Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = film/substrate delamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 13613 KiB  
Article
Colorless Polyimides with Low Linear Coefficients of Thermal Expansion and Their Controlled Soft Adhesion/Easy Removability on Glass Substrates: Role of Modified One-Pot Polymerization Method
by Masatoshi Hasegawa, Takehiro Shinoda, Kanata Nakadai, Junichi Ishii, Tetsuo Okuyama, Kaya Tokuda, Hiroyuki Wakui, Naoki Watanabe and Kota Kitamura
Polymers 2025, 17(13), 1887; https://doi.org/10.3390/polym17131887 - 7 Jul 2025
Viewed by 562
Abstract
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) [...] Read more.
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB). This system was selected with the aim of exhibiting excellent optical transparency and low linear coefficient of thermal expansion (CTE) properties. However, fabricating this PI film via the conventional two-step process was challenging because of crack formation. In contrast, modified one-pot polymerization at 200 °C using a combined catalyst resulted in a homogeneous solution of PI with an exceptionally high molecular weight, yielding a flexible cast film. The solubility of PI plays a crucial role in its success. This study delves into the mechanism behind the significant catalytic effect on enhancing molecular weight. The CpODA/TFMB PI cast film simultaneously achieved very high optical transparency, an extremely high glass transition temperature (Tg = 411 °C), a significantly low linear coefficient of thermal expansion (CTE = 16.7 ppm/K), and sufficient film toughness, despite the trade-off between low CTE and high film toughness. The CpODA/TFMB system was modified by copolymerization with minor contents of another cycloaliphatic tetracarboxylic dianhydride, 5,5′-(1,4-phenylene)-exo-bis(hexahydro-4,7-methanoisobenzofuran-cis-exo-1,3-dione) (BzDAxx). This approach was effective in improving the film toughness without sacrificing the low CTE and other target properties. The peel strengths (σpeel) of laminates comprising surface-modified glass substrates and various colorless PI films were measured to evaluate the compatibility with the temporary adhesion process. Most colorless PI films studied were found to be incompatible. Additionally, no correlation between σpeel and PI structure was observed, making it challenging to identify the structural factors influencing σpeel control. Surprisingly, a strong correlation was observed between σpeel and CTE of the PI films, suggesting that the observed solid–solid lamination is closely linked to the unexpectedly high surface mobility of the PI films. The laminate using CpODA(90);BzDAxx(10)/TFMB copolymer exhibited suitable adhesion strength for the temporary adhesion process, while meeting other target properties. The modified one-pot polymerization method significantly contributed to the development of colorless PIs suitable for plastic substrates. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

32 pages, 72179 KiB  
Article
Impact of Substrate Type on the Properties of Cast Biodegradable Starch-Based Films
by Tomasz Tadeusz Murawski, Zuzanna Żołek-Tryznowska and Jerzy Szałapak
Processes 2025, 13(4), 1197; https://doi.org/10.3390/pr13041197 - 15 Apr 2025
Cited by 1 | Viewed by 478
Abstract
Biodegradable films are a viable alternative to conventional plastics, thereby contributing to environmental pollution reduction. This study investigates the impact of substrate type on the properties of starch-based films produced using a plasticizer-assisted casting method. Four different substrates, namely, glass, copper, copper-free laminate, [...] Read more.
Biodegradable films are a viable alternative to conventional plastics, thereby contributing to environmental pollution reduction. This study investigates the impact of substrate type on the properties of starch-based films produced using a plasticizer-assisted casting method. Four different substrates, namely, glass, copper, copper-free laminate, and Teflon®, were evaluated, addressing a research gap in which previous studies primarily focused on film composition. The films were analyzed for color, tensile strength, surface free energy, and surface morphology using optical and electron microscopy. The results demonstrated a substrate-dependent impact on surface properties, particularly optical transparency, surface roughness, and adhesion. The films cast on glass and laminate exhibited higher transparency and lower roughness, while copper substrate induced micro-striations and strong adhesion. Teflon® substrates replicated surface imperfections, which may be advantageous for optical applications, but caused film delamination. Tensile strength did not show statistically significant differences across substrates, although reduced elongation was observed for the films cast on Teflon®. Water vapor permeability was also not significantly affected, indicating a dominant role of bulk material properties. It averaged 25 kg per day per square meter, which means high vapor permeability. Surface free energy analysis revealed marked variations between top and bottom layers, with values ranging from 35 to 70 mJ·m⁻2 depending on the substrate. These findings confirm that the type of casting substrate plays a critical role in determining the surface and optical properties of starch-based films, even at the laboratory scale. This study provides new insights into substrate–film interactions and establishes a foundation for optimizing biodegradable film fabrication for industrial and application-specific needs. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

