hot cracking susceptibility, but it also leads to a decrease in plasticity. The quasi-binary alloys based on an Al-Cu-REM system with an atomic ratio of Cu/REM = 4 have a high solidus temperature, narrow solidification range and fine microstructure. The detailed investigation of microstructure, precipitation and hot deformation behavior, and mechanical properties of novel Al-Cu-Y-Mg-Cr-Zr-Ti-Fe-Si alloy was performed in this study. The fine Al8Cu4Y, needle-shaped Al11Cu2Y2Si2, compact primary (Al,Ti)84Cu6.4Y4.3Cr5.3 and Q (Al8Cu2Mg8Si6) phases were identified in the as-cast microstructure. Near-spherical coarse Al3(Zr,Y) and fine Al45Cr7 precipitates with a size of 60 nm and 10 nm were formed after 3 h of solution treatment at 580 °C. S′(Al2CuMg) precipitates with an average diameter of 140 nm, thickness of 6 nm and calculated volume fraction of 0.033 strengthened 36 HV during aging at 210 °C for 3 h. Three-dimensional hot processing maps demonstrated an excellent and stable deformation behavior at 440–540 °C and strain rates of 0.01–10 s−1. The rolled sheets had a good combination of yield strength (313 MPa) and plasticity (10.8%) in the recrystallized at 580 °C, with water quenched and aged at 210 °C for a 3 h state. The main calculated effect in the yield strength was contributed by Al45Cr7 precipitates. Full article
Show Figures

Figure 1

17 pages, 4725 KiB  
Article
Spatial Heterogeneity of Total and Labile Soil Organic Carbon Pools in Poplar Agroforestry Systems
by Bo Wang, Xiaolong Su, Tongli Wang, Tao Yang, Cheng Xu, Zeyang Lin, Di Tian and Luozhong Tang
Forests 2023, 14(9), 1869; https://doi.org/10.3390/f14091869 - 13 Sep 2023
Cited by 3 | Viewed by 2065
Abstract
Agroforestry systems are considered effective methods of carbon sequestration. In these systems, most of the carbon is stored in the soil, and the pattern of tree planting can influence the spatial distribution of organic matter input into the soil. However, limited information is [...] Read more.
Agroforestry systems are considered effective methods of carbon sequestration. In these systems, most of the carbon is stored in the soil, and the pattern of tree planting can influence the spatial distribution of organic matter input into the soil. However, limited information is available about the extent of this influence. In this study, the horizontal and vertical distributions of soil organic carbon (SOC) and labile fractions were investigated in four planting systems: a pure poplar (Populus deltoides cv. “35”) planting system, a wide-row (14 m spacing) poplar and wheat (Triticum aestivum L.) agroforestry system, a narrow-row (7 m spacing) poplar and wheat agroforestry system, and a pure wheat field. The results showed that although the poplar system had the highest vegetation biomass (147.50 t ha−1), the agroforestry systems overall had higher SOC contents than the pure poplar system and wheat fields. Especially in the wide-row agroforestry system, the SOC, readily oxidizable carbon, and dissolved organic carbon contents were, respectively, 25.3%, 42.4%, and 99.3% higher than those of the pure poplar system and 60.3%, 148.7%, and 6.3% higher than those of the wheat field in a 1 m soil profile, and it also had the highest fine root biomass. However, the microbial biomass carbon content was highest in the pure poplar system. The SOC of the three poplar planting systems was spatially heterogeneous, with the highest values occurring at 1.5 m in the narrow-row systems and within the tree rows in the wide-row system, similar to the distribution of fine root biomass. Additionally, we found that the larger the diameter at the breast height of the trees, the greater their positive effect on SOC at greater distances. Full article
(This article belongs to the Topic Forest Carbon Sequestration and Climate Change Mitigation)
Show Figures

Figure 1

18 pages, 6223 KiB  
Article
Actuating Bimorph Microstructures with Magnetron-Sputtered Ti-Ni-Cu Shape Memory Alloy Films
by Vlad Bolocan, Dragos Valsan, Aurel Ercuta and Corneliu-Marius Craciunescu
Nanomaterials 2022, 12(23), 4207; https://doi.org/10.3390/nano12234207 - 26 Nov 2022
Cited by 2 | Viewed by 1892
Abstract
The generation of microactuation using narrow thermal hysteresis Ti-Ni-Cu shape-memory alloy films deposited on non-metallic substrates as the active element is studied based on a model previously developed for Ni-Ti/Si bimorphs. To this end, the compositional range in which the B2 (monoclinic) → [...] Read more.
The generation of microactuation using narrow thermal hysteresis Ti-Ni-Cu shape-memory alloy films deposited on non-metallic substrates as the active element is studied based on a model previously developed for Ni-Ti/Si bimorphs. To this end, the compositional range in which the B2 (monoclinic) → B19 (orthorhombic) martensitic phase transformation occurs was considered, and films were deposited by magnetron sputtering on heated Si and Kapton substrates. Ultra-fine grains were observed for the 550 °C deposition temperature. The selected composition was close to Ti50Ni35Cu15, so the narrowing of the thermal hysteresis is not associated with a significant reduction in shape recovery capability. The microstructure and composition of the target materials and as-deposited films used in our experiments were characterized by X-ray diffraction and scanning electron microscopy, whereas the temperature dependence of the volume fraction of the martensite phase was derived using differential scanning calorimetry records for the target materials and from the temperature dependence of the electrical resistance data for the films. An original model was used to predict the actuation of cantilever-type bimorphs with Kapton and Si substrates. Full article
(This article belongs to the Special Issue Nanostructural Processing Effects in Shape Memory Alloys)
Show Figures

