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Abstract: We classify low-backscatter regions observed in Synthetic Aperture Radar (SAR) measurements
of the surface of the ocean as either oil slicks or look-alike slicks (radar false targets). Our proposed
classification algorithm is based on Linear Discriminant Analyses (LDAs) of RADARSAT-1
measurements (402 scenes off the southeast coast of Brazil from July 2001 to June 2003) and
Meteorological-Oceanographic (MetOc) data from other earth observation sensors: Advanced Very
High Resolution Radiometer (AVHRR), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), Moderate
Resolution Imaging Spectroradiometer (MODIS), and Quick Scatterometer (QuikSCAT). Oil slicks
are sea-surface expressions of exploration and production oil, ship- and orphan-spills. False targets
are associated with environmental phenomena, such as biogenic films, algal blooms, upwelling,
low wind, or rain cells. Both categories have been interpreted by domain-experts: mineral oil (n = 350;
45.5%) and petroleum free (n = 419; 54.5%). We explore nine size variables (area, perimeter, etc.)
and three types of MetOc information (sea surface temperature, chlorophyll-a, and wind speed)
that describe the 769 samples analyzed. Seven attribute–domain combinations are tested with three
non-linear transformations (none, cube root, log10), with and without MetOc, adding to 39 attribute
subdivisions. Classification accuracies are independent of data transformation and improve when
selected size attributes are combined with MetOc, leading to overall accuracies of ~80% and sound
levels of sensitivity (~90%), specificity (~80%), positive (~80%) and negative (~90%) predictive values.
The effectiveness of this data-driven attempt supports further commercial or academic implementation
of our LDA algorithm.

Keywords: Linear Discriminant Analysis (LDA); satellite image classification and segmentation
algorithm; microwave radar; infrared sensor; optical remote sensing; wind scatterometer; slick
look-alikes; oil spills; oil slicks; marine slicks

1. Introduction

The presence and development of oil and gas exploration and production in open oceanic waters
of Brazil has led to many environmental oil-related incidents over time, and two major episodes
have occurred since the eve of the current millennium. In 2001, the world’s largest floating offshore
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oilrig at the time (P-36) sank in Brazilian waters, and the many tonnes of crude oil it had on board
were spilled into the sea [1]. This is still considered one of the most terrible international petroleum
industry disasters [2]. More recently, in 2019, a unique and worldwide-reported massive oil spill
polluted hundreds of kilometers of coastal ecosystems in Brazil over the course of many months (from
August until December), deemed Brazil’s worst environmental petroleum-related tragedy [3,4]—the
circumstances of the initial source and when it was released still unknown [5,6].

Satellites can be used to assist in locating oil contamination and potential candidate sources on the
sea surface. However, ambiguous interpretations of satellite data can be dismissed as false warnings [7].
The importance of timely and strategic environmental response efforts highlights the need for improved
remote sensing surveillance methods capable of correctly identifying petroleum pollution on the
surface of the ocean. Thus, improved remote sensing methods of differentiating mineral oil slicks
(sea-surface footprint of natural oil seeps or anthropogenic oil spills) from other possible petroleum-free
false targets (often referred to as “slick look-alikes” or “slick-alikes”) are a constant and pressing need
for effectively guiding countermeasures to combat oil pollution in our oceans.

Different types of satellite-borne sensors are used to study oil slicks [8] such as Synthetic Aperture
Radars (SAR; [9]), Advanced Very High Resolution Radiometer (AVHRR; [10]), Sea-Viewing Wide
Field-of-View Sensor (SeaWiFS; [11]), Moderate Resolution Imaging Spectroradiometer (MODIS; [12]),
etc. Arguably, the best suited is SAR, but it is prone to false alarms as the oil signature is not unique [13].
As with slicks from mineral oil, look-alike slicks are also detected in SAR imagery as low-backscatter
regions, caused by the slicks dampening the roughness of the ocean surface, i.e., smooth texture
regions [14]. Radar false targets are frequently observed and correspond to other environmental
phenomena such as biogenic films, algal blooms, upwelling, low wind, rain cells, internal gravitational
waves, and others [15].

Three main processes play important roles in the investigation of oil slicks with SAR:

• Separation of smooth (low radar signal) and rough (sea clutter) texture regions, e.g., [16];
• Discrimination between oil slicks and slick look-alikes, e.g., [17]; and
• Differentiation between oil seeps and oil spills, e.g., [18].

The first process proposes polygons with oil slicks or petroleum-free candidates (e.g., [19]), and the
other two build on that. While some scientific effort has been put in to investigating non-linear
techniques for discriminating polygons containing oil and those that do not (e.g., [20]), only recently
have Linear Discriminant Analyses (LDAs) been employed to automatically distinguish seeps from
spills (e.g., [21–24]).

Based on the seep-spill discrimination findings of [18], in this paper, we extend the methodological
recommendations of [21–24] with the objective to classify regions where sea-surface backscatter in
SAR measurements are low as either mineral oil slicks or other environmental petroleum-free false
targets (i.e., oil vs. look-alikes). For this, we use an algorithm that exploits LDAs of a set of satellite
measurements (microwave, infrared, and optical) off the southeast coast of Brazil (Figure 1). Through
the scientific settings of our study we use an existing database to seek the answers of six questions:

1. Is a simple, linear, multivariate data analysis technique able to discriminate between oil slicks
and petroleum-free slicks?

2. Is it feasible to reach classification accuracy levels to support operational implementations
(commercial or academic) of our proposed algorithm?

3. Does the application of non-linear data transformations affect the oil and look-alike discrimination?
4. Can the sole use of Meteorological-Oceanographic (MetOc) satellite information distinguish oil

from false targets?
5. Is there any specific combination of attributes that leads to a superior discrimination between oil

slicks and slick-alikes?
6. Is our LDA-developed algorithm applicable to other regions?
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1.1. Linear Differentiation Background: Seeps vs. Spills

1.1.1. Human-Dependent Operational Guidelines

The ability to discriminate between seeps and spills using the synoptic view of satellites has
long been an objective at the Laboratory of Radar Remote Sensing Applied to the Petroleum Industry
(LabSAR) of the Federal University of Rio de Janeiro (UFRJ, Brazil). For about two decades, LabSAR
has provided a valuable tool to oil and gas operators: the most probable location of offshore petroleum
systems based on satellite imagery analyses—e.g., [25]. However, these were operational projects
that relied on manual approaches, i.e., dependent on human intervention. The paradigm against
the widely-used manual seep-spill image inspection processes versus newly-developed automatic
methods has been the focus of recent academic studies—e.g., [18]. Within this scope, a fresh take on an
old, well-established problem has indeed shown its facet as described below.

1.1.2. Initial Automated Procedure: Carvalho

In this section we summarize past research and results of [18] who developed an automated
procedure to classify sea-surface expressions of mineral oil slicks into naturally seeped oil or operational
oil spills with a linear multivariate analysis technique applied to SAR measurements, i.e., LDAs applied
to RADARSAT-2 measurements from the Gulf of Mexico (Campeche Bay, Mexico). While [26,27]
described the Mexican dataset used in [18], the bases of the exploratory analysis of [18] are discussed in
depth in [21]. A single non-linear transformation was tested and applied to the data: log10. Two distinct
methods were used to select the most relevant variables—Correlation-Based Feature Selection (CFS; [28])
and Unweighted Pair Group Method with Arithmetic Mean dendrograms (UPGMA; [29]). The latter
uses two user-defined thresholds: Pearson’s r correlation coefficients of 0.5 and ~0.9 [18,21]. The best
overall seep-spill discrimination accuracy was about 70% with sensitivity (~80%), specificity (~75%),
positive (~65%) and negative (~75%) predictive values. However, a linear transformation (Principal
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Component Analysis; PCA) was used to reduce the dimensionality of their selected variables, and as
such, the “scores” of the relevant axes (i.e., principal components; PCs) were input into their LDAs.
Additionally, by exploiting the entire attribute set, including particular contextual site-specific variables
(e.g., latitude and longitude), they reached an almost faultless differentiation of 99.98%. Conversely,
it was not possible to discriminate seeps from spills when the SAR-signature attributes were calculated
with uncalibrated Digital Number (DN) values.