23 pages, 12741 KiB  
Article
Performance of Hybrid Reinforced Composite Substrates in Adhesively Bonded Joints Under Varied Loading Rates
by Hossein Malekinejad, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Polymers 2025, 17(4), 469; https://doi.org/10.3390/polym17040469 - 11 Feb 2025
Cited by 1 | Viewed by 991
Abstract
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there [...] Read more.
The use of adhesive bonding for joining composites has grown due to its excellent performance compared to traditional joining methods. However, delamination remains a significant issue in adhesively bonded composite joints, often causing early failure and reducing joint performance. To address this, there is a strong interest in methods that enhance the through-thickness strength of composite substrates to reduce the risk of delamination. Various studies have suggested techniques to prevent delamination in carbon fiber reinforced polymer (CFRP) single-lap joints (SLJs). This study investigates the reinforcement of substrates to prevent delamination, often by adding a tough polymer or metal layer (called fiber metal laminates) to the top and bottom surfaces of the substrates. The effects of incorporating aluminum and film adhesive layers (each comprising 25% of the composite substrate’s thickness) on the failure load and failure mode of bonded joints under different loading rates, including quasi-static (1 mm/min), high-rate (0.1 m/s), and impact (2.5 m/s) conditions, were examined. These configurations were also simulated using cohesive zone modeling (CZM) across all loading rates to predict failure load and mechanisms numerically. Under impact loading, substituting outer CFRP layers with polymer or metal layers significantly increased the failure load and energy absorption capacity. Samples reinforced with aluminum and polymer showed approximately 39% and 13% higher failure loads, respectively, compared to the reference CFRP samples under impact. In terms of energy absorption, SLJs reinforced using aluminum could dissipate energy about 15% greater than the reference CFRP SLJs. The polymer reinforcement configuration can enhance specific strength with a relatively smaller increase in weight compared to FML. This is particularly important in aerospace applications, where minimizing weight while improving performance is crucial. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

23 pages, 21001 KiB  
Article
Wear Resistance and Failure Mode of Coatings Based on the ZrN System with the Introduction of Ti, Nb, and Hf Deposited on a Titanium Alloy Substrate
by Sergey Grigoriev, Catherine Sotova, Alexander Metel, Valery Zhylinski, Filipp Milovich, Anton Seleznev, Yanpeng Xue and Alexey Vereschaka
Metals 2025, 15(2), 163; https://doi.org/10.3390/met15020163 - 6 Feb 2025
Viewed by 941
Abstract
The article presents the results of a comparison of the wear resistance of coatings with a two-layer architecture (adhesion layer–wear-resistant layer) of Zr-ZrN, Zr-(Zr,Ti)N, Zr,Hf-(Zr,Hf)N, Zr,Nb-(Zr,Nb)N, Zr,Hf-(Ti,Zr,Hf)N, and Zr,Nb-(Ti,Zr,Nb)N coatings, deposited on a titanium alloy substrate. The wear resistance was studied using two [...] Read more.
The article presents the results of a comparison of the wear resistance of coatings with a two-layer architecture (adhesion layer–wear-resistant layer) of Zr-ZrN, Zr-(Zr,Ti)N, Zr,Hf-(Zr,Hf)N, Zr,Nb-(Zr,Nb)N, Zr,Hf-(Ti,Zr,Hf)N, and Zr,Nb-(Ti,Zr,Nb)N coatings, deposited on a titanium alloy substrate. The wear resistance was studied using two different counterbodies: Al2O3 and steel. When in contact with the Al2O3 counterbodies, the best wear resistance was demonstrated by samples with Zr,Hf-(Zr,Hf)N and Zr,Nb-(Zr,Nb,Ti)N coatings. In tests conducted in contact with the steel counterbody, the best resistance was demonstrated by samples with Zr-ZrN and Zr,Hf-(Ti,Zr,Hf)N coatings. The wear resistance of samples with (Zr,Hf)N and (Zr,Nb,Ti)N coatings was 2.5–3.3 times higher than that of the uncoated sample. The Zr,Nb adhesion layer ensures better adhesion of the coating to the substrate. It was found that not only the adhesion strength of the adhesion layer to the substrate and coating is of significant importance but also the strength of the adhesion layer itself. The surface film of titanium oxide must be completely etched off to ensure maximum strength of the adhesive bond between the coating and the substrate. It has been established that the adhesion of the coating and the titanium substrate is also affected by the characteristics of the outer (wear-resistant) coating layer, which is the composition and structure of the wear-resistant coating layer. Delamination can occur both at the boundary of the adhesive layer with the substrate and at the boundary of the wear-resistant and adhesive layers of the coating depending on the strength of the adhesive bonds in the corresponding pair. It is necessary to ensure a good combination of properties both in the substrate–adhesion layer system and in the adhesion layer–wear-resistant layer system. Full article
Show Figures

