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Abstract: This paper presents the results of a long-term survey of the Caspian Sea using satellite SAR
and multispectral sensors. The primary environmental problem of the Caspian Sea is oil pollution
which is determined by its natural properties, mainly by the presence of big oil and gas deposits
beneath the seabed. Our research focuses on natural oil slicks (NOS), i.e., oil showings on the sea
surface due to natural hydrocarbon emission from seabed seeps. The spatial and temporal variability
of NOS in the Caspian Sea and the possibilities of their reliable detection using satellite data are
examined. NOS frequency and detectability in satellite images depending on sensor type, season
and geographical region are assessed. It is shown that both parameters vary significantly, and largely
depend on sensor type and season, with season being most pronounced in visible (VIS) data. The
locations of two offshore seep sites at the Iranian and Turkmenian shelves are accurately estimated.
Statistics on individual sizes of NOS are drawn. The release rates of crude oil from the seabed to the
sea surface are compared. Detailed maps of NOS are put together, and areas exposed to high risk of
sea surface oil pollution are determined.

Keywords: satellite remote sensing; radar imagery; multispectral data; sea surface; surface films;
natural oil slicks; oil pollution; the Caspian Sea; natural hydrocarbon seeps; satellite monitoring

1. Introduction

Today the study of the World Ocean is impossible without the use of satellite remote
sensing data. Many satellites with scientific instruments on board, operating in different
electromagnetic spectrum ranges, have been launched worldwide. Data accuracy and
resolution of satellite sensors are constantly growing. Environmental research technologies
based on satellite remote sensing of the Earth are being actively developed and applied to
various natural objects, including the marine environment. The primary type of contami-
nation in the focus of sea surface satellite studies is oil-containing films. Many works are
devoted to developing satellite techniques of sea surface oil pollution control [1–7].

High levels of marine environment pollution result from anthropogenic and natural
sources. Natural hydrocarbon seabed seeps attract substantial attention from researchers.
These are natural leaks of liquid and gaseous hydrocarbons fed by underground oil and gas
deposits. Natural hydrocarbon seabed seeps are geographically widespread and release
oil from deep sources to the surface over long geological periods. According to some
estimates [8], currently, 53% of the crude oil entering the oceans is the result of leaks and
spills during the extraction, transportation, processing, storage, and industrial use of oil
and from accidents on oil drilling platforms and ships.

In comparison, 47% is due to natural seeps from the seabed. The interest for de-
termining the regions of natural hydrocarbon seabed seeps, the reasons why they occur
and developing methods of their regular survey is growing worldwide. It is commonly
noticed that their surface indications characterize all major petroleum provinces, whereas
the converse is not necessarily true [9].

Faults or fractures in the seabed provide natural fluid pathways through which gas
bubbles, sometimes coated with oil, are released into the water column. While most of
these dissolve in the water column, a certain amount reaches the surface. There, the gas
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is released into the atmosphere. The oil remaining on the sea surface forms a thin layer
on it [10]. This thin layer of oil floating on the surface suppresses surface roughness and
forms an oil slick. Various amounts of oil regularly appear on the sea surface over the seeps.
Below, such oil showings on the sea surface due to natural hydrocarbon emission from
seabed seeps will be referred to as natural oil slicks (NOS).

The traditional contact and visual methods of exploring natural hydrocarbon seeps on
the seabed provide limited opportunities. The data obtained from such studies are often
patchy. Meanwhile, satellite remote sensing techniques allow regular observations in large
areas with high spatial resolution and provide excellent opportunities for investigating
and mapping NOS, both on the shelf and in the deep-water zones. Satellite remote sensing
allows observation of the NOS drift and spreading over the sea surface under the combined
effect of wind and surface currents [11].

Many scientific publications have appeared to date, focusing on satellite observations of
NOS. These phenomena have been found and studied in various regions worldwide [12–17],
and the flow of such works does not seem to run out.

There are many regions of particular interest for researchers. First of all, they include
the Gulf of Mexico, where NOS have been observed and studied since the dawn of remote
sensing [18–25].

Furthermore, considerable attention is drawn to the continental shelf along the north-
ern margin of the Santa Barbara Channel, abundant in natural hydrocarbon seeps [26–28].

Many studies have been done on NOS on the sea surface over the continental slope in
the southwestern Black Sea [29–33].