Figure 1

11 pages, 6968 KiB  
Article
Dry Powder Formulation of Simvastatin Nanoparticles for Potential Application in Pulmonary Arterial Hypertension
by Shalaleh Zendehdel Baher, Shadi Yaqoubi, Kofi Asare-Addo, Hamed Hamishehkar and Ali Nokhodchi
Pharmaceutics 2022, 14(5), 895; https://doi.org/10.3390/pharmaceutics14050895 - 20 Apr 2022
Cited by 24 | Viewed by 4894
Abstract
It has been hypothesized that simvastatin could be used to treat pulmonary arterial hypertension (PAH). This study is intended to formulate a simvastatin nanoparticle dry powder inhalation (DPI) formulation. Simvastatin nanoparticles were prepared via an emulsification and homogenization-extrusion method, followed by spray drying [...] Read more.
It has been hypothesized that simvastatin could be used to treat pulmonary arterial hypertension (PAH). This study is intended to formulate a simvastatin nanoparticle dry powder inhalation (DPI) formulation. Simvastatin nanoparticles were prepared via an emulsification and homogenization-extrusion method, followed by spray drying of the colloidal suspension of simvastatin nanoparticles containing mannitol to get it into a respirable size. Particle size distribution, morphology, and crystallinity of the fabricated nanoparticles of the obtained microparticles for DPI formulation were assessed by dynamic light scattering (DLS), scanning electron microscopy (SEM), and X-ray diffraction pattern (XRPD), respectively. Aerosolization performance of the DPI formulation was assessed by the Next Generation Impactor (NGI) equipped with an Aerolizer®. Simvastatin nanoparticles were around 100 nm with a very narrow size distribution (PDI = 0.105). The X-ray diffraction pattern revealed that the crystallinity of simvastatin was decreased by the spray drying procedure. Microscopic images displayed that gathered nanoparticles were in the suitable inhalable range and had the appropriate shape and surface properties for pulmonary delivery. Aerosolization assessment by the NGI indicated a suitable inhalation performance (fine particle fraction of 20%). In conclusion, the results confirmed that the spray drying technique for simvastatin can be optimized to obtain simvastatin aggregated nanoparticles without any coarse carrier to be used in DPI formulation for better deposition of the drug in the lungs for local treatment of PAH. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Asthma and Pulmonary Diseases)
Show Figures

Graphical abstract

23 pages, 14612 KiB  
Article
Pervious Concrete Reinforced with Waste Cloth Strips
by Sandra Juradin, Frane Mihanović, Nives Ostojić-Škomrlj and Ela Rogošić
Sustainability 2022, 14(5), 2723; https://doi.org/10.3390/su14052723 - 25 Feb 2022
Cited by 11 | Viewed by 4917
Abstract
Pervious concrete is considered an environment-friendly paving material and its main feature is that it allows water to penetrate within its structure. Because of open pores in pervious concrete structures, there is a high risk of corrosion, so this concrete is used without [...] Read more.
Pervious concrete is considered an environment-friendly paving material and its main feature is that it allows water to penetrate within its structure. Because of open pores in pervious concrete structures, there is a high risk of corrosion, so this concrete is used without any reinforcement or with fiber reinforcement. The incorporation of fibers in concrete is known to substantially increase the tensile strength, toughness, and ductility of concrete. The fast-fashion trend encourages people to buy more clothes and dispose of them in a shorter period of time, resulting in 85% of clothes ending up in landfills or being burned. In this paper, old cotton T-shirts were cut into narrow strips about 5 ± 1 cm long for the purpose of reinforcing pervious concrete. A total of eight concrete mixtures were made: four without reinforcement and four with textile-strip reinforcement. The number of textile strips was 1% of the total volume. Tests carried out on the specimens were: slump, density, porosity, compressive and flexural strength, water absorption, infiltration rate, and abrasion resistance. Multi-slice computed tomography (MSCT) was used for an X-ray examination and quantitative analysis of the specimens (ROI; region of interest) and 3D visualization (VRT; volume rendering technique). With an X-ray examination, the large holes in the cross sections of the specimens have been observed. They were caused by an insufficient compaction effort during the specimens’ placement, which affected the test results. Based on the obtained laboratory results, the waste strips improved the compressive strength, flexural strength, and abrasion resistance of the concrete with the addition of fine fractions, and generally increases the ductility of pervious concrete. Full article
(This article belongs to the Special Issue Application of Waste Materials in Pavement Structures)
Show Figures