In this paper, we refer to the work of [18] and [21] simply as “Carvalho”. To summarize, Carvalho
has demonstrated two particularly relevant issues:

1. The feasibility of automatically separating oil (seeps) from oil (spills) using a simple, classical,
linear classification method—i.e., LDA; and

2. The possibility of achieving an effective seep-spill discrimination exploiting two straightforwardly
calculated oil slick basic morphological characteristics (area and perimeter; after using a PCA),
calculated from satellite measurements.

1.1.3. Subsequent Investigations: Carvalho et al.

In subsequent investigation, [22,23] promoted a refinement of Carvalho’s research in a more
controlled manner. They applied eight non-linear transformations to the data: none (x), reciprocal (1/x),
logarithm base 10 (log10(x)), Napierian logarithm (ln(x)), square root (x1/2), square power (x2), cube root
(x1/3), and cube power (x3). Four methods were tested for selecting uncorrelated attributes based on
the UPGMA, which were preferable to the automated CFS due to its user-defined capabilities: 1) no
UPGMA without PCA (i.e., original correlated data); 2) no UPGMA with PCA; 3) UPGMA without
PCA; and 4) UPGMA with PCA (as in Carvalho). The UPGMA in these cases used a stricter threshold
(0.3 > r > −0.3) deeming variables to be uncorrelated at this level based on the number of samples [30].
The best discrimination accuracies occurred with attribute selection method #1 (but this is not valid
as it uses correlated variables), then #2 (PCA directly from the original data), closely followed by #3
(UPGMA alone), with #4 (UPGMA+PCA) being the least accurate. These results showed that the sole
use of dendrograms (with the strict threshold, thus eliminating the application of PCAs, as proposed
by Carvalho) is sufficient to effectively discriminate seeps from spills. The best data transformations to
discriminate the oil slick category are log10 and cube root, both producing classification accuracies
similar to Carvalho.

Follow-up research by [24] also investigated ways to improve the LDA seep-spill classification.
Variables were selected with the strict UPGMA threshold used in [22,23]. The two best non-linear
transformations were compared with the original data. They showed that with no transformation
applied, the discrimination was void. On the other hand, when the data were non-linearly transformed,
the ability to discriminate was comparable to Carvalho, with log10 being somewhat superior to
cube root.

Together, the work reported by [22,23] and [24] is hereafter referred to as “Carvalho et al.”.
Their major contributions are as follows:

1. The superiority of non-linear data transformations: log10 and cube root;
2. The use of strict UPGMA (0.3 > r > −0.3) for selecting uncorrelated variables; and
3. The optimal discrimination performance of the actual values of a few size variables ratios:

perimeter-to-area (PtoA) and compact index (CMP=(4.π.area)/(perimeter2))—both in the log10

transformed sets, thus far accompanied by fractal index (FRA=(2.ln(perimeter/4))/(ln(area))) in
the cube cases.

1.1.4. Comparing Gulf of Mexico and Campos Basin Studies

The foremost characteristics of the LDA usage that can be highlighted between these previous
works and our current paper are:
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• Targets: Oil seeps and oil spills were classified, whereas here oil slicks are differentiated
from slick-alikes;

• Location: The Mexican coast in the Gulf of Mexico was the initial study area, and here signals off

the coast of Brazil are investigated—see Section 2.1;
• Data: While more than 4500 targets were used in the earlier studies, only about 750 samples are

available for the current analysis; both studies have similarly balanced dichotomy distributions of
~50% per category—see Section 2.2;

• Satellites: RADARSAT-2 (VV-polarized, 16-bit) was used in the Gulf of Mexico studies, whereas
here RADARSAT-1 (HH-polarized, 8-bit) data are used—see Section 2.2.1;

• Variables: In the previous studies, a wide-range of descriptors was used: SAR-signatures in
gamma-, beta-, and sigma-naught (backscatter coefficients) measured in amplitude and decibels
with and without a despeckle filter, augmented by size variables. Here, SAR-signature coefficients
are not used, but we incorporate size and MetOc-information—see Section 3.1;

• Attribute Combinations: While Carvalho tested 44 attribute subdivisions [18,21], and Carvalho
et al. explored many combinations: 32 in [22,23] and 61 in [24], here, 39 new attribute subdivisions
were used—see Section 3.2;

• Objectives: Both studies, i.e., theirs and ours, are directed at developing algorithms to automate
what is done by trained domain experts interpreting satellite imagery to routinely tell apart two
types of target-slicks observed on the sea surface.

To further address the issues revealed in the automated LDA seep-spill discrimination, in this
current paper we focus on investigating the application of such classical, linear, multivariate data
analysis technique to tell apart oil slicks and look-alikes. The evolution of the concepts considered here
is given below.

2. Materials and Methods

2.1. Study Area

The slicks investigated here (oil and look-alikes) are from a region off the southeast coast of Brazil:
the Campos Basin (Figure 1). A large number of oil and gas exploration and production facilities
are located in this basin, making it a province of significant politico-economic and socio-ecological
relevance [31]. Since the mid-2000s, with the discovery of supergiant reservoirs of light hydrocarbons
beneath the salt layers, the Campos Basin major petroleum-related infrastructure has been improved,
and its worldwide economical relevance also increased; currently, 38 operational oilfields are responsible
for providing 41.5% of Brazil’s oil and natural gas production: 1,373,068 barrels of equivalent oil per
day [32].

The Campos Basin has a very dynamic environment that is subject to highly variable weather
conditions. The South Atlantic Subtropical Anticyclone governs the large-scale atmospheric circulation
pattern that keeps a sustained northeast quadrant wind in the southeastern Brazilian coast area—such
a dominant wind direction, associated with the abrupt change in shoreline orientation and the
occurrence of the South Atlantic Central Water, triggers strong upwelling events about the Cabo
Frio and Cabo de São Tomé region northeast of Guanabara Bay (Rio de Janeiro), thus increasing the
local primary biological productivity [33]. Conversely, during boreal winters, upon the incidence of
intense southwest-quadrant winds associated with cold fronts, downwelling can be induced, and less
biologically productive seas may also be accompanied by rough waves of up to 10 m high. A year-round
mesoscale phenomenon influencing this region is the frequently observed oceanic cyclonic vortices
and meanderings of the Brazilian Current [34].
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2.2. Database

A comprehensive tabular dataset generated by [17] is used; it has also been exploited by [35].
Figure 2 shows the sampling distribution of the available mineral oil and petroleum-free slicks
(n = 769), and illustrates the extensive range of classes of the SAR-derived low-backscatter regions.
The fossil fuel pollution records (n = 350; 45.5%) correspond to the sea-surface expression of a variety
of petroleum-slick sources: mineral oil from known exploration and production installations, ship- and
orphan-spills—the latter refers to confirmed oil slick cases from unidentified sources. The radar false
target instances (n = 419; 54.5%) are associated with an assortment of environmental petroleum-free
phenomena: biogenic films, algal blooms, upwelling, low wind speeds, or rain cells. This class diversity
is a relevant aspect, especially because of the highly dynamic MetOc characteristics of the Campos
Basin [33,34]. All records of both categories (oil and look-alikes) are the decisions of trained personnel
who are specialists in interpreting satellite imagery in this area. Auxiliary MetOc data have been used
to help corroborate the domain experts’ interpretations.

2.2.1. RADARSAT-1

This database is comprised of 402 RADARSAT-1 scenes recorded at 8-bit resolution (transmitted
and received at horizontal polarization; HH) that have been collected over two-years, from July of 2001
to June of 2003. These are path-oriented images from three beam modes: ScanSAR Narrow A (SCNA),
ScanSAR Narrow B (SCNB), and Extended Low 1 (EXTL1) [36]. The ground resolution of the available
imagery has been re-sampled to 100 m to improve the segmentation process [17].