Unfortunately, publications based on satellite observations of oil pollution due to
seabed seeps in the Caspian Sea are relatively scarce. They mainly discuss results of satellite
observations in the Oil Rocks oil production area in the Middle Caspian [34,35]. Further-
more, one research paper [36] presents satellite observations of NOS in the southwestern
part of the Caspian Sea, which belongs to Iran. Another work [34] analyzes oil spills
and NOS’s spatial and temporal patterns in the Caspian Sea. Such a modest amount of
published results could be explained by the fact that none of the Caspian countries, except
Russia, conduct satellite monitoring of the aquatic area of the sea.

Our team has carried out satellite surveys of the Caspian Sea for a long time. Our
earlier studies outlined the main types of oil pollution typical of different sea parts and
revealed its main patterns [37–39]. Our previously published results demonstrate a long-
overdue need to implement operational satellite monitoring of the Caspian Sea surface
pollution to reveal the sources of pollution, quantitatively assess its scale, and predict drift
and spreading parameters.

The main objective of this work is to enhance the reliability of detecting NOS using
satellite data. The research presented in this article is novel and important in various
aspects. The essential point in the reported studies is an attempt to identify the limitations
of remote sensing methods for detecting NOS. Remote sensing is undoubtedly the best
method for detecting oil spills, including NOS. Still, it also has its limitations, not only
arising from the physical nature of the signal formation of various sensors but also due to
the natural conditions at the time of observation. Knowledge of these limitations should
enhance the reliability of detecting NOS and obtaining their quantitative estimates using
satellite data.

Next, despite the worldwide interest in the remote study of NOS in different regions of
the World Ocean, no such research has been carried out in the Caspian Sea before. Consid-
ering that the Caspian washes the coasts of five countries, the problem of transboundary oil
transfer may arise. In this case, understanding the source of oil pollution—anthropogenic
or natural—is an important task.

Moreover, the studies of oil pollution so far are mainly based only on SAR data. As
we demonstrate below, VIS data can also contribute to a comprehensive description of the
state of pollution.
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Achieving the study’s goals required availability and further detailed analysis of an
extensive dataset of satellite data. Note that the very formulation of the problem became
possible only with the appearance of a continuous flow of high spatial resolution data
obtained in different ranges of the electromagnetic spectrum by satellite sensors of the
European Space Agency’s Sentinel family. They provide previously unattainable spatial
resolution and repeatability of surveys. Efficient work with these datasets was ensured
by the powerful capabilities of a satellite information system employing technologies of
automatic management of continuously renewed archives of satellite data and versatile
analysis tools, described in short in Section 3.

In the paper, we will:

• focus on applications of satellite remote sensing, by both SAR and multispectral
instruments, in the detection and analysis of spatiotemporal characteristics of NOS in
the shelf zones of the Caspian Sea.

• examine NOS frequency and detectability in satellite imagery of two regions of interest;
• analyze the seasonal and annual variability of individual sizes of NOS detected in

satellite images taken over the regions of interest and discuss its possible causes;
• assess the probability of contamination of the sea surface in the vicinity of natural

seabed hydrocarbon seeps.

The remainder of this paper is organized as follows: In Section 2, we outline the
regions of interest and briefly describe their particular natural properties most relevant to
the performed research. In Section 3, we introduce the SAR and VIS data used in this study
and detail the means and techniques of their analysis. Here, we also discuss the benefits
and drawbacks of various data types for NOS detection and present examples of NOS
signatures in satellite images obtained by different sensors. The experimental results and
comparative analysis are given in Section 4. In Section 5, the seasonal variability in NOS
frequency and detectability in SAR and VIS images and its possible reasons are discussed.
The limitations of the remote sensing methods for detecting oil slicks on the sea surface
and their possible reasons are described. Finally, the conclusions are presented in Section 6.

2. Study Regions

The Caspian Sea is located at the junction of the two parts of the Eurasian continent—
Europe and Asia. Five countries surround this sea: Russia, Azerbaijan, Iran, Turkmenistan,
and Kazakhstan. This is the largest enclosed body of water on Earth, and in terms of
size, the Caspian Sea exceeds such lakes as Upper, Victoria, Huron, Michigan, and Baikal.
According to formal signs, the Caspian Sea is a closed lake. Nevertheless, considering its
large size, salty water, and a regime similar to the sea, this body of water is called a sea.

