Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = film thickness distribution imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 17433 KiB  
Article
Silicone Composites with Electrically Oriented Boron Nitride Platelets and Carbon Microfibers for Thermal Management of Electronics
by Romeo Cristian Ciobanu, Magdalena Aflori, Cristina Mihaela Scheiner, Mihaela Aradoaei and Dorel Buncianu
Polymers 2025, 17(2), 204; https://doi.org/10.3390/polym17020204 - 15 Jan 2025
Viewed by 1370
Abstract
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR [...] Read more.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains. Based on SEM images, the chains are uniformly distributed on the surface of the sample, fully formed and mature, but their architecture critically depends on composition. The physical and electrical characteristics of composites were extensively studied with regard to the composition and orientation of particles. The higher the concentration of BN platelets, the greater the enhancement of dielectric permittivity, but the effect decreases gradually after reaching a concentration of 15%. The impact of incorporating carbon microfibers into the dielectric permittivity of composites is clearly beneficial, especially when the BN content surpasses 12%. Thermal conductivity showed a significant improvement in all samples with aligned particles, regardless of their composition. For homogeneous materials, the thermal conductivity is significantly enhanced by the inclusion of carbon microfibers, particularly when the boron nitride content exceeds 12%. The biggest increase happened when carbon microfibers were added at a rate of 2%, while the BN content surpassed 15.5%. The thermal conductivity of composites is greatly improved by adding carbon microfibers when oriented particles are present, even at BN content over 12%. When the BN content surpasses 15.5%, the effect diminishes as the fibers within chains are only partly vertically oriented, with BN platelets prioritizing vertical alignment. The outcomes of this study showed improved results for composites with BN platelets and carbon microfibers compared to prior findings in the literature, all while utilizing a more straightforward approach for processing the polymer matrix and aligning particles. In contrast to current technologies, utilizing homologous materials with uniformly dispersed particles, the presented technology reduces ingredient consumption by 5–10 times due to the arrangement in chains, which enhances heat transfer efficiency in the desired direction. The present technology can be used in a variety of industrial settings, accommodating different ingredients and film thicknesses, and can be customized for various applications in electronics thermal management. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

26 pages, 12527 KiB  
Article
Study on Synergistically Improving Corrosion Resistance of Microarc Oxidation Coating on Magnesium Alloy by Loading of Sodium Tungstate and Silane Treatment
by Ziyi Wang, Lingyun An, Chenggong Chang, Leichao Meng, Donghao Lei, Jianhong Peng and Zhanying Wang
Materials 2025, 18(2), 361; https://doi.org/10.3390/ma18020361 - 14 Jan 2025
Viewed by 939
Abstract
Sodium tungstate (Na2WO4) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. [...] Read more.
Sodium tungstate (Na2WO4) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD. FTIR was utilized to analyze the functional groups in the coating. XPS was employed to study the chemical composition and valence state of the coating. The surface and cross-sectional morphology of the coating, along with its elemental composition and distribution, were investigated by SEM and EDS. Meanwhile, the thickness of the coating was analyzed using Image J software. Electrochemical impedance spectroscopy (EIS) was employed to determine the corrosion resistance of the coating. The results show that compared with an MAO coating, M-0.125W composite coating (only filled with sodium tungstate on the surface of the MAO coating), and M-SG composite coating (only receiving silanization treatment applied to the surface of the MAO coating), the corrosion resistance of the M-nW-SG composite coating (loaded with sodium tungstate on the surface of the MAO coating and then treated with silane) is significantly improved. This is mainly attributed to the fact that sodium tungstate can be combined with Mg2+ to form insoluble magnesium tungstate protective film, which blocks corrosion media. At the same time, silanization treatment further seals the MAO coating and increases the compactness of the coating. In addition, with the increase in the impregnation concentration of sodium tungstate, the content of sodium tungstate in the M-nW-SG composite coating improves, and the sealing effect of silanization treatment is better. When the impregnation concentration of sodium tungstate is 0.1 mol/L or above, the MAO coating with sodium tungstate can be completely sealed. When the impregnation concentration of sodium tungstate is 0.125 mol/L, M-0.125W-SG composite coating has the best corrosion resistance, and its impedance modulus value can be maintained at 8.06 × 106 Ω·cm2 after soaking in 3.5 wt.% NaCl solution for 144 h, which is about three orders of magnitude higher than those of MAO coating and M-0.125W and M-SG composite coatings. Full article
Show Figures

