1. Introduction
At present, microwave radar, in particular the C- and X-bands, is a widely used remote sensing tool for sea state monitoring, providing high-resolution imagery of both spatial and temporal variations of the sea surface [
1,
2]. Accordingly, the investigation of mechanisms of radar backscattering from the sea surface is extremely important for the development of remote sensing methods [
3,
4,
5,
6]. The increased interest in this issue in the context of ocean remote sensing is associated, on the one hand, with the intensification of ocean exploration and, on the other hand, with the appearance of new instruments, including multiband Doppler radars operating simultaneously at several polarizations (see [
7,
8,
9,
10,
11] and references therein).A Bragg scattering mechanism was previously considered as the principal mechanism of radar backscattering at moderate incidence angles [
3]. However, new data obtained using advanced techniques, in particular co-polarized microwave radar, have indicated some limitations of the Bragg mechanism associated with breaking of wind waves. It was suggested that these limitations could be removed by taking into consideration non-Bragg, so-called non-polarized, scattering [
6,
12,
13]. This non-polarized scattering was hypothesized to be significant at moderate incidence angles and at moderate and strong winds (6–11 m/s) when strong wavebreaking occurs [
12,
13]. In [
14,
15,
16] it was suggested that along with the wave breaking process, at low grazing angles sharp-crested waves significantly contribute to the non-Bragg radar return. According to a semi-empirical model of normalized radar cross-section (NRCS) proposed in [
6,
12,
13], the non-Bragg mechanism is associated with specular tilted facets distributed in the profiles of breaking waves. However, since these facets have scales comparable with microwave wavelengths, it is more correct to interpret non-Bragg scattering as diffraction on small-scale quasi-specular facets on the wavy surface with randomly distributed breaking zones—that is, as overturning wave crests [
17]. The experiments in [
18,
19] confirmed that the appearance of small-scale structures (“bulges” and “toes” [
20,
21,
22]) characterized by high curvature values in the profiles of short gravity waves of cm–dm–scales resulted in an increase of the non-Bragg component. Detailed schematics of the nonlinearity in the profile of dm-scale waves are presented in
Figure 1 of [
20]. As a parameter characterizing the contribution of the non-Bragg component in the total radar backscatter, a polarization ratio defined as a ratio of intensities at VV and HH polarizations is usually used (see, for example, [
17,
23,
24] and references therein).It was shown in [
10] that intense spikes in the radar return occurred dat moderate wind velocities and non-Bragg backscattering contributed significantly in radar return both at VV and HH polarizations in the zones visually associated with overturning wave crests. Outside the spikes, the polarization ratio increased, sometimes up to the values corresponding to the Bragg mechanism. This indicated that the intensity of non-Bragg scattering varied considerably along the dominant wind wave profile.
The primary focus of this paper is on the nature of non-Bragg effects produced by local nonlinearities in the profiles of short wind waves on the ocean surface in a wide wind velocity range as revealed by the analysis of data from field experiments on radar remote sensing using two dual (VV/HH)-polarized microwave Doppler radars working at moderate incident angles. The paper is organized as follows.
Section 2 is devoted to the theoretical background that provides the basis for investigating the role of microbreaking in the formation of a non-Bragg component.
Section 3 describes field experiments recently performed on an oceanographic platform in the Black Sea. The results of our field experiments are collected in
Section 4 and discussed in
Section 5. The conclusions are presented in
Section 6.
2. Theoretical Background and Data Processing
According to [
15], the total instantaneous normalized radar cross-section (NRCS) at VV and HH polarizations
is supposed to be a sum of Bragg and non-Bragg parts:
The Bragg component can be written as:
where
is a spectrum of wind waves at a Bragg wave number
,
is the incidence angle,
is the wave number of incident electromagnetic waves and
is the backscattering Fresnel coefficient depending on the polarizations of incident/reflected electromagnetic waves and on the incidence angle [
3]. The non-Bragg component in Equation (1) is assumed to be the same both at VV and HH polarizations [
15]. One can thus acquire the instantaneous polarization difference (PD), the non-Bragg component (NBC) and the polarization ratio (PR) as follows:
Here is the polarization ratio from Bragg scattering theory.