The average depth of the Caspian Sea is 208 m, and the maximum depth is 1025 m.
There are no tides in this sea. The main factors determining water circulation are wind,
bottom topography, a configuration of the coastline, differences in the temperature of
waters in different parts of the sea, and the flow of rivers. On average, the depth of the sea
shelf is less than 100 m. At the western coast, the shelf is narrow, with an average width of
40 km. At the eastern coast, the shelf is more extensive, with an average width of about
130 km [40].

The Caspian Sea features large oil and gas deposits beneath its bottom that, in many
respects, determine the distribution and shape of surface oil pollution observed by satellite
sensors. The primary pollution sources are exploration and exploitation of oil deposits and
natural oil seeps at the sea bottom. According to some estimates [41], about one million
tons of oil a year comes to the Caspian Sea from various sources.

Two regions attracted our attention because of slick patterns remarkably different in
structure from ship spills, widespread slicks of biological origin and vast slicks around the
Oil Rocks area that were regularly observed in satellite images. The principal feature of
these unusual slicks is their fixed link to specific geographical locations. We detected many
slicks attached to specific active emission points in both regions. The recurrence of slicks in
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the same place is the main criterion for their attribution to NOS [37]. These two Caspian
regions of interest marked by red rectangles in Figure 1 are located:

(1) east of Cape Sefid Rud (Iran);
(2) west of the Cheleken Peninsula (Turkmenistan).
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Figure 1. Regions of interest are natural hydrocarbon seabed seep sites: 1—east of Cape Sefid Rud;
2—west of Cheleken Peninsula.

3. Data and Methods
3.1. Data and Data Processing

This study examined all Envisat ASAR images of the Caspian Sea obtained over the
two regions of interest from January 2010 to January 2012 and Sentinel-1 SAR images taken
from January 2015 to December 2020. Visible (VIS) data with less than 10% cloud cover for
these periods were also analyzed (see Tables 1 and 2).

Table 1. Analyzed satellite data for the region of Cape Sefid Rud.

Sensor Period Number of Images

ASAR Envisat January 2010–January 2011 39
SAR-C Sentinel-1A, -1B January 2015–December 2020 413

TM Landsat-5 January 2010–August 2011 17
MSI Sentinel-2A,-2B July 2015–December 2020 154

OLI Landsat-8 February 2014–December 2020 71
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Table 2. Analyzed satellite data for the region of Cheleken Peninsula.

Sensor Period Number of Images

ASAR Envisat January 2010–March 2012 77
SAR-C Sentinel-1A,-1B January 2015–December 2020 459

TM Landsat-5 January 2010–August 2011 28
MSI Sentinel-2A, -2B July 2015–December 2020 129

OLI Landsat-8 February 2014–December 2020 108

In total, we examined 702 satellite images of the Caspian Sea obtained over the Iranian
waters and 801 satellite images over the Turkmenian waters. Figure 2 depicts diagrams
showing the distribution of all analyzed images, SAR (blue bars) and VIS (orange bars), as
well as the total number of NOS detected (grey lines) in the two regions of interest by year.

The data gap in 2012–2014 is explained by the end of the Envisat operation when
Sentinel was not yet in orbit. There was no SAR data amount sufficient to draw any reliable
statistics in this period.
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The satellite data were processed and analyzed using the toolkit of the See the Sea
(STS) satellite information system developed at the Space Research Institute of the Russian
Academy of Sciences (IKI RAS). STS functionality is described in [42]. STS provides
instruments for fast and easy access to satellite data and products and various tools for
specialized data analysis. STS enables easy search in a distributed image archive using
sensor type, time period, and location as search criteria.

An image selected for further analysis is visualized in the map area of the interface,
along with its geographic basis and related cartographic data. All information (regardless
of sensor type or product) is displayed in the same cartographic projection for a given
geographic area, facilitating data selection for analysis. The main characteristics of NOS
were determined using the STS interface in an interactive semi-automatic mode. As a result,
we have a particularized description of the phenomena stored in the database.

The database provides capabilities to:

• store and visualize graphical and attributive information;
• perform hierarchical classification of observed processes;
• search for data by spatial, time and typological criteria;
• map oil pollution of different types.

We used an STS classification tool to detect structures assuredly belonging to oil slicks
in satellite images. This tool allows dividing satellite images into separate classes according
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to preset parameters. We used signature calculation and maximum likelihood classification
to highlight oil slick features. The method is based on automatic clustering by spectral (for
VIS data) or brightness (for SAR data) likelihood criterion. The implemented classification
algorithms were taken from the GRASS GIS modules detailed in [43]. We then considered
only slicks with fixed links to particular geographical locations. They were classified as
NOS and affixed into the cartographic interface for further analysis.