Figure 1

14 pages, 6706 KiB  
Article
A New Type of CuNi/TiB2 Thin-Film Thermocouple Fabricated by Magnetron Sputtering
by Junlong Luo, Zichang Pan, Zhengtao Wu, Haiqing Li, Qimin Wang, Yisong Lin, Liangliang Lin, Aiqin Zheng and Chao Liu
Coatings 2025, 15(2), 142; https://doi.org/10.3390/coatings15020142 - 26 Jan 2025
Viewed by 2852
Abstract
A new CuNi/TiB2 thin-film thermocouple was fabricated using magnetron sputtering. A 400 nm thick CuNi interior layer was deposited on a dielectric substrate initiatory, and then covered by an 800 nm thick TiB2 layer. The tests revealed that the TiB2 [...] Read more.
A new CuNi/TiB2 thin-film thermocouple was fabricated using magnetron sputtering. A 400 nm thick CuNi interior layer was deposited on a dielectric substrate initiatory, and then covered by an 800 nm thick TiB2 layer. The tests revealed that the TiB2 layer had a dense and columnar cross-section. The measured hardness and elastic modulus of the TiB2 layer were ~20.5 and 315.9 GPa, respectively. No cracking or delamination occurred at the CuNi/TiB2 interface. The work functions of the TiB2 and the CuNi layers were calculated to be 4.406 and 4.726 eV, respectively. The difference in work functions between the TiB2 and the CuNi was ~0.3 eV. The CuNi/TiB2 thin-film sensor exhibited a high Seebeck coefficient of 38.07 μV/°C with excellent linearity. The maximum service temperature of the thin-film sensor was evaluated to be ~400 °C. A further increase in temperature degraded the Seebeck coefficient due to oxidation of the TiB2 layer. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

15 pages, 5618 KiB  
Article
MXene/Bacterial Cellulose Hybrid Materials for Sustainable Soft Electronics
by Wojciech Guziewicz, Shreyas Srivatsa, Marcel Zambrzycki, Michał Dziadek, Piotr Szatkowski, Patryk Szymczak, Katarzyna Berent, Marianna Marciszko-Wiąckowska, Marta Radecka, Agata Kołodziejczyk and Tadeusz Uhl
Materials 2024, 17(22), 5513; https://doi.org/10.3390/ma17225513 - 12 Nov 2024
Viewed by 1189
Abstract
This work evaluated bacterial cellulose (BC) as a possible biodegradable soft electronics substrate in comparison to polyethylene terephthalate (PET), while also focusing on evaluating hybrid MXene/BC material as potential flexible electronic sensor. Material characterization studies revealed that the BC material structure consists of [...] Read more.
This work evaluated bacterial cellulose (BC) as a possible biodegradable soft electronics substrate in comparison to polyethylene terephthalate (PET), while also focusing on evaluating hybrid MXene/BC material as potential flexible electronic sensor. Material characterization studies revealed that the BC material structure consists of nanofibers with diameters ranging from 70 to 140 nm, stacked layer-by-layer. BC samples produced are sensitive to post-treatment with isopropanol resulting in a change of structural and mechanical properties. The viscoelastic properties of the BC substrates have been studied experimentally in comparison with the PET film. Aged BC substrate showcased similar viscoelastic properties stability, while exhibiting better properties above 70 °C, with total storage modulus change of −15% and loss modulus change of 21%. MXenes prepared using the Minimally Intensive Layer Delamination (MILD) method were screen-printed onto BC substrates and PET films to form MXene/BC (MX/BC) and MXene/PET (MX/PET) devices. The electrical properties results showcased different resistive behavior on both BC and PET substrate samples with different impedance moduli. MX/PET presented lower sheet resistance of around 156 Ω·sq−1, while MX/BC was 2733 Ω·sq−1. Finally, the MX/BC and MX/PET devices were subjected to repeatable quasi-static load tests and the piezoresistive sensing behavior of the devices has been reported. Full article
Show Figures