The polarization difference (Equation (3)) characterizes Bragg scattering and is determined by the wind wave spectrum at the Bragg wavenumber and by the difference of the backscattering coefficients. One should note that the Bragg component (or PD) depends on the local incidence angle and, since the latter varies in the presence of long surface waves, on the long wave slopes .
At low winds (<6 m/s) the long wave slopes are small, so one can neglect the variations of the local incident angle and consider
as a constant
. At large enough long wave slopes, one has to take into account the variations of the coefficients
due to long waves. When considering the NBC averaged over the periods of dominant surface waves, one can easily obtain the equation for the NBC-averaged value, which can be written as:
here
, where the brackets 〈…〉 denote averaging over scales much larger than the periods of dominant surface waves. The polarization ratio of the pre-averaged intensities is
.
Figure 1 shows
as a function of the local incidence angle for X-band Bragg waves; the red curve denotes
for the case of the long wave slope variance in the observation direction of about 0.01 [
16]. It can be seen that
strongly depends on the incidence angle and therefore can significantly vary due to variations of the local incidence angle along the dominant wave profile. For instance, 95% of the surface slopes for the Gaussian distribution are within two wave slope variances, so that the polarization ratio at a mean incidence angle
varies between five and several tens of units. Hence, in order to correctly estimate the local values of the non-Bragg component, it is necessary to retrieve the local tilts due to the long waves.
Variations of the local incidence angle due to long waves can be estimated from the fluctuations of the Doppler shift of the polarization difference spectrum. The output signal I(t) for a coherent radar can be written as (see, e.g., [
25]):
where
and
are the current amplitude and phase of the signal,
is the wave vector of the incident electromagnetic wave and
is the radius vector of the surface scattering element. An instantaneous spectrum of radar return is:
where
ω is the frequency of the spectral component. The output signal amplitude is assumed to slowly vary on time scales of the order of the inverse frequencies of the radar Doppler spectrum. Then, it follows from Equation (8) that:
where
is the speed of microwave scatterers and
P(
t) is the backscattering intensity.
The instantaneous radar Doppler shift
can be written as:
Here
is a sum of the velocities of scatterers and of a steady surface current and
is the orbital velocity of dominant surface waves. Mean velocities of Bragg/non-Bragg scatterers can be obtained by averaging the instantaneous offset of the Doppler spectrum of Bragg/non-Bragg components if the current velocity is known. The Doppler shift variations are related to the orbital velocities of long waves for, e.g., the case of upwind observation, as follows:
where
U(
t) and
are the horizontal and vertical components of the orbital velocity of the dominant waves and
is the elevation of the surface. For deep water waves, the amplitudes of the horizontal and vertical velocities are equal and the velocities are shifted by
relative to each other. To obtain the local tilts of long waves
, we assume that the elevations in long waves can be represented as Fourier series:
Here
,
is the time interval of data analysis,
and
are the Fourier coefficients,
and
g is the gravitational acceleration. Then, the slopes of long waves and vertical and horizontal velocities are represented as:
After substituting the expressions for
and
in Equation (11), one obtains:
where
So, once the Doppler shift variations are found, one can retrieve the local tilt of the surface, the incidence angles of radiation and the local values R, thus making it possible to obtain the local values of the non-Bragg component (Equation (4)).
3. Experiment
Experiments were conducted on an oceanographic platform located 500 m from the shore in the Black Sea (see
Figure 2); the sea depth near the platform was about 30 m. An X-band scatterometer and a three-band microwave radar were located on the upper platform deck at a height of about 13 m above sea level, approximately 5 m apart. The directions of observation were approximately the same for the radars. The incidence angle was 55–60 degrees.