3.2. NOS in Satellite Images

SAR is an appropriate tool for surface pollution monitoring because of its high resolu-
tion and insusceptibility to cloud and sunlight conditions. A SAR survey of oil pollution of
the sea surface is based on the capability of satellite radar imagery to reveal sea surface
areas covered by surface films. Surface films cause a reduced interaction of ocean waves
and wind and an attenuation of the resonance gravity-capillary component of surface
waves. This is how smooth areas, i.e., slicks, appear on the sea surface that are translated
into signatures of reduced backscatter in radar images. SAR has been used to detect the
presence of oil on the sea surface for many years [44,45].

Data taken by satellite sensors in VIS bands of the electromagnetic spectrum provide
significant value for marine observation systems. VIS data can help resolve ambiguities
in interpreting SAR data and detecting oil slicks on the sea surface. A limitation of this
data is due to solar illumination and weather conditions, as a cloud cover may prevent
radiance penetration. Sea surface state, area illumination, and viewing direction affect
reflected brightness. In VIS images, oil films appear due to two factors: (i) differences in the
reflection coefficients of a clean sea surface and the water-film system; (ii) changes in the
geometry of the sea surface caused by excellent elastic properties of such films. Oil films in
VIS images, especially in images obtained in sun glint zones, may be visible even better
than in SAR images. Sun glint refers to a reflection of solar radiation from the sea surface
observed by optical sensors when the sunlight incidence angle is equal to the reflection
angle. The presence of inhomogeneous roughness, i.e., surface waves, gives rise to a set of
small tilted facets reflecting sunlight at a variety of different angles and directions. The size
and shape of the sun glint pattern depend on the probability distribution of the slopes of
the facets caused by the sea surface roughness, the direction of the incident sunlight, and
the sensor viewing angle [46]. Thus, differences in the sea surface roughness variance in
the sun glint region manifest themselves as variations in the image brightness. In the sun
glint region, areas covered by films appear brighter because the surface film reduces the
sea surface roughness. More local elements are present, reflecting light to the sensor. The
opposite situation occurs outside the sun glint zone: lower reflected brightness corresponds
to more minor surface roughness due to fewer local slopes reflecting solar radiation in the
viewing direction.

NOS are easily recognizable in satellite images. As a rule, oil leaks from a vent or a
group of vents on the seabed and reaches the surface not far from the underlying source
point on the seabed. We can say that a persistent occurrence of slicks emanating from a
stable emission point serves as an indicator of a natural seabed seep.

Figures 3a–c and 4a–c show SAR signatures of NOS typical of the continental slope
near Cape Sefid Rud and Cheleken Peninsula, respectively. In SAR images, NOS are seen
as dark bands of reduced backscatter.

Figures 3d–f and 4d–f show colour composites derived from VIS data taken in a sun
glint area. Here, NOS have increased brightness and appear as bright structures. We see
bright bands surrounded by a dark halo that broadens with film spreading.

Sea currents exhibit dynamic multi-directional patterns and speed, which explain
spatial variations of oil slicks depicted in Figures 3 and 4. In the area of the Iranian shelf,
current direction and velocity are influenced more by coastline configurations, bottom
morphology, and Coriolis force than by wind. Current velocity values are inconsistent,
directions are mainly southeastward (120–180◦). The maximum current velocities are
associated with these directions. The current field is more complicated at the eastern coast
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than at the western coast, which is connected with a clearly pronounced seasonal variability
of the prevailing winds. Besides, currents in this part of the sea are influenced by a strongly
indented coastline with numerous capes, bays and gulfs [40].
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The slick bands shaped as ellipses or semicircles (Figure 3b,d,e) are of interest. Such
shapes are most probably the effect of near-inertial oscillation (NIO). They are a specific
characteristic of NOS when oil is released slowly and over time from a fixed location on
the seabed. NIO occurs under an external influence, most often a wind pulse. After a
reduction of the external impact, NIO is established, and no more external force is required
to maintain it [24].

In the Cheleken Peninsula region, the seep site is located in an oil-producing area and
is surrounded by oil-drilling platforms seen in the satellite data as bright dots. Nonetheless,
the identified source of oil slicks is a natural seep on the sea bottom tied to an oil-bearing
structure. However, it is possible that active oil production in the area can affect the
frequency and intensity of oil emission from the seabed source. Over the past years,
daily oil production in the Cheleken area increased from about 7000 barrels per day up to
100,000 barrels per day. More than 100 new wells have been drilled here.