Figure 1

9 pages, 13511 KiB  
Communication
Polarization-Independent Focusing Vortex Beam Generation Based on Ultra-Thin Spiral Diffractive Lens on Fiber End-Facet
by Luping Wu, Zhiyong Bai, Rui Liu, Yuji Wang, Jian Yu, Jianjun Ran, Zikai Chen, Zilun Luo, Changrui Liao, Ying Wang, Jun He, George Y. Chen and Yiping Wang
Photonics 2024, 11(12), 1167; https://doi.org/10.3390/photonics11121167 - 11 Dec 2024
Viewed by 1062
Abstract
An ultra-thin spiral diffractive lens (SDL) was fabricated by using focused ion beam milling on a fiber end-facet coated with a 100 nm thick Au film. Focusing vortex beams (FVBs) were successfully excited by the SDLs due to the coherent superposition of diffracted [...] Read more.
An ultra-thin spiral diffractive lens (SDL) was fabricated by using focused ion beam milling on a fiber end-facet coated with a 100 nm thick Au film. Focusing vortex beams (FVBs) were successfully excited by the SDLs due to the coherent superposition of diffracted waves and their azimuth dependence of the phase accumulated from the spiral aperture to the beam axis. The polarization and phase characteristics of the FVBs were experimentally investigated. Results show that the input beams with various polarization states were converted to FVBs, whose polarization states were the same as those of the input beams. Furthermore, the focal length of the SDL and the in-tensity and phase distribution at the focus spot of the FVBs were numerically simulated by the FDTD method in the ultra-wide near-infrared waveband from 1300 nm to 1800 nm. The focal length was tuned from 21.8 μm to 14.7 μm, the intensity profiles exhibited a doughnut-like shape, and the vortex phase was converted throughout the broadband range. The devices are expected to be candidates for widespread applications including optical communications, optical imaging, and optical tweezers. Full article
Show Figures

Figure 1

22 pages, 16635 KiB  
Article
Production Optimization of Premium Food Can with Distortion Printing under Waving Requirement
by Natthawat Chuchot and Purit Thanakijkasem
Appl. Sci. 2024, 14(16), 7399; https://doi.org/10.3390/app14167399 - 22 Aug 2024
Cited by 1 | Viewed by 1207
Abstract
This research aims to propose a novel approach for evaluating and minimizing scraps in an industrial production of premium food cans with distortion printing. Beyond conventional formability criteria, a waving requirement is introduced to ensure aesthetic quality of the printed graphics. The research [...] Read more.
This research aims to propose a novel approach for evaluating and minimizing scraps in an industrial production of premium food cans with distortion printing. Beyond conventional formability criteria, a waving requirement is introduced to ensure aesthetic quality of the printed graphics. The research focuses on real production conditions, specifically involving double-cold-reduced (DR) low-carbon steel sheets and chromium-coated tin-free steel with a thickness of 0.16 mm. The sheets are laminated on both sides with a plastic film prior to undergoing distortion printing on the exterior. Subsequently, a blank is subjected to a drawing-redrawing process to form a food can. To address challenges associated with characterizing these thin sheets, a material parameter identification method is proposed and demonstrated. The thickness profile and flange length are identified as key criteria for this identification process. Measurements of thickness distribution and flange length are obtained using digital image correlation (DIC) and microscopy techniques. Within the manufacturing system, uncertainties related to material properties and forming processes can result in scraps or defects. To analyze these processes, finite element analysis (FEA) is employed and validated through experiments. For the evaluation of scrap rates, uncertainty propagation is conducted using a metamodeling technique, specifically employing radial basis function (RBF) neural networks. The study concludes by offering process optimization recommendations aimed at reducing the scrap rate. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

