Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = film slicks on the sea surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5536 KiB  
Article
New Features of Bragg and Non-Polarized Radar Backscattering from Film Slicks on the Sea Surface
by Stanislav Aleksandrovich Ermakov, Irina Andreevna Sergievskaya, Leonid Mikhailovich Plotnikov, Ivan Aleksandrovich Kapustin, Olga Arkadyevna Danilicheva, Alexander Viktorovich Kupaev and Alexander Andreevich Molkov
J. Mar. Sci. Eng. 2022, 10(9), 1262; https://doi.org/10.3390/jmse10091262 - 7 Sep 2022
Cited by 2 | Viewed by 1955
Abstract
Suppression of radar backscattering from the sea surface has been studied in field experiments with surfactant films carried out from an Oceanographic Platform on the Black Sea and from onboard a research vessel on the Gorky Water Reservoir using an X-C-S-band two co-polarized [...] Read more.
Suppression of radar backscattering from the sea surface has been studied in field experiments with surfactant films carried out from an Oceanographic Platform on the Black Sea and from onboard a research vessel on the Gorky Water Reservoir using an X-C-S-band two co-polarized radar instrument. Bragg and non-polarized (non-Bragg) radar backscatter components, BC and NBC, respectively, were retrieved when measuring the radar backscatter at vertical (VV-) and horizontal (HH-) polarizations. New features of microwave backscattering from the sea surface have been revealed, including a non-monotonic dependence of radar backscatter suppression (contrasts) in slicks on azimuth angle and particularities of BC contrasts on radar wave number. Namely, it is demonstrated that the backscatter contrasts achieve maximum values at azimuth angles in between the upwind and crosswind radar look directions, and BC contrasts increase with radar wave number along the wind and decrease in the crosswind directions. The suppression of BC is discussed in the frame of Bragg’s theory of microwave scattering and of a simple model of the wind wave spectrum, while the suppression of NBC is considered associated with the micro-breaking of wind waves. The obtained new features of radar contrasts can be used for the identification and characterization of marine films. Full article
(This article belongs to the Special Issue Satellite Monitoring of Ocean)
Show Figures

Figure 1

27 pages, 22251 KiB  
Article
Asymptotic Modeling of Three-Dimensional Radar Backscattering from Oil Slicks on Sea Surfaces
by Nicolas Pinel, Christophe Bourlier, Irina Sergievskaya, Nicolas Longépé and Guillaume Hajduch
Remote Sens. 2022, 14(4), 981; https://doi.org/10.3390/rs14040981 - 17 Feb 2022
Cited by 4 | Viewed by 2269
Abstract
This paper presents new results of a simulation of radar backscatter from oil slick areas on a real three-dimensional sea surface, based on a physical hydrodynamic model of surface wave damping in the presence of oil films, the local equilibrium model (MLB). To [...] Read more.
This paper presents new results of a simulation of radar backscatter from oil slick areas on a real three-dimensional sea surface, based on a physical hydrodynamic model of surface wave damping in the presence of oil films, the local equilibrium model (MLB). To solve this problem, the modelling was carried out by using the first-order small-slope approximation (SSA1) model. It presents the advantage of having a very good compromise between rapidity and accuracy of the calculation. The choice of the model is justified by solving the two-dimensional problem with several asymptotic methods and further comparing the results with a rigorous numerical method, based on the Method of Moments (MoM). Two approaches called “thin-layer” (TL) and “classical” were used to deal with the double layer (air/oil/sea) problem. The TL approach assumes that this double-layer problem can be seen locally as a Fabry–Pérot interferometer, which implies that the Kirchhoff-tangent plane approximation (KA) is valid. The classical approach consists in neglecting the presence of the oil layer for dealing with electromagnetic backscattering, which is valid for very thin oil films compared to the electromagnetic (EM) wavelength. It is shown that these two approaches have rather complementary validity domains: The TL approach is always valid for small observation angles, which makes it suitable for near nadir sensors such as altimeters, whereas the classical approach is valid for moderate observation angles, which makes it suitable for most satellite applications. The 3D modelling results are compared with C-band and X-band measured data (CSK experiment and OOW NOFO experiment) in VV polarization. The calculation takes into account that the oil film on the sea surface is mainly in an emulsion state. The results highlighted the relevance of the MLB hydrodynamic model, as well as the SSA1 EM model combined wit the classical approach, for quantifying NRCS in seas contaminated with marine oil or surfactants. The agreement is indeed very good in the X-band range. Full article
(This article belongs to the Special Issue Electromagnetic Modeling in Microwave Remote Sensing)
Show Figures