Analyzing the slicks locations in the satellite images taken in the Cape Sefid Rud
region, we associated the slick patterns with two closely located vents. Two or more distinct
slick bands can be observed at both emersion points because the seep vents have more than
one channel through which oil migrates from the seabed to the surface. The southern vent
appears to be less intensive than the northern one because the releases are less frequent
and lower in volume. Moreover, most images taken in the Cape Sefid Rud region feature
oil slicks with a striped pattern because oil from the vents is brought to the sea surface by
oily bubbles rising from several gas plumes. In the course of evolution and spreading, the
stripes can merge in one or, though mostly behaving in sync, remain separated.

4. Results
4.1. NOS Frequency and Detectability in Satellite Images

We started the investigation by revealing the seasonal variations in the frequency of
NOS identified in the satellite images taken by various sensors over the regions of interest
(NOS frequency). Here, by NOS frequency, we understand the number of NOS detected
during a given period of time in a year in percentage to the total number of NOS detected
in this year.

Figure 5 shows the monthly distribution of NOS frequency in SAR (blue bars) and VIS
(orange bars) images. The grey lines show the monthly distribution of the overall number
of NOS detected in the satellite data, both SAR and VIS.
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Figure 5. Monthly variability of NOS frequency in SAR and VIS images: (a) of the Cape Sefid Rud
region; (b) of the Cheleken Peninsula region.

Noteworthy is the pronounced seasonal variability in NOS frequency for VIS images.
Near the Cape Sefid Rud, the vast majority of NOS, about 85%, were identified in VIS
images during the warm season, from May to August. None were detected from December
to March over the whole study period. In contrast, in SAR images, NOS were also identified
in winter. We got similar results for the Cheleken Peninsula region. However, here, the
seasonal distribution is smoother. Seasonal variability in NOS frequency also exists in SAR
images but is much less pronounced.

Further, we concentrated on the share of SAR or VIS images with NOS signatures
among all images. For a given period of time, by NOS detectability, we understand the
number of satellite images bearing distinct signatures of NOS in the percentage of the total
number of obtained satellite images. Figure 6 presents the inter-annual distribution of
NOS detectability.
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Figure 6. Inter-annual variability of NOS detectability near: (a) the Cape Sefid Rud; (b) the Cheleken
Peninsula. SAR—blue bars, VIS—orange bars. Grey lines show the overall percentage of SAR and
VIS images bearing distinct NOS signatures.

We found that during the whole study period, NOS detectability in satellite images
(both SAR and VIS) of the Cape Sefid Rud region varied within 33–50%. NOS struc-
tures were identified in 47–60% of images taken in the Cheleken Peninsula region in the
same period.

Meanwhile, average monthly NOS detectability is much more variable over the year,
especially for the VIS data (see Figure 7).
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Figure 7. The monthly distribution of NOS detectability averaged over the whole study period near:
(a) the Cape Sefid Rud; (b) the Cheleken Peninsula.

4.2. Individual NOS Sizes

The distributions of individual sizes of NOS detected in the satellite images taken
over the two seep sites are shown in Figure 8. It should be stressed that these estimates
are derived solely from satellite imagery, whereas actual areas measured in situ can differ
depending on local wind/wave conditions.
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Figure 8. Distribution of individual sizes of NOS detected in the satellite images of the Cape Sefid
Rud (brown bars) and Cheleken Peninsula (yellow bars) regions.

Individual sizes of NOS detected in different years (Figure 8) range from 0.01 to 45 km2

for the Cape Sefid Rud region and from 0.01 to 75 km2 for the Cheleken Peninsula region.
More than 75% of NOS detected in the Cape Sefid Rud region are less than 5 km2 in size
and 40% less than 1 km2. In the Cheleken Peninsula region, more than half of NOS are over
5 km2, and more than 25% exceed 10 km2.

On the whole, near the Iranian coast, NOS have smaller dimensions than near the
Turkmenian coast. Thus, we can state that the release rates of crude oil from the seabed to
the surface are higher in the Turkmenian waters.

4.3. Maps of Sea Surface Oil Pollution

The mapping schematics of NOS extracted from the satellite data for the Cape Sefid
Rud and the Cheleken Peninsula regions are shown in Figure 9a,b. A large amount of
available satellite data allowed us to locate the seep sources accurately.