2.2.2. Stages to Detect Oil and Look-Alikes in Satellite Imagery

This satellite database was built in three stages [17]. In the first stage, the remote sensing images
containing potential oil and look-alike candidates were selected. RADARSAT-1 imagery was analyzed
in conjunction with contextual conditions—i.e., concurrent meteo-oceanographic ancillary data (see
Section 2.2.2.2). Radar images were pre-processed for spatial and radiometric corrections.
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Figure 2. Sampling characteristics of the database that contains information from regions with low
Synthetic Aperture Radar (SAR) backscatter observed on the surface of the ocean [17]. The available
SAR-derived targets are divided in two categories: mineral oil slicks and other environmental
phenomena (non-petroleum signals)—the latter is frequently referred to as radar false targets or
“slick-alikes”. The respective classes of each category are also shown.
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The second database construction stage consisted of an image segmentation procedure performed
using a multiple resolution segmentation approach [37,38] to identify the borders of the polygons
containing low-backscatter radar signals.

The third stage defined, and computed, the attributes describing the individualized targets that
came out of the segmentation. Several representative attributes of different types were calculated for
each identified polygon. Firstly, these types were divided into SAR-signature, textural, geolocation,
and SAR-scene. The four SAR-signature attributes (e.g., coefficient of variation: ratio between standard
deviation and mean) and two textural variables (i.e., contrast and entropy) were calculated from
uncalibrated measures—i.e., DNs which express the backscatter count of the pixels of each scene: 0 to
255 for 8-bit images [39]. There were twelve site-specific location attributes (e.g., bathymetry, target
distance from the coast and from platforms, etc.) and three SAR scene-related attributes (e.g., number
of identified targets per scene). Secondly, two other attribute types were also considered: those related
to the morphological characteristics of the segmented polygons and those representing the observed
contextual conditions—these are both explained in the sections that follow.

2.2.2.1. Geometry, Shape, and Dimension Variables

A set of basic morphological attributes describing the SAR-derived polygons (oil and
look-alikes) included area, perimeter (Per), shape index (SHP=(Per/4).(Area1/2)), compact index
(CMP=(4.π.Area)/(Per2)), asymmetry (ASY=1-(W/L)), length-to-width ratio (LtoW=L/W), density
(DEN=(n1/2)/(1+(var(x)+var(y))1/2)), curvature (CUR), and number of parts of each target (NUM);
in which W and L are the width and length of the polygons, n is the number of pixels in the identified
target, and var(x) and var(y) are the variances in x and y (longitude and latitude, respectively),
both calculated with the covariance matrix of the number of pixels. CUR is the sum of the variations of
a principal imaginary line direction equidistant to the longest side of the analyzed polygon, expressed
in degrees [17]. Further details on these attributes are found in [40]. Hereafter, the geometry, shape,
and dimension features are referred to as size information.

2.2.2.2. Meteorological and Oceanographic (MetOc) Information

The database includes five MetOc variables: sea surface temperature (SST), concentration of
chlorophyll-a (CHL), wind (speed and direction), and clouds (presence or absence). The SST magnitude
was retrieved from AVHRR onboard the National Oceanic and Atmospheric Administration (NOAA)
series satellites (12, 14, 15, and 16) and calculated with the Non-Linear SST (NLSST) algorithm [41].
The CHL magnitude was retrieved from either SeaWiFS (onboard the OrbView-2 satellite) or MODIS
(onboard the Terra satellite), both calculated with the global Ocean Color 4 (OC4) algorithm [42].
The magnitude of the wind field was obtained from the SeaWinds scatterometer flying on the Quick
Scatterometer (QuikSCAT) satellite with a demonstrated accuracy of <2 m/s and 20◦ [43]—whenever
available, these were cross-validated with in situ wind measurements from local offshore faculties.
The occurrence of clouds over the polygons was obtained from the SST maps. While the nominal
spatial resolution of SST and CHL values is ~1 km at the centre of the swath, the wind data have a
~25 km footprint.

The MetOc information was used in two stages of the target identification process (see Section 2.2.2):
in the first stage to assist in the image selection (as environmental contextual charts) and in the third
stage as contextual attributes expressing the observed targets’ characteristics. In the latter, SST, CHL,
and wind speed (WND) were catalogued in three forms: a more intuitive form, i.e., the average value
within the polygons’ limits, and two other forms calculated using the inside and outside (20 km buffer
zone) averaged values: the difference and ratio between in and out. The presence (1) or absence (0) of
clouds was registered as discrete records.
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2.3. Research Strategy

A pictorial view of the research strategy explored to develop and evaluate our LDA algorithms is
shown in Figure 3—quality control (QC), attribute–domain subdivisions, data transformations, feature
selection, LDAs, and accuracy assessment. An open-access software package was used in our data
mining exercises: PAST (PAleontological STatistics; [44,45]).

2.3.1. Phase 1: Quality Control (QC)

At the start, to certify that the database met certain effective conditions to accomplish the most
accurate possible discrimination, we performed what we refer to as QC-standards:

1. Verification of the reliability of the database records after data inconsistencies, i.e., removal of
any sort of errors—for example, instances with missing value for any given attribute, obvious
outliers, noisy data, etc.;

2. Valuation of the attribute types to their suitability for our purposes; and
3. Inspection of correlation matrices to avoid inter-correlation, as LDAs require the smallest

correlation among the candidate variables [46].

2.3.2. Phase 2: Attribute–Domain Subdivisions

As in the seep-spill LDA differentiation discussed in Section 1.1, we followed the same pathways
to investigate if there were combinations of variables that better discriminated oil from look-alikes.
As such, after performing the QC’s, we divided the attribute set into various, small, specific subdivision
domains based on the previous experiences of Carvalho [18,21] (Section 1.1.2), Carvalho et al. [22–24]
(Section 1.1.3), and [17] (Section 2.2.2.1). Likewise, to inspect the influence of the MetOc information in
this process, we performed separate analyses with and without the MetOc data.
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Figure 3. Research strategy for the evaluation of linear multivariate analysis algorithms aimed at
classifying information from a dataset of SAR-derived, low-backscatter regions into mineral oil slicks
or other environmental look-alike targets (non-petroleum signals). The six phases are described in the
text, Sections 2.3.1–2.3.6. “Carvalho” refers to [18,21], see Section 1.1.2. “Carvalho et al.” corresponds
to [22–24], see Section 1.1.3. “Bentz” is associated with [17], see Section 2.2.2.1.
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2.3.3. Phase 3: Data Transformations

Carvalho et al. demonstrated that the LDA ability to discriminate oil (seeps) from oil (spills) is
positively influenced by the application of non-linear transformations, i.e., cube root and log10. Here,
we compared the ability to distinguish oil slicks from slick-alikes using the original Campos Basin
data with and without applying the two best data transformations they reported. This was done in all
subdivisions defined in Phase 2.

2.3.4. Phase 4: Feature Selection

Commonly referred to as “feature engineering”, in which relevant attributes are selected to be
applied in the classification system, this process also reduces the attribute dimensionality [47]. Hence,
our feature selection consisted in the analyses of UPGMA dendrograms, separately carried out on each
attribute–domain combination (Phase 2) in all data transformations (Phase 3). The interpretation of
dendrograms is very simple. The level of which uncorrelated variables are selected is subjectively
defined by the user. Visual analyses are a common practice, but generally, horizontal lines drawn
across the dendrograms are used to form groups of correlated variables from which only one is selected
to represent each group, ensuring there is no correlation among the selected variables—such lines
are called phenon lines and are user-defined similarity cut-offs [48]. Here, to use as few correlated
variables as possible in the LDA [46], we applied Pearson’s r correlation coefficients to define the level
from which uncorrelated variables were selected: 0.3 > r > −0.3—see Section 1.1.3 [22–24].