Figure 1

15 pages, 2100 KiB  
Article
Gravimetric Separation of Heavy Minerals in Sediments and Rocks
by Sergio Andò
Minerals 2020, 10(3), 273; https://doi.org/10.3390/min10030273 - 18 Mar 2020
Cited by 60 | Viewed by 14525
Abstract
The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on [...] Read more.
The potential of heavy minerals studies in provenance analysis can be enhanced conspicuously by using a state-of-the-art protocol for sample preparation in the laboratory, which represents the first fundamental step of any geological research. The classical method of gravimetric separation is based on the properties of detrital minerals, principally their grain size and density, and its efficiency depends on the procedure followed and on the technical skills of the operator. Heavy-mineral studies in the past have been traditionally focused on the sand fraction, generally choosing a narrow grain-size window for analysis, an approach that is bound to introduce a serious bias by neglecting a large, and sometimes very large, part of the heavy-mineral spectrum present in the sample. In order to minimize bias, not only the largest possible size range in each sample should be considered, but also, the same quantitative analytical methods should be applied to the largest possible grain-size range occurring in the sediment system down to 5 μm or less, thus including suspended load in rivers, loess deposits, and shallow to deep-marine muds. Wherever the bulk sample cannot be used for practical reasons, we need to routinely analyze the medium silt to medium sand range (15–500 μm) for sand and the fine silt to sand range (5–63 or > 63 μm) for silt. This article is conceived as a practical handbook dedicated specifically to Master and PhD students at the beginning of their heavy-mineral apprenticeship, as to more expert operators from the industry and academy to help improving the quality of heavy-mineral separation for any possible field of application. Full article
(This article belongs to the Special Issue Heavy Minerals: Methods & Case Histories)
Show Figures

Figure 1

14 pages, 3470 KiB  
Article
Numerical Simulation of Flow Field Characteristics and Separation Performance Test of Multi-Product Hydrocyclone
by Yuekan Zhang, Peikun Liu, Lanyue Jiang, Xinghua Yang and Junru Yang
Minerals 2019, 9(5), 300; https://doi.org/10.3390/min9050300 - 16 May 2019
Cited by 5 | Viewed by 3793
Abstract
A traditional hydrocyclone can only generate two products with different size fractions after one classification, which does not meet the fine classification requirements for narrow size fractions. In order to achieve the fine classification, a multi-product hydrocyclone with double-overflow-pipe structure was designed in [...] Read more.
A traditional hydrocyclone can only generate two products with different size fractions after one classification, which does not meet the fine classification requirements for narrow size fractions. In order to achieve the fine classification, a multi-product hydrocyclone with double-overflow-pipe structure was designed in this study. In this work, numerical simulation and experimental test methods were used to study the internal flow field characteristics and distribution characteristics of the product size fraction. The simulation results showed that in contrast with the traditional single overflow pipe, there were two turns in the internal axial velocity direction of the hydrocyclone with the double-overflow-pipe structure. Meanwhile, the influence rule of the diameter of the underflow outlet on the flow field characteristics was obtained through numerical simulation. From the test, five products with different size fractions were obtained after one classification and the influence rule of the diameter of the underflow outlet on the size fraction distribution of multi-products was also obtained. This work provides a feasible research idea for obtaining the fine classification of multiple products. Full article
(This article belongs to the Special Issue Physical Separation and Enrichment)
Show Figures

Figure 1

18 pages, 2615 KiB  
Article
On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers
by Giorgio Gatti, Mina Errahali, Lorenzo Tei, Maurizio Cossi and Leonardo Marchese
Polymers 2019, 11(4), 588; https://doi.org/10.3390/polym11040588 - 1 Apr 2019
Cited by 18 | Viewed by 3994
Abstract
The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 [...] Read more.
The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 °C, and chemical activation with KOH followed by thermal treatment at 750 or 800 °C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 °C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volume—the textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m2/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed. Full article
(This article belongs to the Special Issue Hyper-Cross-Linked Polymers (HCPs))
Show Figures