12 pages, 4531 KiB  
Article
DC-free Method to Evaluate Nanoscale Equivalent Oxide Thickness: Dark-Mode Scanning Capacitance Microscopy
by Mao-Nan Chang, Yi-Shan Wu, Chiao-Jung Lin, Yu-Hsun Hsueh, Chun-Jung Su and Yao-Jen Lee
Nanomaterials 2024, 14(11), 934; https://doi.org/10.3390/nano14110934 - 26 May 2024
Viewed by 1389
Abstract
This study developed a DC-free technique that used dark-mode scanning capacitance microscopy (DM-SCM) with a small-area contact electrode to evaluate and image equivalent oxide thicknesses (EOTs). In contrast to the conventional capacitance–voltage (C–V) method, which requires a large-area contact electrode and DC voltage [...] Read more.
This study developed a DC-free technique that used dark-mode scanning capacitance microscopy (DM-SCM) with a small-area contact electrode to evaluate and image equivalent oxide thicknesses (EOTs). In contrast to the conventional capacitance–voltage (C–V) method, which requires a large-area contact electrode and DC voltage sweeping to provide reliable C–V curves from which the EOT can be determined, the proposed method enabled the evaluation of the EOT to a few nanometers for thermal and high-k oxides. The signal intensity equation defining the voltage modulation efficiency in scanning capacitance microscopy (SCM) indicates that thermal oxide films on silicon can serve as calibration references for the establishment of a linear relationship between the SCM signal ratio and the EOT ratio; the EOT is then determined from this relationship. Experimental results for thermal oxide films demonstrated that the EOT obtained using the DM-SCM approach closely matched the value obtained using the typical C–V method for frequencies ranging from 90 kHz to 1 MHz. The percentage differences in EOT values between the C–V and SCM measurements were smaller than 0.5%. For high-k oxide films, DM-SCM with a DC-free operation may mitigate the effect of DC voltages on evaluations of EOTs. In addition, image operations were performed to obtain EOT images showing the EOT variation induced by DC-stress-induced charge trapping. Compared with the typical C–V method, the proposed DM-SCM approach not only provides a DC-free approach for EOT evaluation, but also offers a valuable opportunity to visualize the EOT distribution before and after the application of DC stress. Full article
Show Figures

Graphical abstract

17 pages, 12134 KiB  
Article
Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study
by Suma Ayyagari and Marwan Al-Haik
J. Compos. Sci. 2024, 8(4), 122; https://doi.org/10.3390/jcs8040122 - 27 Mar 2024
Cited by 2 | Viewed by 2079
Abstract
The exceptional properties of carbon nanotubes (CNTs) make them ideal nanofillers for various composite materials. In carbon fiber-reinforced polymer (CFRP) composites. CNTs can be grown on the carbon fiber surface to act as a third interface between the fiber and the matrix. However, [...] Read more.
The exceptional properties of carbon nanotubes (CNTs) make them ideal nanofillers for various composite materials. In carbon fiber-reinforced polymer (CFRP) composites. CNTs can be grown on the carbon fiber surface to act as a third interface between the fiber and the matrix. However, it was established that the uncontrolled random growth of CNTs could exacerbate delamination in composite structures. Thick nanofiller films could hinder the epoxy from seeping into the carbon fiber, resulting in insufficient interlaminar strength. Hence, the density and distribution of nanofillers play a crucial role in determining the hybrid composite fracture mechanisms. In this investigation, CNTs were grown using the low-temperature technique into specific patterns over carbon fibers to discern their derived composites’ fracture properties. The composite fracture energy release was probed using a double cantilever beam (DCB) test setup and digital image correlation (DIC) to monitor interlaminar crack propagation. A standard finite element simulation model based on the cohesive zone method (CZM) was also utilized to delineate fracture behaviors of the various composite configurations. Results conclude that a coarser pattern of CNT growth enhances resistance to crack propagation, thus improving the interlaminar fracture toughness of a composite structure. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