In the case of the Iranian shelf, two hydrocarbon seeps located close to each other on
the sea bottom are documented as persistent sources of 157 and 172 NOS with coordinates
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50◦24.4′ E, 37◦23.4′ N, and 50◦28.9′ E, 37◦20.4′ N, respectively. The seabed seep near the
Cheleken Peninsula is documented as a persistent origin of 423 NOS detected in the satellite
images. Their “source” point coordinates determined as 52◦36.2′ E, 39◦32.9′ N evidently
indicate the seabed hydrocarbon seep location. The seep is situated on the continental
shelf at a depth of approximately 25 m and at a distance of 44 km from the western end of
Cheleken Peninsula. This seep was not previously mentioned in the scientific literature or
in maps. We discovered it during our study reported in [38].

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 16 
 

 

In the case of the Iranian shelf, two hydrocarbon seeps located close to each other on 
the sea bottom are documented as persistent sources of 157 and 172 NOS with coordinates 
50°24.4′ E, 37°23.4′ N, and 50°28.9′ E, 37°20.4′ N, respectively. The seabed seep near the 

Cheleken Peninsula is documented as a persistent origin of 423 NOS detected in the sat-
ellite images. Their “source” point coordinates determined as 52°36.2′ E, 39°32.9′ N evi-

dently indicate the seabed hydrocarbon seep location. The seep is situated on the conti-
nental shelf at a depth of approximately 25 m and at a distance of 44 km from the western 
end of Cheleken Peninsula. This seep was not previously mentioned in the scientific liter-

ature or in maps. We discovered it during our study reported in [38]. 

(a) (b) 

Figure 9. Consolidated maps of NOS from seabed seeps revealed in the satellite images: (a) of the 
Cape Sefid Rud region; (b) the Cheleken Peninsula region. 

After reaching the surface, NOS form, as a rule, thin curved stripes and can spread 
over long distances—up to 35 km in the Cape Sefid Rud region and up to 50 km in the 

Cheleken Peninsula region. This significantly increases the sea surface area potentially 
prone to oil pollution, despite the relatively small area of each individual slick. As a result, 

more than 1200 km2 of the sea surface in the Cape Sefid Rud region and more than 1500 
km2 in the Cheleken Peninsula region are potentially exposed to oil pollution. A high risk 
of sea surface oil pollution from natural seabed seeps is attributed to areas of 100 km2 and 

200 km2 correspondingly.  

5. Discussion 

The majority of published results of satellite observations of NOS at the sea surface 

are based on SAR data. Our research uses SAR and VIS data and examines their capabili-
ties to detect NOS reliably. 

The major fact that demands consideration is the striking seasonal variability in NOS 

frequency and detectability demonstrated by VIS and SAR images. We believe that it is 
not related to variations in the rate of hydrocarbon emission from the seeps. Other factors 

significantly affect the reliable detection of NOS in satellite data: 
Cloud cover and solar illumination are big problems and limitations for VIS data, 

whereas SAR can detect oil slicks day and night through clouds and is insusceptible to 

solar light conditions. For VIS data, illumination and cloud limitation are the main reason 
for the revealed seasonal variability in NOS detectability. It should be emphasized again 

that in our study we analyzed all available SAR data and only those VIS data where cloud 
cover did not exceed 10%. The percentage of such VIS data varies significantly throughout 
the year. Therefore, the seasonal variability in NOS detectability in VIS data is primarily 

due to the variability in the amount of data suitable for analysis. There are more data in 
the warm season and less in the cold one. 
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Cape Sefid Rud region; (b) the Cheleken Peninsula region.

After reaching the surface, NOS form, as a rule, thin curved stripes and can spread
over long distances—up to 35 km in the Cape Sefid Rud region and up to 50 km in the
Cheleken Peninsula region. This significantly increases the sea surface area potentially
prone to oil pollution, despite the relatively small area of each individual slick. As a result,
more than 1200 km2 of the sea surface in the Cape Sefid Rud region and more than 1500 km2

in the Cheleken Peninsula region are potentially exposed to oil pollution. A high risk of
sea surface oil pollution from natural seabed seeps is attributed to areas of 100 km2 and
200 km2 correspondingly.

5. Discussion

The majority of published results of satellite observations of NOS at the sea surface are
based on SAR data. Our research uses SAR and VIS data and examines their capabilities to
detect NOS reliably.