Figure 1

16 pages, 6318 KiB  
Technical Note
Satellite Survey of Offshore Oil Seep Sites in the Caspian Sea
by Marina Mityagina and Olga Lavrova
Remote Sens. 2022, 14(3), 525; https://doi.org/10.3390/rs14030525 - 22 Jan 2022
Cited by 12 | Viewed by 4039
Abstract
This paper presents the results of a long-term survey of the Caspian Sea using satellite SAR and multispectral sensors. The primary environmental problem of the Caspian Sea is oil pollution which is determined by its natural properties, mainly by the presence of big [...] Read more.
This paper presents the results of a long-term survey of the Caspian Sea using satellite SAR and multispectral sensors. The primary environmental problem of the Caspian Sea is oil pollution which is determined by its natural properties, mainly by the presence of big oil and gas deposits beneath the seabed. Our research focuses on natural oil slicks (NOS), i.e., oil showings on the sea surface due to natural hydrocarbon emission from seabed seeps. The spatial and temporal variability of NOS in the Caspian Sea and the possibilities of their reliable detection using satellite data are examined. NOS frequency and detectability in satellite images depending on sensor type, season and geographical region are assessed. It is shown that both parameters vary significantly, and largely depend on sensor type and season, with season being most pronounced in visible (VIS) data. The locations of two offshore seep sites at the Iranian and Turkmenian shelves are accurately estimated. Statistics on individual sizes of NOS are drawn. The release rates of crude oil from the seabed to the sea surface are compared. Detailed maps of NOS are put together, and areas exposed to high risk of sea surface oil pollution are determined. Full article
(This article belongs to the Special Issue Advances in Oil Spill Remote Sensing)
Show Figures

Figure 1

20 pages, 2415 KiB  
Article
Effects of Natural and Artificial Surfactants on Diffusive Boundary Dynamics and Oxygen Exchanges across the Air–Water Interface
by Adenike Adenaya, Michaela Haack, Christian Stolle, Oliver Wurl and Mariana Ribas-Ribas
Oceans 2021, 2(4), 752-771; https://doi.org/10.3390/oceans2040043 - 24 Nov 2021
Cited by 4 | Viewed by 4265
Abstract
Comparing measurements of the natural sea surface microlayer (SML) and artificial surface films made of Triton-X-100 and oleyl alcohol can provide a fundamental understanding of diffusive gas fluxes across the air–water boundary layers less than 1 mm thick. We investigated the impacts of [...] Read more.
Comparing measurements of the natural sea surface microlayer (SML) and artificial surface films made of Triton-X-100 and oleyl alcohol can provide a fundamental understanding of diffusive gas fluxes across the air–water boundary layers less than 1 mm thick. We investigated the impacts of artificial films on the concentration gradients and diffusion of oxygen (O2) across the SML, the thickness of the diffusive boundary layer (DBL), and the surface tension levels of natural seawater and deionized water. Natural and artificial films led to approximately 78 and 81% reductions in O2 concentration across the surfaces of natural seawater and deionized water, respectively. The thicknesses of the DBL were 500 and 350 µm when natural SML was added on filtered and unfiltered natural seawater, respectively, although the DBL on filtered seawater was unstable, as indicated by decreasing thickness over time. Triton-X-100 and oleyl alcohol at a concentration of 2000 µg L−1 in deionized water persistently increased the DBL thickness values by 30 and 26% over a period of 120 min. At the same concentration, Triton-X-100 and oleyl alcohol decreased the surface tension of deionized water from ~72 mN m−1 to 48 and 38 mN m−1, respectively; 47% recovery was recorded after 30 min with Triton-X-100, although low surface tension persisted for 120 min with oleyl alcohol. The critical micelle concentration values of Triton-X-100 ranged between 400 and 459 µg L−1. We, therefore, suggest that Triton-X-100 resembles natural SML because the reduction and partial recovery of the surface tension of deionized water with the surfactant resembles the behavior observed for natural slicks. Temperature and salinity were observed to linearly decrease the surface tension levels of natural seawater, artificial seawater, and deionized water. Although several factors leading to O2 production and consumption in situ are excluded, experiments carried out under laboratory-controlled conditions are useful for visualizing fine-scale processes of O2 transfer from water bodies through the surface microlayer. Full article
Show Figures