2.3.5. Phase 5: Linear Discriminant Analyses (LDAs)

Because of the promising use of a linear, parametric, multivariate analysis method to automatically
discriminate seeps from spills, as discussed above in Section 1.1, we also used LDAs to design
an algorithm to identify two distinct categories: oil slicks vs. slick-alikes. LDAs have two main
prerequisites:

• The candidate variables must have the least possible inter-correlation [46]—this has been addressed
above (Phases 1 and 4); and

• The data must contain dichotomy information (in our case, oil and look-alikes) that is used to
reach (and corroborate) the models’ classification accuracy—this is dealt with below (Phase 6),
and indeed, these mutually exclusive a priori known labels are used to fine-tune our supervised
learning application [49].

2.3.6. Phase 6: Accuracy Assessment

The LDAs performed in Phase 5 were individually evaluated with all 769 targets in the database of
oil and look-alike slicks (Figure 2). By not withholding samples for a separate test set, we were able to
obtain the best quality of circumstances to reach the least out-of-sample errors. Yet, utilizing all samples
to train the classification model, the risk is incurred of having high training errors (i.e., our classification
misidentifies too many targets), hence deeming our algorithms null and void. On the other hand, if
obtaining low overall accuracy errors (i.e., our classification strikes most samples of both categories
correctly), our model is successful.

The accuracy assessment of classification algorithms in data science investigations is generally
quantified using confusion matrices, i.e., two-by-two tables [50]. In our matrices, the reference data
are in the horizontal and the classified data in the vertical—in Table 1, rows are the a priori known
classification and columns are the model outcome. A common metric to assess the correct classification
of both categories is the overall accuracy, expressed as a percent. It is calculated by adding the diagonal
elements of Table 1—i.e., correctly classified oil slicks (A) and correctly classified look-alikes (D)—then
dividing it by the total number of samples; 769 in our case.

Nevertheless, the use of this metric alone may give the wrong impression about the true reliability
of the algorithm [51–53]. This can be avoided by evoking supplementary statistical measures which



Remote Sens. 2020, 12, 2078 10 of 24

are calculated from “horizontal” (Table 2) and “vertical” (Table 3) analyses of the confusion matrix
(Table 1). The information given by these associated metrics is important to estimate how appropriate
our discrimination models are. We chose to split the information in a separate schema to facilitate the
comprehension of such metrics—see Tables 1–3. From Table 2 we obtain sensitivity and specificity,
as well as their counterparts: false negatives and false positives. These inform how well the a priori
known samples are classified (producer’s accuracy) and how badly the a priori known samples are
misclassified (omission error or Type I error). Table 3 shows the positive and negative predictive values
and their complements: inverse of the positive and negative predictive values. These report how well
the models classify the actual samples (user’s accuracy) and how bad the algorithms misinterpret them
(commission error or Type II error).

Because we are exploring several attribute–domain combinations (Phase 2), we represent our
accuracy assessment in a “condensed” two-by-two cross-tabulation form—Table 4. This discloses
in a single table the main metrics shown in Table 2 (sensitivity and specificity) and in Table 3
(positive and negative predictive values), along with the overall accuracy. Table 4 also provides
a simplified, comparable-fashion presentation of the across-subdivision accuracy results of the
classification algorithms.

Table 1. Confusion matrix (i.e., two-by-two table: A, B, C, and D) used to evaluate our Linear
Discriminant Analyses (LDAs). The overall accuracy is expressed using the diagonal elements:
(A+D)/(A+B+C+D).

LDA oil slicks LDA look-alikes All known targets

Known oil slicks A B A + B

Known look-alikes C D C + D

All LDA targets A + C B + D A + B + C + D

LDA oil slicks LDA look-alikes All known targets

Known oil slicks Correctly classified
oil slicks

Miss classified
oil slicks

All known oil slicks
(i.e., 350)

Known look-alikes Miss classified
look-alikes

Correctly classified
look-alikes

All known look-alikes
(i.e., 419)

All LDA targets All LDA classified
oil slicks

All LDA classified
look-alikes

All known targets
(i.e., 769)

Table 2. “Horizontal” analysis of the confusion matrix shown in Table 1 with some of the supplementary
measures used to evaluate our Linear Discriminant Analyses (LDAs).

LDA oil slicks LDA look-alikes All known targets

Known oil slicks A/(A+B) B/(A+B) (A+B)/(A+B)

Known look-alikes C/(C+D) D/(C+D) (C+D)/(C+D)

LDA oil slicks LDA look-alikes All known targets

Known oil slicks Sensitivity False negative 100%

Known look-alikes False positive Specificity 100%
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Table 3. “Vertical” analysis of the confusion matrix shown in Table 1 with some of the associated
metrics used to evaluate our Linear Discriminant Analyses (LDAs).

LDA oil slicks LDA look-alikes

Known oil slicks A/(A+C) B/(B+D)

Known look-alikes C/(A+C) D/(B+D)

All LDA targets (A+C)/(A+C) (B+D)/(B+D)

LDA oil slicks LDA look-alikes

Known oil slicks Positive predictive value Inverse of the neg. pred. val.

Known look-alikes Inverse of the pos. pred. val. Negative predictive value

All LDA targets 100% 100%

Table 4. “Condensed” form of the confusion matrix shown in Table 1 used to access the classification
accuracy of our Linear Discriminant Analyses (LDAs). See also Tables 2 and 3.

Oil slicks Look-alikes All targets

A
A/(A+B)

D
D/(C+D)

A+D
(A+D)

A/(A+C) D/(B+D) (A+B+C+D)

Oil slicks Look-alikes All targets

Correctly
classified
oil slicks

Sensitivity Correctly
classified

look-alikes

Specificity Correctly
classified

targets

Overall
accuracyPositive

predictive value
Negative

predictive value

3. Results

3.1. QC-Standards

In the first QC-standard, we identified ten data records having some inconsistency, most likely
from typos: eight oil slicks and two slick-alike targets. These instances were removed from subsequent
analysis. Consequently, after completing this first QC, the database has 769 targets: 350 oil slicks
(45.5%) and 419 look-alike slicks (54.5%)—Figure 2.

The second QC-standard considered the utility of the attribute types describing the identified
targets. Accordingly, because the values of the SAR-signature and textural information were calculated
and registered in uncalibrated DNs, these attributes are not explored further here. The use of DNs for
an analysis of measurement time series may mask important relationships, which may become more
apparent by using calibrated measurements [18]. The attributes of location are also not employed in this
investigation, as we intend to develop an algorithm that can be applied anywhere, and such site-specific
variables cannot be transferred from one region to another. In addition, scene-related attributes are not
included. Furthermore, due to the binary character of the cloud data (1 or 0), this MetOc descriptor is
not considered here. After the application of this second QC, several irrelevant attribute types have
been discarded, leaving only two attribute types to be carried forward: size information (Section 2.2.2.1)
and contextual MetOc conditions (Section 2.2.2.2).

The inspection of the correlation matrices, the third QC-standard, revealed that some size variables
are inter-correlated: SHP (shape index) with CMP (compact index), and ASY (asymmetry) with LtoW
(length-to-width ratio). Authors in [22,23] also observed in the seep-spill dataset that SHP and CMP
had an equal but inverted frequency distribution. From these four attributes, only two, CMP and
LtoW, are used due to their simplicity. Additionally, based on earlier results [24], we have included two
other size variables: PtoA and FRA. Therefore, based on the available variables within the database
(Section 2.2.2.1; [17]) and on the LDA legacy left by [18,21–24] on their seep-spill discrimination,
a specific set of nine size variables are used as follows:
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1. Area;
2. Per: perimeter;
3. PtoA: perimeter-to-area ratio;
4. CMP: compact index;
5. FRA: fractal index;
6. LtoW: length-to-width ratio;
7. DEN: density;
8. CUR: curvature; and
9. NUM: number of parts of each target.

The correlation matrices also confirmed inter-correlation among the three MetOc forms,
i.e., the average values inside the polygons are correlated with the difference and ratio between
the inside and outside of the polygons. As a result, only the more intuitive magnitude of the averaged
values from inside the targets were retained:

1. SST: sea surface temperature;
2. CHL: concentration of chlorophyll-a; and
3. WND: wind speed.

As such, the application of this third QC led to the initial data analyses using twelve descriptors:
nine size attributes and three MetOc variables.