Figure 1

37 pages, 2370 KiB  
Article
Improved Synchronous Characterization Theory for Surface and Interface Mechanical Properties of Thin-Film/Substrate Systems: A Theoretical Study on Shaft-Loaded Blister Test Technique
by Xiao-Ting He, Xiang Li, He-Hao Feng and Jun-Yi Sun
Materials 2024, 17(20), 5054; https://doi.org/10.3390/ma17205054 - 16 Oct 2024
Cited by 1 | Viewed by 1047
Abstract
In this paper, the previously proposed shaft-loaded blister test technique for the synchronous characterization of the surface and interface mechanical properties of a thin-film/substrate system is further studied theoretically. The large deflection problem of the steady shaft-loaded blistering thin film is reformulated by [...] Read more.
In this paper, the previously proposed shaft-loaded blister test technique for the synchronous characterization of the surface and interface mechanical properties of a thin-film/substrate system is further studied theoretically. The large deflection problem of the steady shaft-loaded blistering thin film is reformulated by surrendering the small-rotation-angle assumption of the membrane, which was previously adopted in the out-of-plane and in-plane equilibrium and radial geometric equations. A new and more accurate analytical solution to this large deflection problem is presented and is used to improve the previously presented synchronous characterization theory. The new analytical solution is numerically compared with the previous analytical solution to confirm the superiority of the new analytical solution over the previous analytical solution. An experiment is conducted to verify the beneficial effect of the improved synchronous characterization theory on improving the characterization accuracy. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Figure 1

13 pages, 4867 KiB  
Article
Finite Element Analysis of Damage Evolution of Solid Lubrication Film in Rolling–Sliding Contact
by Peng Lv, Changling Tian, Yujun Xue, Yongjian Yu, Haichao Cai and Yanjing Yin
Lubricants 2024, 12(7), 258; https://doi.org/10.3390/lubricants12070258 - 18 Jul 2024
Viewed by 1036
Abstract
Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the [...] Read more.
Based on the cohesive zone model (CZM), a finite element model of the film–substrate bearing system in the rolling–sliding contact state is established. Through analyzing the normal and tangential bearing states of the film–substrate system, the effects of the sliding–rolling ratio and the film–substrate adhesion strength on the interfacial stress and the interfacial energy release rate of the film–substrate system are studied. The results show that there is an almost symmetric stress distribution at both sides of the contact zone in rolling contact. In rolling–sliding contact, obvious shear flow along the rolling–sliding direction occurs at the front edge of the contact zone, which results in a significant increase in the shear stress at the interface at the front edge of the contact zone, increasing the risk of interface damage and delamination failure. Meanwhile, the shear flow causes a normal tensile stress concentration along the film surface behind the contact zone, which very easily causes the emergence and expansion of the film surface cracks. In addition, there is a clear positive correlation between the adhesion strength and the load-bearing capacity of the film–substrate interface. The tangential delamination damage mainly occurs at the interface regardless of the rolling or rolling–sliding contact state. Full article
Show Figures