The X-/C-/S-band radar was a pulse system which simultaneously measured the intensity of radar return at three microwave frequencies and the corresponding speeds of radar scatterers. The scatterer speed was determined by the Doppler shift that was defined as the “centroid” of the Doppler spectrum. The radar was equipped with a parabolic 90 cm-diameter antenna. In our experiments, the sampling period was 4 s and the Doppler spectra of radar return were analyzed over time intervals of 0.5 s in each band. Since the sampling rate was comparable to the frequencies of long waves at moderate winds, the radar data were used to obtain mean radar return values. Since transmitted and received signals passed through the same electronic path, we could consider the amplification factors for the channels of different polarizations (VV and HH) as equal. This assumption was also confirmed by measuring signals after a mechanical rotation of the transmitter at the conditions of the constant wind velocity. The obtained accuracy of determination of polarization ratio related to limiting averaging time and noise limitations was about 10–15% in the three-band radar. The multiband radar was also used for normalization of the signal intensities in different channels of the X-band scatterometer, which was in fact a combination of two co-polarized scatterometers with a single antenna.
The X-band scatterometer operated in a continuous wave regime with linear frequency modulation. The sampling rate was 1000 Hz and the Doppler spectra were analyzed over time intervals of 0.25 s, which allowed us to study variations of radar return on the scale of dominant waves. The antenna beam width of the X-band scatterometer was about 6◦ and the footprint on the water surface had a size of 1.5 m (approximately the same as the three-frequency radar), which was more than ten times less than the wavelengths of the dominant waves at moderate velocities.
The wind velocity and direction were measured with a Wind Sonic acoustic anemometer mounted on the platform roof. Surface gravity waves were measured using a wire wave gauge located between radars under the platform. The near-surface current was measured with an acoustic current velocity profiler. Radar observations of the sea surface were undertaken for clean and contaminated water surfaces. In the experiments with surface-active films, solutions of oleic acid (OLE) in ethanol were poured onto the water surface from a small boat at a distance of about 100 m upwind from the platform, with results suggesting that the film near the platform was in a stationary state [
26]. Surface concentrations of the surfactant films, roughly estimated as the spill volume divided by the slick area, were more than the saturated concentration of the oleic acid monolayer. Since in this case the dynamic film elasticity, which determines the short-wave damping, weakly depended on the mean film thickness, we supposed that the elasticity remained nearly constant during the experiments [
27]. Video and photo recording of the surface state were carried out to monitor visually the state of the waves and to identify the zones of wave breaking. The areas of broken film in slicks were recorded visually and then excluded from the analysis.
5. Discussion
As shown in
Section 4.1, the polarization ratio obtained in our experiments was less than the corresponding value in the Bragg model for all wind speeds and for all azimuth angles of our observations, which were nearly the same in C-, S- and X-bands. The significant contribution of the NBC to the total radar return at low winds and the fact that NBC scatterer velocities correspond to the wave velocities of dm waves (see
Figure 12) allowed us to assume that the source of non-Bragg scattering was related to stable nonlinear structures “frozen” in the dm wave profile; that is, the structures attached to the dm-scale profile and moving steadily with the waves, for example, bulges and toes [
19,
21,
22,
29]. Strong wave breaking was an additional source of NBC that appeared at moderate winds and was comparable in energy with NBC from small-scale waves. The Doppler shifts of the spikes are shown in
Figure 12; it can be seen that the wavelengths in spikes were larger and corresponded to m-scale surface waves. One can thus see that there are two types of non-Bragg scatterers associated with surface waves of dm- and m-scale wavelengths, respectively. The contributions of each of these types are comparable to each other at moderate wind speeds.