18 pages, 4461 KiB  
Article
Thickness Nanoarchitectonics with Edge-Enhanced Raman, Polarization Raman, Optoelectronic Properties of GaS Nanosheets Devices
by Fang Zhou, Yujing Zhao, Feiya Fu, Li Liu and Zhixin Luo
Crystals 2023, 13(10), 1506; https://doi.org/10.3390/cryst13101506 - 17 Oct 2023
Cited by 8 | Viewed by 1813
Abstract
Here, we report on using chemical vapor deposition to generate three kinds of gallium sulfide nanosheets, with thicknesses of approximately 10, 40, and 170 nm. Next, we performed Raman imaging analysis on these nanosheets to evaluate their properties. The 10 nm GaS nanosheets [...] Read more.
Here, we report on using chemical vapor deposition to generate three kinds of gallium sulfide nanosheets, with thicknesses of approximately 10, 40, and 170 nm. Next, we performed Raman imaging analysis on these nanosheets to evaluate their properties. The 10 nm GaS nanosheets exhibited a nearly equal distribution of Raman imaging intensity, whereas the 40 and 170 nm GaS nanosheets exhibited an inclination toward the edges with higher Raman intensity. When the polarization of the laser was changed, the intensity of Raman imaging of the 10 nm thick GaS nanosheets remained consistent when illuminated with a 532 nm laser. Notably, a greater Raman intensity was discernible at the edges of the 40 and 170 nm GaS nanosheets. Three distinct GaS nanosheet devices with different film thicknesses were fabricated, and their photocurrents were recorded. The devices were exposed to light of 455 nm wavelength. The GaS nanosheet devices with film thicknesses of 40 and 170 nm exhibited a positive photoresponse even though the photocurrents were fairly low. In contrast, the GaS nanosheet device with a film thickness of 10 nm had a considerable current without light, even though it had a weak reaction to light. This study reveals the different spatial patterns of Raman imaging with GaS thickness, the wavelength of excitation light, and polarization. Remarkably, the I-V diagram revealed a higher dark-field current of 800 nA in the device with a GaS nanosheet thickness of approximately 10 nm, when using a voltage of 1.5 V and a laser of 445 nm wavelength. These findings are comparable with those theretical pretictions in the existing literature. In conclusion, the observation above could serve as a catalyst for future exploration into photocatalysis, electrochemical hydrogen production through water splitting, energy storage, nonlinear optics, gas sensing, and ultraviolet selective photodetectors of GaS nanosheet-based photodetectors. Full article
(This article belongs to the Special Issue Raman Scattering in Optical Crystals (Volume II))
Show Figures

Figure 1

19 pages, 5973 KiB  
Article
Spin Coating of Silica Nanocolloids on Mica: Self-Assembly of Two-Dimensional Colloid Crystal Structures and Thin Films
by John Walker and Vasileios Koutsos
Coatings 2023, 13(9), 1488; https://doi.org/10.3390/coatings13091488 - 23 Aug 2023
Cited by 4 | Viewed by 2347
Abstract
The viability of spin-coating methods for the self-assembly of 150 nm diameter silica nanocolloids into large crystal structures on mica was investigated using different colloidal concentrations, accelerations, and rotational speeds. The samples were imaged by atomic force microscopy (AFM) in intermittent contact mode. [...] Read more.
The viability of spin-coating methods for the self-assembly of 150 nm diameter silica nanocolloids into large crystal structures on mica was investigated using different colloidal concentrations, accelerations, and rotational speeds. The samples were imaged by atomic force microscopy (AFM) in intermittent contact mode. Low colloidal concentration led to a size-dependent ordering configuration. The largest nanocolloidal particles formed crystalline close-packed structures that were surrounded by increasingly smaller nanocolloids configured into more polycrystalline or amorphous formations. This phenomenon became increasingly suppressed by increasing colloidal concentration. Two dimensional-fast Fourier transform (2D-FFT) radially averaged profiles of the topography images revealed increasing interparticle spacing with increasing rotational acceleration, from close-packed structuring at low accelerations to increasingly spaced packing at high acceleration (>800 rpm/s). This behaviour is attributed to rapid liquid shedding from the increased acceleration. Analysis with radial distribution functions quantified the extent of ordering and revealed an optimum spin speed that caused the formation of large, highly crystalline structures. This optimum spin speed is governed by the relationship between the rotational speed and the liquid film thickness that affect the uniformity of the film and the magnitude of the capillary forces generated. Full article
Show Figures