Figure 1

11 pages, 4738 KiB  
Article
Assessing the Effect of Twisting and Twisting Fatigue on ZnO:Al Thin Film Performance on PEN and PET Substrates
by Dilveen W. Mohammed, Rayan M. Ameen, Rob Waddingham, Andrew J. Flewitt, James Bowen and Stephen N. Kukureka
Micromachines 2024, 15(7), 853; https://doi.org/10.3390/mi15070853 - 29 Jun 2024
Cited by 2 | Viewed by 1216
Abstract
This study examines the electromechanical characteristics of aluminium-doped zinc oxide (AZO) films. The films were produced using the RF magnetron sputtering process with a consistent thickness of 150 nm on various polymer substrates. The study focuses on assessing the electro-mechanical failure processes of [...] Read more.
This study examines the electromechanical characteristics of aluminium-doped zinc oxide (AZO) films. The films were produced using the RF magnetron sputtering process with a consistent thickness of 150 nm on various polymer substrates. The study focuses on assessing the electro-mechanical failure processes of coated segments using flexible substrates, namely polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), with a specific emphasis on typical cracking and delamination occurrences. This examination involves conducting twisting deformation together with using standardised electrical resistance measurements and optical microscope monitoring instruments. It was found that the crack initiation angle is mostly dependent on the mechanical mismatch between the coating and substrate. Higher critical twisting angle values are observed for the AZO/PEN film during twisting testing. Relative to the perpendicular plane of the untwisted sample, it was found that cracks initiated at a twist angle equal to 42° ± 2.1° and 38° ± 1.7° for AZO/PEN and AZO/PET, respectively, and propagated along the sample length. SEM images indicate that the twisting motion results in deformation in the thin film material, leading to the presence of both types of stress in the film structure. These discoveries emphasise the significance of studying the mechanical properties of thin films under different stress conditions, as it can impact their performance and reliability in real-world applications. The electromechanical stability of AZO was found to be similar on both substrates during fatigue testing. Studying the electromechanical properties of various material combinations is important for selecting polymer substrates and predicting the durability of flexible electronic devices made from polyester. Full article
Show Figures

Figure 1

28 pages, 6273 KiB  
Article
Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718
by Naiara P. V. Sebbe, Filipe Fernandes, Franciso J. G. Silva, André F. V. Pedroso, Rita C. M. Sales-Contini, Marta L. S. Barbosa, Luis M. Durão and Luis L. Magalhães
Coatings 2024, 14(3), 311; https://doi.org/10.3390/coatings14030311 - 3 Mar 2024
Cited by 10 | Viewed by 2034
Abstract
The use of coatings on cutting tools offers several advantages from the point of view of wear resistance. A recent technique with great coating deposition potential is PVD HiPIMS. TiAlN-based coatings have good resistance to oxidation due to the oxide layer that is [...] Read more.
The use of coatings on cutting tools offers several advantages from the point of view of wear resistance. A recent technique with great coating deposition potential is PVD HiPIMS. TiAlN-based coatings have good resistance to oxidation due to the oxide layer that is formed on their surface. However, by adding doping elements such as Vanadium, it is expected that the wear resistance will be improved, as well as its adhesion to the substrate surface. INCONEL® 718 is a nickel superalloy with superior mechanical properties, which makes it a difficult-to-machine material. Milling, due to its flexibility, is the most suitable technique for machining this alloy. Based on this, in this work, the influence of milling parameters, such as cutting speed (Vc), feed per tooth (fz), and cutting length (Lcut), on the surface integrity and wear resistance of TiAlVN-coated tools in the milling of INCONEL® 718 was evaluated. The cutting length has a great influence on the process, with the main wear mechanisms being material adhesion, abrasion, and coating delamination. Furthermore, it was noted that delamination occurred due to low adhesion of the film to the substrate, as well as low resistance to crack propagation. It was also observed that using a higher cutting speed resulted in increased wear. Moreover, in general, by increasing the milling parameters, machined surface roughness also increased. Full article
(This article belongs to the Special Issue Role of Coatings on Corrosion, Wear and Erosion Behavior)
Show Figures

Figure 1

14 pages, 2650 KiB  
Article
An Optimized Method for Evaluating the Potential Gd-Nanoparticle Dose Enhancement Produced by Electronic Brachytherapy
by Melani Fuentealba, Alejandro Ferreira, Apolo Salgado, Christopher Vergara, Sergio Díez and Mauricio Santibáñez
Nanomaterials 2024, 14(5), 430; https://doi.org/10.3390/nano14050430 - 27 Feb 2024
Cited by 1 | Viewed by 1443
Abstract
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each [...] Read more.
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each energy. The evaluation was performed using delaminated radiochromic films and a Poly(methyl methacrylate) (PMMA) phantom covered on one side by a thin 2.5 μm Mylar filter acting as an interface between the region with Gd suspension and the radiosensitive film substrate. The results for the 70 kVp beam quality showed dose increments of 6±6%, 22±7%, and 9±7% at different concentrations of 10, 20, and 30 mg/mL, respectively, verifying the competitive mechanisms of enhancement and attenuation. For the 50 kVp beam quality, no increase in dose was recorded for the concentrations studied, indicating that the major contribution to enhancement is from the K-edge interaction. In order to separate the contributions of attenuation and enhancement to the total dose, measurements were replicated with a 12 μm Mylar filter, obtaining a dose enhancement attributable to the K-edge of 29±7% and 34±7% at 20 and 30 mg/mL, respectively, evidencing a significant additional dose proportional to the Gd concentration. Full article
Show Figures