The major fact that demands consideration is the striking seasonal variability in NOS
frequency and detectability demonstrated by VIS and SAR images. We believe that it is
not related to variations in the rate of hydrocarbon emission from the seeps. Other factors
significantly affect the reliable detection of NOS in satellite data:

Cloud cover and solar illumination are big problems and limitations for VIS data,
whereas SAR can detect oil slicks day and night through clouds and is insusceptible to
solar light conditions. For VIS data, illumination and cloud limitation are the main reason
for the revealed seasonal variability in NOS detectability. It should be emphasized again
that in our study we analyzed all available SAR data and only those VIS data where cloud
cover did not exceed 10%. The percentage of such VIS data varies significantly throughout
the year. Therefore, the seasonal variability in NOS detectability in VIS data is primarily
due to the variability in the amount of data suitable for analysis. There are more data in the
warm season and less in the cold one.

The seasonal variability in NOS frequency and detectability in SAR images is much
smoother. This fact can be explained by a different mechanism of oil slicks manifestation
in SAR images. SAR can detect oil slicks through clouds and independently of sunlight.
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The atmosphere is transparent for the radar signal at all times. The detectability of oil
slicks in SAR images depends mainly on wind and the ocean-atmosphere boundary layer
conditions at the survey time.

The near-surface wind is the most critical factor affecting the reliable detection of sea
surface oil slicks in SAR images. This fact was first established at the end of the past century
in a series of controlled slick experiments where various quasi-biogenic substances and
mineral oils were deployed on the sea surface within the swath of satellite SARs [47]. The
results of the experiments were confirmed both analytically and by SAR observations over
the following years.

Wind speeds from 3 to 10 m/s were specified as a preferable condition for oil slick
detection in satellite SAR images [48,49]. A NOS signature is clearly seen in a SAR image
(Figure 10a) taken over the continental slope in the Cape Sefid Rud area under a favourable
wind speed of 6 m/s.

It is practically impossible to identify oil slicks under high winds (stronger than
10 m/s) that often occur during the cold season. A radar image taken under wind speeds
of 11 m/s is shown in Figure 10b. The mixing of oil with seawater can be greater during
the cold season. A combination of strong wind and waves inhibits the formation of a
NOS. In such cases, a minimal dark area of decreased radar backscatter can be detected
near the emission point. The mixing of oil with seawater could be greater during the cold
season. Waves 2 m high predominate near the southwestern coasts during strong winds
(10–15 m/s). When the wind gets stronger up to 20 m/s, wave height increases up to 3 m
and, in case of a strong storm (25 m/s), reaches 4 m and more. At the Turkmenian coast,
storm winds (16–20 m/s) induce waves up to 3 m high and robust storms (21–25 m/s) up
to 4 m high [40].

On the other hand, many low-backscatter areas unrelated to oil films can be seen in
SAR images obtained under the weak near-surface wind. The capillary-gravity component
of the sea surface wave field may not develop under weak–to–no-wind conditions. Hence
large dark zones of low backscatter appear in SAR images. These low scattering (dark)
areas in radar images increase the “false alarm” probability. NOS located in these zones are
hardly detectable. Figure 10c illustrates this situation.

Some atmospheric processes become visible in SAR images due to the inhomogeneities
they induce on the gravity–capillary component of the sea surface wave field. Wind field
variations modulate short gravity waves at the sea surface resulting in inhomogeneities
of radar backscatter. We found that signatures of atmospheric phenomena may cover the
major part of some radar images with variations of the radar signal intensity so high that
it is impossible to identify NOS. Such a situation is presented in Figure 10d. Wind field
variations caused by convective processes in the marine atmosphere produce prominent
cellular structures in the radar image so that the NOS cannot be detected in this image.
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To extract the NOS from satellite images, we used a semi-manual algorithm that is 
adequate for the purposes of our research. However, when it comes to the development 
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Figure 10. (a) A subset of Sentinel-1A SAR-C image of 12 September 2020, 14:29 UTC, taken at a
moderate near-surface wind. A NOS with an area of about 50 sq. km is clearly seen; (b) a subset of
Sentinel-1A SAR-C image of 18 September 2020, 02:36 UTC, taken at a high near-surface wind; (c) a
subset of Sentinel-1A SAR-C image of 18 October 2020, 14:29 UTC, taken at a low near-surface wind;
(d) a subset of Sentinel-1A SAR-C image of 23 November 2020, 14:29 UTC, taken in the presence of
active convective processes in the sea-atmosphere boundary layer. The red star marks the location of
the emission point at the sea surface.