3.2. Attribute–Domain Subdivisions

The nine size variables determined by the QC’s were initially analyzed together; these are named
“All size information”. They were then divided in different subdivisions grouped based on the earlier
results of Carvalho [18,21] and Carvalho et al. [22–24] (Sections 1.1.2 and 1.1.3, respectively), as well as
on the variables previously given in [17]—the latter is simply referred to as “Bentz” (Section 2.2.2.1).
Two additional combinations of variables are also investigated: “Bentz with Carvalho” and “Bentz with
Carvalho et al.” From this point onwards, the terms Carvalho, Carvalho et al., and Bentz are also used
to define the set of variables corresponding to each of these studies, as shown below. As a result, seven
major attribute–domain combinations were proposed (color-coded in our plots and tables):

• All size information (n = 9), see Section 3.1;
• Carvalho (n = 2)—Area and Per;
• Carvalho et al. (n = 3)—PtoA, CMP, and FRA;
• Bentz (n = 4)—LtoW, DEN, CUR, and NUM;
• Bentz with Carvalho (n = 6);
• Bentz with Carvalho et al. (n = 7); and
• MetOc-Only (n = 3), see Section 3.1.

Additionally, all subdivisions were separately analyzed with and without the MetOc variables.
As combinations in the attribute domain are analyzed with and without MetOc, as well as with the
application of the three data transformations, there are 39 attribute subdivisions.

3.3. Feature Selection

Figure 4 presents the dendrograms for the different transformations (none, cube root, and log10)
applied to all twelve variables: All size information with MetOc. The two horizontal dotted lines
correspond to the phenon lines: 0.3 > r > −0.3. The uncorrelated variables selected both with and
without MetOc are represented with +, and those selected only with MetOc with @. Variables not
explored further due to statistical correlation (0.3 < r < −0.3) are marked with a dot. The dendrograms
of the other attribute–domain combinations (with and without MetOc) are similar to those in Figure 4.
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Figure 4. Example of a feature selection process for one attribute–domain subdivision: All size
information with meteo-oceanographic (MetOc) variables, see also Table 5. These are dendrograms
(Unweighted Pair Group Method with Arithmetic Mean; UPGMA) for the three non-linear
transformations: none (top), cube root (middle), and log10 (bottom). Uncorrelated selected
variables (Pearson’s correlation coefficient: 0.3 > r > −0.3; represented by the dotted phenon
lines) both with and without MetOc (+) and only with MetOc (@). Variables not selected due
to statistical correlation (0.3 < r < −0.3) are marked with a dot. Explored variables (n = 12): Area,
Per (perimeter), PtoA (perimeter-to-area ratio), CMP (compact index: 4.π.Area/Per2), FRA (fractal index:
2.ln(Per/4)/ln(Area)), LtoW (length-to-width ratio), DEN (density), CUR (curvature), NUM (number
of parts), SST (sea surface temperature), CHL (chlorophyll-a concentration), and WND (wind speed).
Gray (n = 2): Area and Per, refers to Carvalho’s subdivision. Green (n = 3): PtoA, CMP, and FRA, refer
to Carvalho et al.’s subdivision. Blue (n = 4): LtoW, DEN, CUR, and NUM, refer to Bentz’s subdivision.
Red (n = 3): SST, CHL, and WND magnitudes, refer to MetOc-Only’s subdivision. For more about the
origin of the variable subdivisions see Sections 3.2 and 3.3. Visually formed groups of variables are
shown as purple, brown, and yellow (see Section 3.3.1).
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Table 5. Feature selection outcome from the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram analyses performed on several
attribute–domain subdivisions with three non-linear transformations (none, cube root, and log10), with and without the Meteorological and Oceanographic ancillary
information (MetOc): uncorrelated selected variables (Pearson’s correlation coefficient: 0.3 > r > −0.3) both with and without MetOc (+) and only with MetOc (@).
Variables not explored per subdivision have an empty cell. Variables not selected due to statistical correlation (0.3 < r < −0.3) are marked with a dot. Gray subdivision
(n = 2): “Carvalho” refers to [18,21], see Section 2.3.2. Green subdivision (n = 3): “Carvalho et al.” corresponds to [22–24], see Section 2.3.3. Blue subdivision (n = 4):
“Bentz” is associated to [17]. Red subdivision (n = 4): MetOc-Only subdivision. Additional information on the origin of the variables subdivisions is found in Sections 3.2
and 3.3. See text for color-coding used only to facilitate the visualization (Section 3.3.1). Explored variables (n = 12): Area; Per (perimeter); PtoA (perimeter-to-area
ratio); CMP (compact index: 4.π.Area/Per2); FRA (fractal index: 2.ln(Per/4)/ln(Area)); LtoW (length-to-width ratio); DEN (density); CUR (curvature); NUM (number of
parts); SST (sea surface temperature); CHL (chlorophyll-a concentration); and WND (wind speed). See Figure 4 for graphical representations of the All size information
with MetOc subdivisions.

Selected Variables (+ and @):
Uncorrelated if 0.3 > r > −0.3

Size Information (n = 9)
MetOc (n = 3) Selected Variables

(uncorrelated) out of Explored Variables“Carvalho“ “Carvalho et al.” “Bentz”

Subdivisions Transformations Area Per PtoA CMP FRA LtoW DEN CUR NUM SST CHL WND Without
MetOc

With
MetOc

1.“All size
information“

None + . + + + + . . + @ @ @ 6 out of 9 9 out of 12
Cube root + . + + + + . . + @ @ @ 6 out of 9 9 out of 12
log10 @ . + + + . + @ @ @ 4 out of 7 8 out of 10

2. Carvalho
None @ . @ @ @ 0 out of 2 4 out of 5
Cube root @ . @ @ @ 0 out of 2 4 out of 5
log10 @ . @ @ @ 0 out of 2 4 out of 5

3. Carvalho et al.
None + + + @ @ @ 3 out of 3 6 out of 6
Cube root + + + @ @ @ 3 out of 3 6 out of 6
log10 @ . @ @ @ 0 out of 2 4 out of 5

4. Bentz
None @ + + + @ @ @ 3 out of 4 7 out of 7
Cube root @ + + + @ @ @ 3 out of 4 7 out of 7
log10 @ + + @ @ @ 2 out of 3 6 out of 6

5. Bentz with
Carvalho

None + . + + + + @ @ @ 5 out of 6 8 out of 9
Cube root + . + + + + @ @ @ 5 out of 6 8 out of 9
log10 + . + + + @ @ @ 4 out of 5 7 out of 8

6. Bentz with
Carvalho et al.

None + + + + . . + @ @ @ 5 out of 7 8 out of 10
Cube root + + + + . . + @ @ @ 5 out of 7 8 out of 10
log10 + + + . + @ @ @ 4 out of 5 7 out of 8

7. MetOc-Only
None @ @ @ 3 out of 3
Cube root @ @ @ 3 out of 3
log10 @ @ @ 3 out of 3
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A noteworthy characteristic of some variables shown in Figure 4 is that some variables are
correlated (r > 0.3): CMP (compact index) with DEN (density), and PtoA (perimeter-to-area ratio) with
CUR (curvature). From these four variables two were selected based on their simplicity: CMP and
PtoA. These relationships similarly occur in the other subdivisions. Additionally, as in Carvalho’s
seep-spill exercise, Area and perimeter (Per) are correlated here too, and from the two, we chose to
retain Area. It is worth mentioning that in Carvalho, this pair of correlated morphological features had
undergone a PCA before the values were input into their LDAs, i.e., PC scores instead of actual values.