Graphical abstract

19 pages, 8986 KiB  
Article
Detection and Analysis of the Causes of Intensive Harmful Algal Bloom in Kamchatka Based on Satellite Data
by Valery Bondur, Viktor Zamshin, Olga Chvertkova, Ekaterina Matrosova and Vasilisa Khodaeva
J. Mar. Sci. Eng. 2021, 9(10), 1092; https://doi.org/10.3390/jmse9101092 - 7 Oct 2021
Cited by 14 | Viewed by 3689
Abstract
In this paper, the causes of the anomalous harmful algal bloom which occurred in the fall of 2020 in Kamchatka have been detected and analyzed using a long-term time series of heterogeneous satellite and simulated data with respect to the sea surface height [...] Read more.
In this paper, the causes of the anomalous harmful algal bloom which occurred in the fall of 2020 in Kamchatka have been detected and analyzed using a long-term time series of heterogeneous satellite and simulated data with respect to the sea surface height (HYCOM) and temperature (NOAA OISST), chlorophyll-a concentration (MODIS Ocean Color SMI), slick parameters (SENTINEL-1A/B), and suspended matter characteristics (SENTINEL-2A/B, C2RCC algorithm). It has been found that the harmful algal bloom was preceded by temperature anomalies (reaching 6 °C, exceeding the climatic norm by more than three standard deviation intervals) and intensive ocean level variability followed by the generation of vortices, mixing water masses and providing nutrients to the upper photic layer. The harmful algal bloom itself was manifested in an increase in the concentration of chlorophyll-a, its average monthly value for October 2020 (bloom peak) approached 15 mg/m3, exceeding the climatic norm almost four-fold for the region of interest (Avacha Gulf). The zones of accumulation of a large amount of biogenic surfactant films registered in radar satellite imagery correlate well with the local regions of the highest chlorophyll-a concentration. The harmful bloom was influenced by river runoff, which intensively brought mineral and biogenic suspensions into the marine environment (the concentration of total suspended matter within the plume of the Nalycheva River reached 10 mg/m3 and more in 2020), expanding food resources for microalgae. Full article
(This article belongs to the Special Issue Sea Level Fluctuations)
Show Figures

Figure 1

16 pages, 3127 KiB  
Article
The Role of Micro Breaking of Small-Scale Wind Waves in Radar Backscattering from Sea Surface
by Irina A. Sergievskaya, Stanislav A. Ermakov, Aleksey V. Ermoshkin, Ivan A. Kapustin, Olga V. Shomina and Alexander V. Kupaev
Remote Sens. 2020, 12(24), 4159; https://doi.org/10.3390/rs12244159 - 19 Dec 2020
Cited by 13 | Viewed by 2813
Abstract
The study of the microwave scattering mechanisms of the sea surface is extremely important for the development of radar sensing methods. Some time ago, Bragg (resonance) scattering of electromagnetic waves from the sea surface was proposed as the main mechanism of radar backscattering [...] Read more.
The study of the microwave scattering mechanisms of the sea surface is extremely important for the development of radar sensing methods. Some time ago, Bragg (resonance) scattering of electromagnetic waves from the sea surface was proposed as the main mechanism of radar backscattering at moderate incidence angles of microwaves. However, it has been recently confirmed that Bragg scattering is often unable to correctly explain observational data and that some other physical mechanisms should be taken into consideration. The newly introduced additional scattering mechanism was characterized as non-polarized, or non-Bragg scattering, from quasi-specular facets appearing due to breaking wave crests, the latter usually occurring in moderate and strong winds. In this paper, it was determined experimentally that such non-polarized radar backscattering appeared not only for rough sea conditions in which wave crests strongly break and “white caps” occur, but also at very low wind velocities close to their threshold values for the wave generation process. The experiments were performed using two polarized Doppler radars. The experiments demonstrated that a polarization ratio, which characterizes relative contributions of non-polarized and Bragg components to the total backscatter, changed slightly with wind velocity and wind direction. Detailed analysis of radar Doppler shifts revealed two types of scatterers responsible for the non-polarized component. One type of scatterer, moving with the velocities of decimeter-scale wind waves, determined radar backscattering at low winds. We identified these scatterers as “microbreakers” and related them to nonlinear features in the profile of decimeter-scale waves, like bulges, toes and parasitic capillary ripples. The scatterers of the second type were associated with strong breaking, moved with the phase velocities of meter-scale breaking waves and appeared at moderate winds additionally to the “microbreakers”. Along with strong breakers, the impact of microbreaking in non-polarized backscattering at moderate winds remained significant; specifically the microbreakers were found to be responsible for about half of the non-polarized component of the radar return. The presence of surfactant films on the sea surface led to a significant suppression of the small-scale non-Bragg scattering and practically did not change the non-Bragg scatterer speed. This effect was explained by the fact that the nonlinear structures associated with dm-scale waves were strongly reduced in the presence of a film due to the cascade mechanism, even if the reduction of the amplitude of dm waves was weak. At the same time, the velocities of non-Bragg scatterers remained practically the same as in non-slick areas since the phase velocity of dm waves was not affected by the film. Full article
Show Figures