Figure 1

9 pages, 1775 KiB  
Proceeding Paper
Evaluating Stresses in SiO2 Thin Films Using Molecular Dynamics Simulations
by Sachin Shendokar, Nikhil Ingle, Ram Mohan and Shyam Aravamudhan
Eng. Proc. 2023, 56(1), 230; https://doi.org/10.3390/ASEC2023-16369 - 28 Nov 2023
Cited by 3 | Viewed by 1528
Abstract
Semiconductor electronics is transforming computing, communication, energy harvesting, automobiles, biotechnology, and other electronic device landscapes. This transformation has been brought about by the ability to sense, receive, manipulate, and transmit data from the diverse systems of vertical stacks of semiconductor layers and microdevices. [...] Read more.
Semiconductor electronics is transforming computing, communication, energy harvesting, automobiles, biotechnology, and other electronic device landscapes. This transformation has been brought about by the ability to sense, receive, manipulate, and transmit data from the diverse systems of vertical stacks of semiconductor layers and microdevices. Though the discrete design details of each semiconductor may be extremely complex, the fundamental processing steps of each semiconductor device align well with the photolithography procedure. When these semiconductor layers are stacked using photolithography, the signal noise between the device features and layers is restricted by passivation or dielectric insulation provided by SiO2 layers. Depending on the type of functionality and the data-sensing mechanism of the semiconductors used, SiO2 layers have an intended fitness for their purpose. The purpose of SiO2 layers can be summarized as the encapsulation of the semiconductor device, making part of the semiconductor layer inert, i.e., passivated, creating a hard mask to negate the impact of subsequent processes like ion implantation or diffusion, insulating a part of the layer as in an intermetallic dielectric or gate dielectric, and improving adhesion of the subsequent deposition. The functionality of the adhesion of SiO2 is by far a less-studied area. The adhesive characteristics of SiO2 for subsequent deposition and the thickness of SiO2 affect stress distribution. Stresses due to SiO2 thin films, which can range from a few nanometers to a few microns thick depending on the functionality, are modeled in this research. The stresses in SiO2 films may cause delamination or discontinuity, affecting the performance and reliability of the optical or semiconductor devices they are built into. The classical molecular dynamics (MD) simulation technique was employed to investigate the stress characteristics of deposited films by leveraging the outcomes of atomistic modeling. A cluster made of fused silica was employed as a substrate. For the simulation of the SiO2 deposition process, silicon atoms with high energies and low-energy oxygen atoms were injected. This model was carefully controlled to ensure the stoichiometric conditions. In this analysis, we used the open-source code LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) and the Ovito (Open Visualization) tool. The research in this paper focuses on SiO2 thin-film simulation to validate analytical and experimental stress. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

18 pages, 4182 KiB  
Article
Unraveling the Phase Transition Behavior of MgMn2O4 Electrodes for Their Use in Rechargeable Magnesium Batteries
by Carmen Miralles, Teresa Lana-Villarreal and Roberto Gómez
Materials 2023, 16(15), 5402; https://doi.org/10.3390/ma16155402 - 1 Aug 2023
Cited by 4 | Viewed by 2066
Abstract
Rechargeable magnesium batteries are an attractive alternative to lithium batteries because of their higher safety and lower cost, being spinel-type materials promising candidates for their positive electrode. Herein, MgMn2O4 with a tetragonal structure is synthesized via a simple, low-cost Pechini [...] Read more.
Rechargeable magnesium batteries are an attractive alternative to lithium batteries because of their higher safety and lower cost, being spinel-type materials promising candidates for their positive electrode. Herein, MgMn2O4 with a tetragonal structure is synthesized via a simple, low-cost Pechini methodology and tested in aqueous media. Electrochemical measurements combined with in-situ Raman spectroscopy and other ex-situ physicochemical characterization techniques show that, in aqueous media, the charge/discharge process occurs through the co-intercalation of Mg2+ and water molecules. A progressive structure evolution from a well-defined spinel to a birnessite-type arrangement occurs during the first cycles, provoking capacity activation. The concomitant towering morphological change induces poor cycling performance, probably due to partial delamination and loss of electrical contact between the active film and the substrate. Interestingly, both MgMn2O4 capacity retention and cyclability can be increased by doping with nickel. This work provides insights into the positive electrode processes in aqueous media, which is vital for understanding the charge storage mechanism and the correlated performance of spinel-type host materials. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries)
Show Figures