Figure 4 (top panel: original data; and middle panel: cube root) indicates that of twelve attributes,
nine are deemed uncorrelated (+); therefore, these were selected for input to the LDA for this
subdivision: Area, PtoA, CMP, FRA, LtoW, NUM, SST, CHL, and WND; see also Table 5. The three
eliminated variables are marked with a dot: Per, DEN, and CUR. These three correlated variables are
redundant for the purposes of using LDAs as they do not bring independent information. A remarkable
aspect about the log10 transformation (Figure 4: bottom panel) is that when it is applied, only ten
variables are included in this subdivision, from which eight are selected: + or @. This is because
FRA and CUR may have negative values and, thus, cannot be accounted with this transformation;
some subdivisions do not consider these two variables: Carvalho and MetOc-Only (Table 5).

Table 5 presents the variables selected with the UPGMA dendrograms for the 39 attribute
subdivision domains. Four main aspects are apparent in this table:

• There is a considerable reduction in the attribute dimensionality in all combinations of attributes;
• Whenever the three MetOc variables are considered, they are always selected, including the

MetOc-Only subdivision;
• Among all attribute–domain subdivisions, the number of selected (uncorrelated) variables ranges

from two to nine; and
• In four subdivisions (i.e., Carvalho in the three transformations and Carvalho et al. with log10; all

without MetOc) the attributes are correlated, and as such are not selected.

From this last aspect, of the 39 proposed feature selection evaluations, 35 different LDAs
were performed.

3.3.1. Dendrogram Visual Inspection

Notwithstanding the use of phenon lines, the visual analyses of our UPGMA dendrograms usually
reveal that specific groups of variables are formed independent of data transformation, see Figure 4
(these are color-coded: purple, brown, and yellow). Nevertheless, these visually-combined variables
should not be confused with those selected with the similarity lines: 0.3 > r > −0.3 (Table 5). In fact,
such visual grouping of attributes is not critical to this analysis, but this comes to prominence because
these color-groups show some unusual relationships among the attributes. The groups are:

• Purple: Area and Per form a group with CHL;
• Brown: CMP, DEN, and NUM form another separate group; and
• Yellow: PtoA, FRA, LtoW, and CUR tend to group with SST and WND.

Minor variations are observed in these groupings across the other attribute–domain combinations.
These visually-identified groups of variables are linked to each other at levels close to zero similarity
(r ~ 0), meaning that there is almost no inter-group correlation (Figure 4).

3.4. Accuracy Assessment

Table 6 presents the classification accuracies of the 35 different LDA-based algorithms; these are
ordered by the results of the associated statistical metrics shown in Table 4—i.e., overall accuracy
(diagonal analysis of Table 1), sensitivity and specificity (horizontal analysis of Table 2, producer’s
accuracy), and positive and negative predictive values (vertical analysis of Table 3, user’s accuracy).
Because we have 769 targets, the discretization interval of our analyses is 0.13%, i.e., 1/769.
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Table 6. Classification accuracies of the 35 different LDA algorithms. See also Tables 1–5. The plots for
the three All size information with MetOc subdivisions (bold) are shown in Figure 4.

Hierarchy Subdivisions Variables Transformations MetOc Oil Slicks Look-Alikes All Targets

1 5. Bentz with
Carvalho

7 out of 8 log10 With 316
90.3%

328
78.3%

644 83.7%
77.6% 90.6%

2 1. All size
information

9 out of 12 Cube root With 309
88.3%

335
80.0%

644 83.7%
78.6% 89.1%

3 6. Bentz with
Carvalho et al.

8 out of 10 Cube root With 315
90.0%

326
77.8%

641 83.4%
77.2% 90.3%

4 6. Bentz with
Carvalho et al.

7 out of 8 log10 With 315
90.0%

325
77.6%

640 83.2%
77.0% 90.3%

5 1. All size
information

9 out of 12 None With 305
87.1%

334
79.7%

639 83.1%
78.2% 88.1%

6 6. Bentz with
Carvalho et al.

8 out of 10 None With 304
86.9%

334
79.7%

638 83.0%
78.1% 87.9%

7 1. All size
information

8 out of 10 log10 With 315
90.0%

323
77.1%

638 83.0%
76.6% 90.2%

8 5. Bentz with
Carvalho

8 out of 9 Cube root With 321
91.7%

311
74.2%

632 82.2%
74.8% 91.5%

9 2. Carvalho 4 out of 5 log10 With 310
88.6%

308
73.5%

618 80.4%
73.6% 88.5%

10 5. Bentz with
Carvalho

8 out of 9 None With 303
86.6%

315
75.2%

618 80.4%
74.4% 87.0%

11 4. Bentz 7 out of 7 Cube root With 299
85.4%

318
75.9%

617 80.2%
74.8% 86.2%

12 3. Carvalho et al. 6 out of 6 Cube root With 306
87.4%

309
73.7%

615 80.0%
73.6% 87.5%

13 4. Bentz 6 out of 6 log10 With 299
85.4%

315
75.2%

614 79.8%
74.2% 86.1%

14 3. Carvalho et al. 4 out of 5 log10 With 309
88.3%

303
72.3%

612 79.6%
72.7% 88.1%

15 3. Carvalho et al. 6 out of 6 None With 287
82.0%

323
77.1%

610 79.3%
74.9% 83.7%

16 2. Carvalho 4 out of 5 Cube root With 308
88.0%

300
71.6%

608 79.1%
72.1% 87.7%

Hierarchy Subdivisions Variables Transformations MetOc Oil slicks Look-alikes All targets

18 6. Bentz with
Carvalho et al.

5 out of 7 None Without 279
79.7%

329
78.5%

608 79.1%
75.6% 82.3%

19 1. All size
information

6 out of 9 None Without 284
81.1%

324
77.3%

608 79.1%
74.9% 83.1%

20 6. Bentz with
Carvalho et al.

5 out of 7 Cube root Without 292
83.4%

315
75.2%

607 78.9%
73.7% 84.5%

21 1. All size
information

6 out of 9 Cube root Without 291
83.1%

316
75.4%

607 78.9%
73.9% 84.3%

22 5. Bentz with
Carvalho

4 out of 5 log10 Without 295
84.3%

307
73.3%

602 78.3%
72.5% 84.8%

23 6. Bentz with
Carvalho et al.

4 out of 5 log10 Without 295
84.3%

305
72.8%

600 78.0%
72.1% 84.7%

24 1. All size
information

4 out of 7 log10 Without 295
84.3%

305
72.8%

600 78.0%
72.1% 84.7%

25 5. Bentz with
Carvalho

5 out of 6 Cube root Without 306
87.4%

289
69.0%

595 77.4%
70.2% 86.8%
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Table 6. Cont.

Hierarchy Subdivisions Variables Transformations MetOc Oil slicks Look-alikes All targets

26 7. MetOc-Only 3 out of 3 Cube root With 290
82.9%

303
72.3%

593 77.1%
71.4% 83.5%

27 7. MetOc-Only 3 out of 3 None With 277
79.1%

314
74.9%

591 76.9%
72.5% 81.1%

28 2. Carvalho 4 out of 5 None With 283
80.9%

308
73.5%

591 76.9%
71.8% 82.1%

29 7. MetOc-Only 3 out of 3 log10 With 287
82.0%

303
72.3%

590 76.7%
71.2% 82.8%

Hierarchy Subdivisions Variables Transformations MetOc Oil slicks Look-alikes All targets

30 5. Bentz with
Carvalho

5 out of 6 None Without 279
79.7%

285
68.0%

564 73.3%
67.6% 80.1%

31 3. Carvalho et al. 3 out of 3 None Without 245
70.0%

314
74.9%

559 72.7%
70.0% 74.9%

32 3. Carvalho et al. 3 out of 3 Cube root Without 276
78.9%

279
66.6%

555 72.2%
66.3% 79.0%

33 4. Bentz 3 out of 4 None Without 254
72.6%

292
69.7%

546 71.0%
66.7% 75.3%

34 4. Bentz 3 out of 4 Cube root Without 251
71.7%

287
68.5%

538 70.0%
65.5% 74.4%

35 4. Bentz 2 out of 3 log10 Without 278
70.9%

283
65.2%

521 67.8%
62.9% 72.8%

The best discrimination uses Bentz (LtoW, DEN, and NUM) with Carvalho (Area) with MetOc
(SST, CHL, and WND) with log10 attribute subdivision (Table 6). A successful overall discrimination
accuracy of 83.7% is observed when these seven descriptors are analyzed together: 644 samples
are correctly identified (316 oil slicks and 328 slick-alikes: sensitivity of 90.3% and a specificity of
78.3%, with good levels of positive (77.6%) and negative (90.6%) predictive values). On the other
hand, the least accurate attribute subdivision is Bentz (DEN and NUM) without MetOc with log10

transformation (Table 6). The overall accuracy achieved when only these two attributers are used is
as low as 67.8% (521 samples correctly identified: 248 oil slicks and 273 look-alikes) with sensitivity
(70.9%), specificity (65.2%), and positive (62.9%) and negative (72.8%) predictive values.