Figure 1

24 pages, 3890 KiB  
Article
Classification of Oil Slicks and Look-Alike Slicks: A Linear Discriminant Analysis of Microwave, Infrared, and Optical Satellite Measurements
by Gustavo de Araújo Carvalho, Peter J. Minnett, Nelson F. F. Ebecken and Luiz Landau
Remote Sens. 2020, 12(13), 2078; https://doi.org/10.3390/rs12132078 - 28 Jun 2020
Cited by 9 | Viewed by 2969
Abstract
We classify low-backscatter regions observed in Synthetic Aperture Radar (SAR) measurements of the surface of the ocean as either oil slicks or look-alike slicks (radar false targets). Our proposed classification algorithm is based on Linear Discriminant Analyses (LDAs) of RADARSAT-1 measurements (402 scenes [...] Read more.
We classify low-backscatter regions observed in Synthetic Aperture Radar (SAR) measurements of the surface of the ocean as either oil slicks or look-alike slicks (radar false targets). Our proposed classification algorithm is based on Linear Discriminant Analyses (LDAs) of RADARSAT-1 measurements (402 scenes off the southeast coast of Brazil from July 2001 to June 2003) and Meteorological-Oceanographic (MetOc) data from other earth observation sensors: Advanced Very High Resolution Radiometer (AVHRR), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Quick Scatterometer (QuikSCAT). Oil slicks are sea-surface expressions of exploration and production oil, ship- and orphan-spills. False targets are associated with environmental phenomena, such as biogenic films, algal blooms, upwelling, low wind, or rain cells. Both categories have been interpreted by domain-experts: mineral oil (n = 350; 45.5%) and petroleum free (n = 419; 54.5%). We explore nine size variables (area, perimeter, etc.) and three types of MetOc information (sea surface temperature, chlorophyll-a, and wind speed) that describe the 769 samples analyzed. Seven attribute–domain combinations are tested with three non-linear transformations (none, cube root, log10), with and without MetOc, adding to 39 attribute subdivisions. Classification accuracies are independent of data transformation and improve when selected size attributes are combined with MetOc, leading to overall accuracies of ~80% and sound levels of sensitivity (~90%), specificity (~80%), positive (~80%) and negative (~90%) predictive values. The effectiveness of this data-driven attempt supports further commercial or academic implementation of our LDA algorithm. Full article
Show Figures