Graphical abstract

20 pages, 7925 KiB  
Article
Controlled ATRP Synthesis of Novel Linear-Dendritic Block Copolymers and Their Directed Self-Assembly in Breath Figure Arrays
by Xin Liu, Tina Monzavi and Ivan Gitsov
Polymers 2019, 11(3), 539; https://doi.org/10.3390/polym11030539 - 21 Mar 2019
Cited by 17 | Viewed by 3869
Abstract
Herein, we report the formation and characterization of novel amphiphilic linear-dendritic block copolymers (LDBCs) composed of hydrophilic dendritic poly(ether-ester), PEE, blocks and hydrophobic linear poly(styrene), PSt. The LDBCs are synthesized via controlled atom transfer radical polymerization (ATRP) initiated by a PEE macroinitiator. The [...] Read more.
Herein, we report the formation and characterization of novel amphiphilic linear-dendritic block copolymers (LDBCs) composed of hydrophilic dendritic poly(ether-ester), PEE, blocks and hydrophobic linear poly(styrene), PSt. The LDBCs are synthesized via controlled atom transfer radical polymerization (ATRP) initiated by a PEE macroinitiator. The copolymers formed have narrow molecular mass distributions and are designated as LGn-PSt Mn, in which LG represents the PEE fragment, n denotes the generation of the dendron (n = 1–3), and Mn refers to the average molecular mass of the LDBC (Mn = 3.5–68 kDa). The obtained LDBCs are utilized to fabricate honeycomb films by a static “breath figure” (BF) technique. The copolymer composition strongly affects the film morphology. LDBCs bearing acetonide dendron end groups produce honeycomb films when the PEE fraction is lower than 20%. Pore uniformity increases as the PEE content decreases. For LDBCs with hydroxyl end groups, only the first generation LDBCs yield BF films, but with a significantly smaller pore size (0.23 μm vs. 1–2 μm, respectively). Although higher generation LDBCs with free hydroxyl end groups fail to generate honeycomb films by themselves, the use of a cosolvent or addition of homo PSt leads to BF films with a controllable pore size (3.7–0.42 μm), depending on the LDBC content. Palladium complexes within the two triazole groups in each of the dendron’s branching moieties can also fine-tune the morphology of the BF films. Full article
Show Figures

Graphical abstract

16 pages, 3261 KiB  
Article
Heavy Mineral Variability in the Yellow River Sediments as Determined by the Multiple-Window Strategy
by Bingfu Jin, Mengyao Wang, Wei Yue, Lina Zhang and Yanjun Wang
Minerals 2019, 9(2), 85; https://doi.org/10.3390/min9020085 - 30 Jan 2019
Cited by 23 | Viewed by 4396
Abstract
In this study, heavy mineral analysis was carried out in different size fractions of the Yellow River sediment to extract its end-members. It shows that heavy mineral contents, species, and compositions vary in different grain sizes. Distribution curve of heavy mineral concentration (HMC) [...] Read more.
In this study, heavy mineral analysis was carried out in different size fractions of the Yellow River sediment to extract its end-members. It shows that heavy mineral contents, species, and compositions vary in different grain sizes. Distribution curve of heavy mineral concentration (HMC) and particle size frequency curve are in normal distribution. In most samples, the size fraction of 4.5–5.0 Φ contains the maximum HMC (18% on average). Heavy mineral assemblages of the Yellow River are featured by amphibole + epidote + limonite + garnet. Amphibole content is high in coarse fraction of >3.0 Φ and reaches its peak value in 3.5–4.5 Φ. Epidote is rich in a size fraction of >3.5 Φ, and increase as the particle size becomes fine. Micas content is high in coarse subsamples of <3.0 Φ, but almost absent in fine grains of >4.0 Φ. Metallic minerals (magnetite, ilmenite, hematite, and limonite) increase as the sediment particle size become fine, and reach the peak in silt (>4.0 Φ). Other minerals such as zircon, rutile, tourmaline, garnet, and apatite account for about 15%, and mainly concentrate in fine sediment. Further analysis reveals that similarity value between the most abundant grain size group and wide window grain size group is high (0.978 on average). The grain size of 4.0–5.0 Φ ± 0.5 Φ is suitable to carry out detrital mineral analysis in the Yellow River sediments. Our study helps to eliminate cognitive bias due to narrow grain size strategy, and to provide heavy mineral end-members of the Yellow River sediment for provenance discrimination in the marginal seas of East China. Full article
Show Figures

Figure 1

8 pages, 1659 KiB  
Communication
Fast Screening of Diol Impurities in Methoxy Poly(Ethylene Glycol)s (mPEG)s by Liquid Chromatography on Monolithic Silica Rods
by Michaela Brunzel, Tobias C. Majdanski, Jürgen Vitz, Ivo Nischang and Ulrich S. Schubert
Polymers 2018, 10(12), 1395; https://doi.org/10.3390/polym10121395 - 16 Dec 2018
Cited by 12 | Viewed by 5744
Abstract
The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard—based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in [...] Read more.
The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard—based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs (Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules. Full article
(This article belongs to the Special Issue Hydrophilic Polymers)
Show Figures

Graphical abstract

Back to TopTop