Another notable characteristic observed in Table 6 is that there are four main hierarchy blocks been
formed with similar attribute–domain combinations as a function of attribute types (i.e., size information
with or without MetOc variables, as well as MetOc by itself):

• The top seventeen ranks from the subdivisions with MetOc;
• Eight ranks from the subdivisions without MetOc;
• The three MetOc-Only subdivisions, and another Carvalho subdivision (Area) with the three

MetOc variables and no transformation (hierarchy #28 of Table 6); and
• The remaining six subdivisions without MetOc.

These results show the synergy that occurs whenever size variables are analyzed together with
the MetOc information (1st hierarchy block of Table 6). It is noteworthy the superiority of some
subdivisions that only account for the size variables without MetOc (2nd hierarchy block) over the sole
use of the MetOc variables (3rd hierarchy block, i.e., MetOc-Only).

Table 7 (top) presents the typical values of the hierarchy blocks: mean, maximum, minimum,
and standard deviation values. Again, the synergy of using size and MetOc simultaneously is
observed in all given metrics. The averaged overall accuracies are: 81.4%, 78.5%, 76.9%, and 71.2%,
respectively, for the four blocks. Likewise, the other associated statistical measures also follow this
top-down sequence.



Remote Sens. 2020, 12, 2078 18 of 24

Table 7. Typical values of the four hierarchy blocks of Table 6: Average (Avg), Maximum (Max),
Minimum (Min), and Standard Deviation (Std).

Typical Values
Size

with MetOc
Size

without MetOc MetOc-Only Size
without MetOc

1st block 2nd block 3rd block 4th block

Overall
Accuracy

Avg 81.4% 78.5% 76.9% 71.2%
Max 83.7% 79.1% 77.1% 73.3%
Min 79.1% 77.4% 76.7% 67.8%
Std 1.8% 0.6% 0.2% 2.1%

Sensitivity
Avg 87.6% 83.5% 81.2% 74.0%
Max 91.7% 87.4% 82.9% 79.7%
Min 82.0% 79.7% 79.1% 70.0%

Specificity
Avg 76.1% 74.3% 73.3% 68.8%
Max 80.0% 78.5% 74.9% 74.9%
Min 71.6% 69.0% 72.3% 65.2%

Positive
Predictive

Value

Avg 75.4% 73.1% 71.7% 66.5%
Max 78.6% 75.6% 72.5% 70.0%
Min 72.1% 70.2% 71.2% 62.9%

Negative
Predictive

Value

Avg 88.1% 84.4% 73.3% 68.8%
Max 91.5% 86.8% 74.9% 74.9%
Min 83.7% 82.3% 72.3% 65.2%

Subdivisions
Size

with MetOc
Size

without MetOc MetOc-Only Size
without MetOc

1st block 2nd block 3rd block 4th block

All size information 3 17.6% 3 37.5% 0 0.0% 0 0.0%
Carvalho 2 11.8% 0 0.0% 1 25.0% 0 0.0%

Carvalho et al. 3 17.6% 0 0.0% 0 0.0% 2 33.3%
Bentz 3 17.6% 0 0.0% 0 0.0% 3 50.0%

Bentz with Carvalho 3 17.6% 2 25.0% 0 0.0% 1 16.7%
Bentz with Carvalho et al. 3 17.6% 3 37.5% 0 0.0% 0 0.0%

MetOc-Only 3 75.0%

Data
Transformations

Size
with MetOc

Size
without MetOc MetOc-Only Size

without MetOc

1st block 2nd block 3rd block 4th block

None 5 29.4% 2 25.0% 2 50.0% 3 50.0%
Cube Root 6 35.3% 3 37.5% 1 25.0% 2 33.3%

log10 6 35.3% 3 37.5% 1 25.0% 1 16.7%

Table 7 (middle) shows that the top 17 ranks (i.e., 1st block) are formed by essentially an even
number of combinations, i.e., each of the six major subdivisions correspond to ~17%. The next eight
ranks (i.e., 2nd block) are also represented by a uniform number of subdivisions, i.e., ~30% of each:
All size information (all transformations), Bentz with Carvalho (two transformations), and Bentz with
Carvalho et al. (all transformations). While the 3rd block is represented by all three MetOc-Only
subdivisions (75%) and Carvalho with MetOc (25%), the six ranks of the lower 4th block refers to Bentz
in all transformations (50%), Carvalho et al. (~33%), and Bentz with Carvalho in two transformations
(~17%).

Table 7 (bottom) reveals the absence of a direct benefit of applying non-linear transformations.
In the top two blocks, there is a similar representativeness of all transformations (~30%), and in the
lower two blocks the original data accounts for 50% of each. Furthermore, Table 6 reveals that there is
no clear pattern in the ability of the LDA to discriminate between oil slicks and slick-alikes involving
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data transformations—both the top (83.7%) and worst (67.8%) overall accuracies are achieved with the
same log10 transformation.

4. Discussion

The knowledge gained from Carvalho [18,21] (Section 1.1.2) and Carvalho et al. [22–24]
(Section 1.1.3) on the use of LDAs led us to apply such linear techniques in this study (Figure 3).
A three-fold correspondence (similarities vs. differences) can be drawn between the earlier investigation
and this study:

1. Distinct categories of targets can be analyzed: the earlier studies were directed at the classification
of mineral oil slick products (oil seeps vs. oil spills), but here the focus is on differentiating two
types of low radar backscatter signals (oil slicks vs. slick-alikes);

2. Different SAR dual co-polarizations measurements can be exploited: their SAR-derived smooth
texture polygons were digitally classified with VV-polarized, 16-bit scenes (RADARSAT-2), but the
database in this study was derived from HH-polarized, 8-bit imagery (RADARSAT-1); and

3. Samples can come from different geographic places: the seep-spill effective discrimination was
accomplished with oil slicks observed in the Gulf of Mexico, whereas here we analyzed targets
from the offshore southeastern Brazilian coast (Figure 1).

Despite the success of linear discriminant multivariate analyses in these two domains—i.e.,
to separate oil from oil (e.g., [18]) and oil from look-alikes—one should bear in mind complementary
non-linear machine learning models [54].

Additionally, there are three relevant aspects of the database used here:

• It includes interpretations by experts that have been supported by ancillary MetOc data [17].
The accuracy assessment of the LDA algorithms is compared to these man-made interpretations;

• This study used RADARSAT-1 data simply because a tabular database was available. The use of
ship-based multi-band radars (e.g., X-/C-/S-band [55]) or a finer-resolution C-band SAR sensor
(e.g., Sentinel-1s [56]) may result in more detailed analyses of small marine slicks; and

• The 402 scenes were sampled at about four images per week (between July 2001 and June 2003),
thus registering the extremely high MetOc variability of the Campos Basin, and providing a
large and quite well-balanced class distribution (Figure 2) of 350 petroleum pollution records
(exploration and production oil, ship- and orphan-spills) versus 419 non-petroleum targets
(biogenic films, algal blooms, upwelling, low wind, or rain cells). This sampling rate ensured
that a wide range of conditions of various factors influencing the detection of oil slicks in SAR
imagery (e.g., sea conditions, SAR noise floor, incidence angle, etc.; such aspects were not directly
measured) were well represented.