Figure 1

16 pages, 7965 KiB  
Article
Multi-Parameter Model-Based Polarimetric Calibration for Dual-Coded Spectral Polarization Imaging System
by Jiayu Wang, Haodong Shi, Yingchao Li, Qiang Fu, Yingjie Zhao and Huilin Jiang
Photonics 2023, 10(8), 929; https://doi.org/10.3390/photonics10080929 - 13 Aug 2023
Viewed by 1630
Abstract
A polarization analysis method based on a multi-parameter model is proposed to address the polarization effect analysis and calibration requirements of a dual-coded snapshot spectral polarization imaging system. A full-link polarization effect model for a spectral polarization imaging system is established that includes [...] Read more.
A polarization analysis method based on a multi-parameter model is proposed to address the polarization effect analysis and calibration requirements of a dual-coded snapshot spectral polarization imaging system. A full-link polarization effect model for a spectral polarization imaging system is established that includes a digital micromirror array (DMD), prism grating prism (PGP), micro-polarizer array detector (MPA), and multi-film. The influence of parameters such as the refractive index, incident angle, grating refractive index, constant, prism refractive index, vertex angle, multi-layer film complex refractive index, and film thickness on the optical transmittance of the system are analyzed. Using a dynamic data exchange mechanism to perform full-link, full-FOV, and full-pupil ray tracing on the optical system, the polarization effect distribution of the system under different degrees of polarization (DOP) and wavelengths is obtained. A calibration experiment for the controllable incident wavelength and DOP using narrowband filters and glass stacks is established. The experimental results show that in the 420 nm, 532 nm, and 635 nm wavelength bands, the MSEs of the calibrated values are 1.3924 × 10−4, 1.6852 × 10−4, and 1.6735 × 10−4, respectively. It is proven that the calibration method based on a multi-parameter model is feasible. Finally, the spectral polarization image at 532 nm is calibrated. The contrast ratio of metallic aluminum is calibrated from 7.13 to 15.33. This study provides a theoretical basis for the analysis and calibration of polarization effects in a dual-coded snapshot spectral polarization imaging system. Full article
Show Figures

Figure 1

15 pages, 7090 KiB  
Article
Enhancing Lubrication Performance of Calcium Sulfonate Complex Grease Dispersed with Two-Dimensional MoS2 Nanosheets
by Shuo Xiang, Xufei Long, Qinhui Zhang, Pengfei Ma, Xin Yang, Hui Xu, Peng Lu, Peng Su, Weihua Yang and Yan He
Lubricants 2023, 11(8), 336; https://doi.org/10.3390/lubricants11080336 - 8 Aug 2023
Cited by 5 | Viewed by 3880
Abstract
Calcium sulfonate complex greases (CSCG) have proven to be a sustainable alternative to lithium complex greases, which still require appropriate additives to deliver lubrication performance benefits under extreme working conditions such as heavy load, high speed, and high temperature. The anti-wear and friction [...] Read more.
Calcium sulfonate complex greases (CSCG) have proven to be a sustainable alternative to lithium complex greases, which still require appropriate additives to deliver lubrication performance benefits under extreme working conditions such as heavy load, high speed, and high temperature. The anti-wear and friction reducing properties of CSCG enhanced by two-dimensional MoS2 nanosheets (2D MoS2) with a narrow lateral size and thickness distributions were evaluated by a four-ball tribometer. The results showed that the CSCG with 0.6 wt.% 2D MoS2 performs best, with a 56.4% decrease in average friction coefficient (AFC), 16.5% reduction in wear scar diameter (WSD), 14.3% decrease in surface roughness, and a 59.4% reduction in average wear depth. Combining SEM-EDS images, Raman, and X-ray photoelectron spectra, it is illustrated that the physical transferred film and tribo-chemical film consisting of MoS2, Fe2O3, FeSO4, CaCO3, CaO, and MoO3 were generated on the worn surface, which improves the lubrication performance of CSCG considerably. Full article
(This article belongs to the Special Issue Applied Nanotribology, 3rd Edition)
Show Figures

Figure 1

12 pages, 7440 KiB  
Article
Study on the Adsorption Deformation of a Substrate via Spin Coating Based on the 3D-DIC Method and Its Effect on the Homogeneity of Perovskite Films
by Chunhua Ren, Zhishun Zhou, Shuming Cao, Mengting Jiao and Dongyang Xue
Materials 2023, 16(15), 5454; https://doi.org/10.3390/ma16155454 - 3 Aug 2023
Cited by 1 | Viewed by 1534
Abstract
The physical and chemical stability of perovskite films has always been a key issue for their industrialization, which has been extensively studied in terms of materials, environment, and encapsulation. Spin coating is one of the most commonly used methods for the preparation of [...] Read more.
The physical and chemical stability of perovskite films has always been a key issue for their industrialization, which has been extensively studied in terms of materials, environment, and encapsulation. Spin coating is one of the most commonly used methods for the preparation of perovskite films in research. However, little attention has been paid to the deformation state of the substrate when it is fixed by means of adsorption and its impact. In this work, the three-dimensional digital image correlation (3D-DIC) method and hyperspectral technology are used to acquire and analyze the adsorption deformation characteristics of the substrate during spin coating, as well as the resulting inhomogeneity. Plastic and four different thicknesses of float glass (0.2, 0.5, 0.7, 1.1 mm) were selected as substrates, and they were tested separately on two suction cups with different structures. The results show that the plastic and 0.2 mm specimens exhibit obvious strain localization behavior. The distribution and magnitude of the strain are affected by the size of the sucker structure, especially the width of the groove. For glass specimens, this effect shows a nonlinear decrease with increasing substrate thickness. Compared to the strain value, the irregularity of local deformation has a greater impact on the non-uniform distribution of materials. Finally, inhomogeneities in the perovskite films were observed through optical lens and hyperspectral data. Obviously, the deformation of the substrate caused by adsorption should attract the attention of researchers, especially for flexible or rigid substrates with low thickness. This may affect the centrifugal diffusion path of the precursor, causing microstructure inhomogeneity and residual stress, etc. Full article
Show Figures