A qualitative explanation of weak dependence of 〈
PR〉 on wind velocity is as following. Since the relative contribution of non-Bragg scattering is about 0.2–0.25 at VV polarization and about 0.75–0.8 at HH polarization, we can estimate the polarization ratio as a ratio between the Bragg component at VV polarization and the non-Bragg component:
Since the non-Bragg component is associated with dm-scale waves, we assume that its intensity is proportional to the wind wave spectra at dm-scale wavelengths, i.e.,
, where Sis some empirical factor. According to [
5], the spectrum of a wind wave is:
Here
is the wind wave growth rate [
30],
describes the dependence of the growth rate on the angle between the wind velocity and the wave vector
in the upwind direction,
is the wind friction velocity,
is the wave frequency,
is an amplitude viscous damping coefficient of surface waves,
is the kinematic water viscosity and
is an empirical constant. It is assumed in Equation (21) that
. For cm-scale waves, in particular, at
k = 3.6 rad/cm corresponding to the X-band Bragg wave number for the conditions of our experiments, one can set
[
15]. Then
grows with wavelength and for dm-scale waves with wavelengths of 20 cm and longer can be considered to be about 5 [
15]. At wind velocities higher that the threshold value, the polarization ratio is:
Here we have introduced an empirical factor S, which will be estimated below to fit with our experiment. If we can neglect the wave damping coefficient in Equation (22), which can be done at wind velocities of about 5 m/s and higher, then we obtain
. If the factor S~5, then the polarization ratio is independent of wind velocity; that is, consistent with the experiment (see
Figure 4). When considering cases of film-covered surface we suppose that the reduction of a non-Bragg component occurs due to suppression of dm-scale waves. The nonlinear structures, responsible for non-Bragg scattering, are very sensitive to the amplitude of dm-scale waves and the dependence of the non-Bragg component on the spectral intensity of dm-scale waves should be very fast-growing (see, for example, [
31]) like, e.g., a power function with high enough S values, so the estimate of 5 for the
-value does not look unrealistic. The strong response of non-Bragg scattering to weak variation of dm-scale waves is consistent with the nonlinear “cascade” modulation of Ka-band radar backscatter due to internal waves [
32]. One should remember that the dispersion relation for dm-scale waves is practically insensitive to the surface tension coefficient (STC), so that the reduction of STC in the presence of surfactant films does not change the phase velocity of dm-scale waves and thus the non-Bragg Doppler shift. Regarding the Bragg Doppler shift, the film should have a weak influence on cm-scale Bragg waves. If the non-Bragg component is associated with dm-scale waves and
, then the contrast (damping ratio) of the non-Bragg component is
; here
is a contrast for dm-scale waves. The contrast of 2.3–3.2 Hz waves(which correspond to wavelengths of 15–30 cm) according to our wire gauge data for a wind velocity of 8 m/s is about 2. Thus, the non-Bragg contrast is about 30, which is consistent with the contrasts in
Figure 13.
Note that a similar effect was observed in laboratory conditions in experiments with a Ka-band radar [
19]. Specifically, the intensity of the non-Bragg component reflected from steep dm-scale waves decreased due to suppression of bulge/toe structures near the crests of the waves on the contaminated surface, while the velocity of dm-scale waves remained practically unchanged.
6. Conclusions
A significant difference between the polarization ratios predicted by the Bragg theory and those obtained in field experiments was found fora wide range of wind velocities, including cases of weak winds near the threshold of wind wave generation. This indicates that strong waves are not the only sources of non-polarized microwave scattering. The polarization ratio weakly depends on wind velocity and on the azimuth angle.
Analysis of Doppler shift of the radar spectra and scattering velocities revealed two types of non-Bragg scatterers. One type was associated with strong breaking and wave crest overturning; these scatterers moved with the phase velocities of meter-scale breaking surface waves. Another part of the non-Bragg scattering was due to microbreaking of dm-scale waves and formation of nonlinear structures, like bulges and toes, near the wave crests. The second type of non-Bragg scatterers dominated at low wind conditions, while at moderate wind velocities both strong breaking and microbreaking were responsible for non-Bragg microwave scattering. At moderate winds, the non-Bragg component related to microbreaking was approximately half of the total non-Bragg component.
The presence of surfactant films on the surface of the sea resulted in a significant suppression of both the small scale non-Bragg component and the Bragg component, so that the polarization ratio changed little. We believe that the nonlinear structures associated with dm-scale waves were strongly reduced in the presence of film due to the cascade mechanism, which results in strong suppression of small-scale nonlinear structures even if the reduction of the amplitude of the dm-wave is weak. At the same time the velocities of non-Bragg scatterers remained practically the same as in non-slick areas, since the phase velocity of dm waves was not affected by the film.
We believe that the presented results regarding the contributions of large breaking meter-scale waves, as well as microbreaking decimeter-scale waves, to non-polarized backscattering are valid, at least qualitatively, for a wide range ofradar acquisition geometry typical for satellite SAR both for upwind and waves directions. Moreover, this contribution can increase, taking into account that for smaller incidence angles for satellite SAR quasi-specular non-polarized scattering can be realized even for smaller slopes of the parasitic ripples and bulges.