Figure 1

17 pages, 21565 KiB  
Article
On Capabilities of Tracking Marine Surface Currents Using Artificial Film Slicks
by Ivan A. Kapustin, Olga V. Shomina, Alexey V. Ermoshkin, Nikolay A. Bogatov, Alexander V. Kupaev, Alexander A. Molkov and Stanislav A. Ermakov
Remote Sens. 2019, 11(7), 840; https://doi.org/10.3390/rs11070840 - 8 Apr 2019
Cited by 21 | Viewed by 3881
Abstract
It is known that films on the sea surface can appear due to ship pollution, river and collector drains, as well as natural biological processes. Marine film slicks can indicate various geophysical processes in the upper layer of the ocean and in the [...] Read more.
It is known that films on the sea surface can appear due to ship pollution, river and collector drains, as well as natural biological processes. Marine film slicks can indicate various geophysical processes in the upper layer of the ocean and in the atmosphere. In particular, slick signatures in SAR-imagery of the sea surface at low and moderate wind speeds are often associated with marine currents. Apart from the current itself, other factors such as wind and the physical characteristics of films can significantly influence the dynamics of slick structures. In this paper, a prospective approach aimed at measuring surface currents is developed. The approach is based on the investigation of the geometry of artificial banded slicks formed under the action of marine currents and on the retrieval of the current characteristics from this geometry. The developed approach is applied to quasi stationary slick bands under conditions when the influence of the film spreading effects can be neglected. For the stationary part of the slick band where transition processes of the band formation, e.g., methods of application of surfactants on water, film spreading processes, possible wind transformation etc., become negligible, some empirical relations between the band geometrical characteristics and the characteristics of the surface currents are obtained. The advantage of the approach is a possibility of getting information concerning the spatial structure of marine currents along the entire slick band. The suggested approach can be efficient for remote sensing data verification. Full article
(This article belongs to the Special Issue Oil Spill Remote Sensing)
Show Figures

Graphical abstract

16 pages, 4457 KiB  
Article
Remote Sensing of Organic Films on the Water Surface Using Dual Co-Polarized Ship-Based X-/C-/S-Band Radar and TerraSAR-X
by Stanislav A. Ermakov, Irina A. Sergievskaya, José C.B. Da Silva, Ivan A. Kapustin, Olga V. Shomina, Alexander V. Kupaev and Alexander A. Molkov
Remote Sens. 2018, 10(7), 1097; https://doi.org/10.3390/rs10071097 - 10 Jul 2018
Cited by 40 | Viewed by 4036
Abstract
Microwave radar is a well-established tool for all-weather monitoring of film slicks which appear in radar imagery of the surface of water bodies as areas of reduced backscatter due to suppression of short wind waves. Information about slicks obtained with single-band/one-polarized radar seems [...] Read more.
Microwave radar is a well-established tool for all-weather monitoring of film slicks which appear in radar imagery of the surface of water bodies as areas of reduced backscatter due to suppression of short wind waves. Information about slicks obtained with single-band/one-polarized radar seems to be insufficient for film characterization; hence, new capabilities of multi-polarization radars for monitoring of film slicks have been actively discussed in the literature. In this paper the results of new experiments on remote sensing of film slicks using dual co-polarized radars—a satellite TerraSAR-X and a ship-based X-/C-/S-band radar—are presented. Radar backscattering is assumed to contain Bragg and non-Bragg components (BC and NBC, respectively). BC is due to backscattering from resonant cm-scale wind waves, while NBC is supposed to be associated with wave breaking. Each of the components can be eliminated from the total radar backscatter measured at two co-polarizations, and contrasts of Bragg and non-Bragg components in slicks can be analyzed separately. New data on a damping ratio (contrast) characterizing reduction of radar returns in slicks are obtained for the two components of radar backscatter in various radar bands. The contrast values for Bragg and non-Bragg components are comparable to each other and demonstrate similar dependence on radar wave number; BC and NBC contrasts grow monotonically for the cases of upwind and downwind observations and weakly decrease with wave number for the cross-wind direction. Reduction of BC in slicks can be explained by enhanced viscous damping of cm-scale Bragg waves due to an elastic film. Physical mechanisms of NBC reduction in slicks are discussed. It is hypothesized that strong breaking (e.g., white-capping) weakly contributes to the NBC contrast because of “cleaning” of the water surface due to turbulent surfactant mixing associated with wave crest overturning. An effective mechanism of NBC reduction due to film can be associated with modification of micro-breaking wave features, such as parasitic ripples, bulge, and toe, in slicks. Full article
(This article belongs to the Special Issue Ten Years of TerraSAR-X—Scientific Results)
Show Figures

Figure 1

Back to TopTop