Figure 1

12 pages, 3955 KiB  
Article
Development of Wide-Angle Depolarizing Reflector at 1064 nm
by Han Zhu, Hongyan Jiang, Kai Guo, Yongchao Peng, Yawu Xin, Gong Zhang, Yixin Lin, Ning Yang, Huashu Wei, Zekai Huang, Shifu Xiong and Zhanggui Hu
Materials 2023, 16(12), 4258; https://doi.org/10.3390/ma16124258 - 8 Jun 2023
Viewed by 1559
Abstract
Optical coherence tomography is a new promising chromatographic imaging technique with the advantages of noncontact and high resolution without damage, which is widely used in the field of biological tissue detection and imaging. As an important optical element in the system, the wide-angle [...] Read more.
Optical coherence tomography is a new promising chromatographic imaging technique with the advantages of noncontact and high resolution without damage, which is widely used in the field of biological tissue detection and imaging. As an important optical element in the system, the wide-angle depolarizing reflector plays a key role in the accurate acquisition of optical signals. Ta2O5 and SiO2 are selected as the coating materials for the technical parameter requirements of the reflector in the system. Based on the basic theory of optical thin film and combined with MATLAB and OptiLayer software, the design of 0~60° incident 1064 ± 40 nm depolarizing reflective film is realized by establishing the evaluation function of the film system. To optimize the oxygen-charging distribution scheme during film deposition, the weak absorption properties of the film materials are characterized by optical thermal co-circuit interferometry. According to the sensitivity distribution of the film layer, the optical control monitoring scheme with a thickness error of less than 1% is designed rationally. “Crystal control + optical control” is used to precisely control the thickness of each film layer and complete the preparation of resonant cavity film. The measurement results show that the average reflectance is more than 99.5%, and the deviation of P-light and S-light is less than 1% in the 1064 ± 40 nm wavelength band range from 0° to 60°, which meets the requirements of optical coherence tomography system. Full article
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
Upconversion Nanoparticle-Based Fluorescent Film for Distributed Temperature Monitoring of Mobile Phones’ Integrated Chips
by Hanyang Li, Miao Yu, Jichun Dai, Gaoqian Zhou and Jiapeng Sun
Nanomaterials 2023, 13(11), 1704; https://doi.org/10.3390/nano13111704 - 23 May 2023
Cited by 8 | Viewed by 2391
Abstract
As one of the most critical parameters to evaluate the quality and performance of mobile phones, real-time temperature monitoring of mobile phones’ integrated chips is vital in the electronics industry. Although several different strategies for the measurement of chips’ surface temperature have been [...] Read more.
As one of the most critical parameters to evaluate the quality and performance of mobile phones, real-time temperature monitoring of mobile phones’ integrated chips is vital in the electronics industry. Although several different strategies for the measurement of chips’ surface temperature have been proposed in recent years, distributed temperature monitoring with high spatial resolution is still a hot issue with an urgent need to be solved. In this work, a fluorescent film material with photothermal properties containing thermosensitive upconversion nanoparticles (UCNPs) and polydimethylsiloxane (PDMS) is fabricated for the monitoring of the chips’ surface temperature. The presented fluorescent films have thicknesses ranging from 23 to 90 μm and are both flexible and elastic. Using the fluorescence intensity ratio (FIR) technique, the temperature-sensing properties of these fluorescent films are investigated. The maximum sensitivity of the fluorescent film was measured to be 1.43% K−1 at 299 K. By testing the temperature at different positions of the optical film, distributed temperature monitoring with a high spatial resolution down to 10 μm on the chip surface was successfully achieved. It is worth mentioning that the film maintained stable performance even under pull stretching up to 100%. The correctness of the method is verified by taking infrared images of the chip surface with an infrared camera. These results demonstrate that the as-prepared optical film is a promising anti-deformation material for monitoring temperature with high spatial resolution on-chip surfaces. Full article
Show Figures