As a result, this data representativeness ensures the database used is appropriate to train algorithms,
thus supporting the investigation of a worldwide, economically relevant offshore region with major oil
and gas resources, the Campos Basin, with known oil slick occurrence.

The QC standards guaranteed effective criteria to promote the discrimination between oil slicks
and non-petroleum signals. Some attribute types (e.g., SAR-signature and textural information) were
eliminated from this study because they were provided in uncalibrated DNs, which were not converted
to backscatter coefficients (gamma-, beta-, or sigma-naught) given in amplitude or decibels [57].
Notwithstanding that Carvalho and Carvalho et al. showed the sole use of size information is sufficient
to discriminate seeps from spills, their results were slightly improved when size and SAR descriptors
were combined. Thus, the inclusion of SAR-signature and textural information given in terms of
backscatter coefficients could imply further developments to our LDA discrimination process.

When Carvalho included site-specific attributes—latitude, longitude, and others—the
discrimination was considerably improved to almost 100% accuracy. Here, location was not used as a
parameter in the analysis so that a set of attributes and related algorithms could be derived suitable for
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application to signals in any area. However, in the development of an algorithm intended for a given
region, the inclusion of location descriptors may be beneficial.

From the best 17 combinations of attributes (1st block in Table 6: size with MetOc variables),
there is a difference in accuracy of 4.6% from the 1st to the 17th rank (644-608 = 36 correctly identified
targets; Tables 6 and 7). This means that the analyses of fixed specific subdivision domains could
possibly be further developed with a one-to-one attribute substitution, i.e., having as many subdivisions
as the number of possible combinations of variables, thus measuring the individual relevance per
attribute. With such a procedure, a finer sense of which attribute combination best discriminates oil
slicks from petroleum-free targets could be derived.

Our classification results are independent of the data transformation—i.e., original data, cube root,
and log10 (Tables 6 and 7). Nevertheless, other non-linear transformations may result in improvements
in the LDA oil and look-alike discrimination with, for instance, reciprocal, square root, square power,
or cube power. Carvalho et al. tested these transformations, along with cube root and log10, to find
that the latter two achieved improved seep-spill discrimination.

To fulfill the LDA prerequisite of having the least correlation [46], our feature selection processes
used UPGMA dendrograms with the similarity cut-off of 0.3 > r > −0.3 (Section 2.3.4: Phase 4).
Nonetheless, visual inspections of dendrograms could be used instead (Section 3.3.1). In Figure 4 (any
panel) three main groups of variables are formed with almost no inter-group correlation. These visually
combined, uncorrelated groups of variables could be used to select one attribute from each group
instead of using a fixed phenon line—for instance, in Figure 4, one could choose CHL from the purple
group, CMP from the brown group, and SST from the yellow group. This would further trim the
dimensionality, as instead of using nine variables out of the initial twelve (Table 5), only three attributes
would be input into the LDA.

It is noteworthy that the three least accurate combinations (Bentz without MetOc in all
transformations) are those using the four most complex of the nine size variables, i.e., LtoW, DEN,
CUR, and NUM (Table 6). While this last variable can be simply achieved by counting the number
of parts of each low backscatter SAR target, the other three require more complicated calculations
than the other five size explored variables, i.e., Area and Per (Carvalho), along with PtoA, CMP,
and FRA (Carvalho et al.). The latter three attributes are straightforward to derive from the first two,
i.e., the most basic morphological characteristics of the polygons. This demonstrates that simple
descriptors can result in successful oil and look-alike discrimination, as was also found by Carvalho
and Carvalho et al. while discriminating seeps from spills.

The interplay between size and MetOc variables observed on the accuracy assessment results in
four hierarchy blocks (Table 6). Table 7 shows that, on average, even the attribute–domain combinations
of the least accurate hierarchy block upheld practical accuracies of about 70% in all of the metrics,
meaning that they can still be considered useful algorithms.

5. Conclusions

The discrimination of two categories of low-backscatter regions derived from Synthetic Aperture
Radar (SAR) measurements (i.e., mineral oil slicks and other environmental petroleum-free false
targets—oil vs. look-alikes) has been demonstrated. These two low-backscatter categories have
been distinguished with simple, parametric Linear Discriminant Analyses (LDAs) applied to a set
of satellite measurements (microwave, infrared, and optical) from RADARSAT-1, AVHRR/NOAA,
SeaWiFS/Orbiview-2, MODIS/Terra, and SeaWinds/QuikSCAT. The study region, the Campos Basin
(Figure 1), is located off the southeast coast of Brazil, and our database consists of 769 samples of oil
slicks (n = 350; 45.5%) and slick-alikes (n = 419; 54.5%) derived from 402 RADARSAT-1 scenes from July
2001 to June 2003 (Figure 2). The LDA algorithms were evaluated with a three-fold statistical metric:
overall, producer’s and user’s accuracies (Tables 1–4). The investigation plan (Figure 3) involved the
evaluation of 39 attribute subdivisions based on the knowledge gained from the earlier seep-spill
discrimination findings of “Carvalho” [18,21] (Section 1.1.2), “Carvalho et al.” [22–24] (Section 1.1.3),
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as well as from “Bentz” [17] (Section 2.2.2.1)—Table 5. Therefore, evoking the assistance of Figure 4
and Tables 6 and 7, the initial six questions have been answered:

1. This research has shown that oil slicks and radar look-alikes are distinguishable by means of a
simple linear, but mathematically-robust, multivariate data analysis technique, LDA.

2. The LDA algorithms achieved classification accuracies that support further, systematic
implementation (commercially or academically), as the best overall classification accuracies
of ~80% with good levels of sensitivity (~90%), specificity (~80%), positive (~80%) and negative
(~90%) predictive values have been demonstrated.

3. The application of non-linear transformations does not result in improvement in the discrimination
of oil slicks and look-alike signals. In fact, both the best and worst accuracies (83.7% and 67.3%)
were achieved using the same transformation: log10, as expected from the seep-spill discrimination
findings of Carvalho et al.

4. It has been demonstrated that the exclusive use of the magnitude of contextual Meteorological-
Oceanographic (MetOc) satellite-derived variables (sea surface temperature (SST), chlorophyll-a
(CHL), and wind speed (WND)) is sufficient to distinguish oil slicks from false targets. The best
classification accuracy using solely MetOc variables (with the cube root transformation applied)
is 77.1%.

5. A specific set of attributes was selected to be used in our analyses after the legacy left from the
seep-spill discrimination [18,21–24], so as by the available variables within the database [17]
(Table 5). From these, several attribute combinations were tested and led to similar discriminations
of oil slicks and slick-alikes: most of the top 17 attribute subdivisions resulted in an overall
accuracy > 80%. Thus, “the best” selection of variables cannot be specified, as we did not
test all possible combinations of variables. Nevertheless, among the 39 attribute subdivisions
tested, the most reliable discrimination (overall accuracy of 83.7%) has seven descriptors: Area,
length-to-width ratio (LtoW), density (DEN), number of parts of each target (NUM), and the
magnitudes of SST, CHL, and WND—i.e., the Bentz with Carvalho with MetOc with log10

subdivision. The worst discrimination only accounts for two variables: DEN and NUM (67.8% of
overall accuracy—i.e., Bentz without MetOc with log10).

6. The set-up of our LDA-based algorithm is most likely not site-specific, and indeed it could be
applied to other regions. However, the applicability of the algorithms should be confirmed if a
local training dataset is available. If such a dataset is available, and our algorithm is found not to
be sufficiently effective, then the approach presented here could be followed to generate a more
locally appropriate algorithm.

This study has produced an approach to perform offshore monitoring of marine oil slicks using
satellite data, resulting in an easy research-to-application transition. These results substantiate that
discrimination between mineral oil slicks and environmental petroleum-free look-alike slicks can be
accomplished effectively with simple linear discriminant multivariate analyses.
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