It should be noted that the combined use of SAR and VIS data can increase NOS
detectability, especially in the warm season.

Our study revealed another exciting problem that is beyond the scope of this article. It
is unclear why NOS distinctly visible in SAR images cannot be detected in VIS data during
the cold season. The solution to this problem is one of the goals of future research.

To extract the NOS from satellite images, we used a semi-manual algorithm that is
adequate for the purposes of our research. However, when it comes to the development of
automatic surveillance systems, deep learning techniques present a unique capability of
detecting oil spills over large geographical areas with high accuracy.

Various methods of oil slick detection in satellite images based on deep learning
algorithms have been developed and demonstrated the effectiveness of such an approach.
Up to date, the majority of the algorithms have focused on SAR data [50–52]. Our study
shows that introducing VIS data into oil spill monitoring can improve detectability. This is
why algorithms developed for optical data are of particular interest, such as the recently
proposed by Seydi et al. [53] based on multispectral data of Landsat-5 TM.

Oil spills in different areas might vary due to meteorological conditions and current
and circulation systems. It should be stressed that deep learning techniques use training
and validation datasets. Such datasets are collected for various areas of the World Ocean,
including the North Sea [50], the Mexico Gulf [53], the Indonesian waters [51], and some
others. The Caspian Sea is an oil pollution hotspot, and there is a long-overdue need to
implement a satellite monitoring system of surface oil pollution. The constant presence
on the surface of the Caspian Sea of many oil slicks, different in shape, size and source
of origin, makes it an excellent test region for the construction of training and validation
datasets and application of deep learning methods.

We hope that the results presented in this article will be useful to scientists developing
deep learning approaches to oil spill detection. Here we show the limitations in the
applicability of remote sensing to oil slick detection on the sea surface. These limitations
vary depending on sensor type and are mainly caused by the natural conditions in the
area of interest at the time of the survey: hydrometeorological conditions, state of the
near-surface ocean-atmosphere layer, speed of the near-surface wind, etc. Regardless of
how slicks are identified, manually by a qualified operator, or by a classification method, or
using deep learning techniques, identifying oil slicks in a satellite image is possible only if
their signatures are present in this image.
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6. Conclusions

This paper examines NOS from seabed natural hydrocarbon seeps as seen in satellite
SAR and VIS images. Our research and obtained results provide new knowledge on the
spatial and temporal variability of NOS in the Caspian Sea and the possibilities of their
reliable detection using satellite VIS and SAR data.

Our two regions of interest in the Caspian Sea are located (i) east of Cape Sefid Rud
(Iran) and (ii) west of Cheleken Peninsula (Turkmenistan).

Satellite SAR and VIS data taken over the regions of interest were examined for this
study. All in all, 702 satellite images of the Caspian Sea taken over the Iranian waters, and
801 satellite images taken over the Turkmenian waters were analyzed. The satellite remote
sensing data in different spectral ranges revealed persistent slick formations on the sea
surface above hydrocarbon seeps on the seabed. The locations of two offshore seeps on
the Iranian shelf near the Cape Sefid Rud and the seep on the Turkmenian shelf near the
Cheliken peninsula were accurately estimated.

We found that NOS frequency and detectability in satellite images varies significantly
and largely depends on sensor type and season, its seasonal variability being most pro-
nounced in VIS data. The dependence of these parameters on the geographical region
is also revealed. Further, we showed that a combined SAR and VIS data analysis can
considerably improve NOS detectability, especially in the warm season.

We drew statistics on individual sizes of natural oil showings on the sea surface in
two areas of interest. Based on these statistics, we can state that the release rates of the
crude oil from the seabed to the surface are higher in the Turkmenian waters.

Maps are produced of sea surface pollution by NOS detected in satellite imagery taken
over seepage sites, making it possible to assess the probability of oil contamination of
various sea surface areas. High-risk areas of sea surface oil pollution and areas exposed to
potential risks near seep sites are outlined. While the high risk of sea surface oil pollution
by NOS is attributed to areas of 100 km2 and 200 km2, the sea surface areas potentially
prone to oil pollution are assessed as 1200 km2 and 1500 km2 correspondingly, which is a
significant threat to the ecology of the sea.
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