Figure 1

12 pages, 53403 KiB  
Article
Anisotropic Etching of InGaN Thin Films with Photoelectrochemical Etching to Form Quantum Dots
by Xiongliang Wei, Syed Ahmed Al Muyeed, Haotian Xue and Jonathan J. Wierer
Materials 2023, 16(5), 1890; https://doi.org/10.3390/ma16051890 - 24 Feb 2023
Viewed by 1942
Abstract
Traditional methods for synthesizing InGaN quantum dots (QDs), such as the Stranski-Krastanov growth, often result in QD ensembles with low density and non-uniform size distribution. To overcome these challenges, forming QDs using photoelectrochemical (PEC) etching with coherent light has been developed. Anisotropic etching [...] Read more.
Traditional methods for synthesizing InGaN quantum dots (QDs), such as the Stranski-Krastanov growth, often result in QD ensembles with low density and non-uniform size distribution. To overcome these challenges, forming QDs using photoelectrochemical (PEC) etching with coherent light has been developed. Anisotropic etching of InGaN thin films is demonstrated here with PEC etching. InGaN films are etched in dilute H2SO4 and exposed to a pulsed 445 nm laser with a 100 mW/cm2 average power density. Two potentials (0.4 V or 0.9 V) measured with respect to an AgCl|Ag reference electrode are applied during PEC etching, resulting in different QDs. Atomic force microscope images show that while the QD density and sizes are similar for both applied potentials, the heights are more uniform and match the initial InGaN thickness at the lower applied potential. Schrodinger-Poisson simulations show that polarization-induced fields in the thin InGaN layer prevent positively charged carriers (holes) from arriving at the c-plane surface. These fields are mitigated in the less polar planes resulting in high etch selectivity for the different planes. The higher applied potential overcomes the polarization fields and breaks the anisotropic etching. Full article
(This article belongs to the Special Issue Quantum Dots for Optoelectronic Devices)
Show Figures

Figure 1

13 pages, 5558 KiB  
Article
A Cryostat Applicable to Long-Wavelength Light-Driven Scanning Probe Microscopy
by Kui Xiang, Caihong Xie, Qiyuan Feng, Ze Wang, Guangbin Dai, Jihao Wang, Jing Zhang, Wenjie Meng, Yubin Hou, Qingyou Lu and Yalin Lu
Micromachines 2023, 14(2), 378; https://doi.org/10.3390/mi14020378 - 2 Feb 2023
Cited by 1 | Viewed by 2515
Abstract
Recently, there has been growing interest in using lightwave-driven scanning probe microscopy (LD-SPM) to break through the Abbe diffraction limit of focusing, yielding insight into various energy couplings and conversion processes and revealing the internal information of matter. We describe a compact and [...] Read more.
Recently, there has been growing interest in using lightwave-driven scanning probe microscopy (LD-SPM) to break through the Abbe diffraction limit of focusing, yielding insight into various energy couplings and conversion processes and revealing the internal information of matter. We describe a compact and efficient optical cryostat designed for LD-SPM testing under magnetic fields. The exceptional multilayer radiation shielding insert (MRSI) forms an excellent temperature gradient when filled with heat conducting gas, which removes the requirement to install an optical window in the liquid helium cooling shell. This not only critically avoids the vibration and thermal drift caused by solid heat conduction but also minimizes light transmission loss. The application of gate valves and bellows allows a simpler and more effective replacement of the sample and working cell in the test cavity. ANSYS software is used for steady-state thermal analysis of the MRSI to obtain the temperature distribution and heat transfer rate, and the necessity of the flexible copper shielding strips is illustrated by the simulations. The topography and magnetic domain images of 45 nm-thick La0.67Ca0.33MnO3 thin films on NdGaO3(001) substrates under a magnetic field were obtained by a self-made lightwave-driven magnetic force microscope in this cryostat. The resolution and noise spectra during imaging reveal temperature stability and low vibration throughout the cryostat. The experience acquired during the development of this cryostat will help to establish cryostats of similar types for a variety of optic applications requiring the use of cryogenic temperatures. Full article
Show Figures

Figure 1

Back to TopTop