Figure 1

18 pages, 25099 KiB  
Article
Corrosion and Erosion Wear Behaviors of HVOF-Sprayed Fe-Based Amorphous Coatings on Dissolvable Mg-RE Alloy Substrates
by Jun Yang, Yijiao Sun, Minwen Su, Xueming Yin, Hongxiang Li and Jishan Zhang
Materials 2023, 16(14), 5170; https://doi.org/10.3390/ma16145170 - 22 Jul 2023
Cited by 3 | Viewed by 1385
Abstract
To suppress the corrosion and erosion wear of dissolvable magnesium alloy ball seats in wellbores, Fe-based amorphous coatings were deposited on dissolvable Mg-RE alloy substrates, and their microstructure, corrosion behavior, and erosion wear behavior were studied. The thickness of Fe-based amorphous coatings on [...] Read more.
To suppress the corrosion and erosion wear of dissolvable magnesium alloy ball seats in wellbores, Fe-based amorphous coatings were deposited on dissolvable Mg-RE alloy substrates, and their microstructure, corrosion behavior, and erosion wear behavior were studied. The thickness of Fe-based amorphous coatings on dissolvable Mg-RE alloy substrates can reach 1000 μm without any cracks, and their porosity and amorphous contents are 0.79% and 86.8%, respectively. Although chloride ions will damage the compactness and protective efficacy of passive films, Fe-based amorphous coatings still maintain low corrosion current density (3.31 μA/cm2) and high pitting potential (1 VSCE) in 20 wt% KCl solution. Due to their higher hardness, the erosion wear resistance of Fe-based amorphous coatings is about 4.16 times higher than that of dissolvable Mg-RE alloy substrates when the impact angle is 30°. Moreover, the erosion rates of Fe-based amorphous coatings exhibit a nonlinear relationship with the impact angle, and the erosion rate reaches the highest value when the impact angle is 60°. The erosion wear mechanisms of Fe-based AMCs vary with the impact angles, including cutting, delamination, splat fracture, and deformation wear. This work can provide effective guidance for the corrosion and wear protection of plugging tools made from dissolvable magnesium alloy. Full article
(This article belongs to the Special Issue Coatings on Light Alloys Substrate—2nd Volume)
Show Figures

Figure 1

18 pages, 34602 KiB  
Article
Synergistic Effect of WS2 and Micro-Textures to Inhibit Graphitization and Delamination of Micro-Nano Diamond-Coated Tools
by Zhao Zhang, Xudong Qin, Silu Ma, Yang Liu, Liping Wang and Xinyang Zhao
Crystals 2023, 13(7), 1034; https://doi.org/10.3390/cryst13071034 - 29 Jun 2023
Cited by 4 | Viewed by 1709
Abstract
Diamond-coated tools often fail due to coating graphitization and delamination caused by poor coating adhesion, large contact stress, and thermochemical reactions. To address these issues, this research utilized a combination of micro-nano double-layer diamond coating, WS2 coating, and micro-textures. The WS2 [...] Read more.
Diamond-coated tools often fail due to coating graphitization and delamination caused by poor coating adhesion, large contact stress, and thermochemical reactions. To address these issues, this research utilized a combination of micro-nano double-layer diamond coating, WS2 coating, and micro-textures. The WS2 coating inhibits the graphitization of the diamond coating through a transfer film mechanism, while the micro-textures and nanocrystalline diamond coating store WS2, resulting in a prolonged lubrication life. Additionally, the influence of micro-texture on coating-substrate residual stress and coating-substrate mechanical interlocking was discussed, and it was proved that proper micro-textures effectively improve the coating adhesion. Under the same cutting flux conditions, taking coating peeling as the judging standard, the cutting distance of textured WS2/Micro-Nano diamond coating tool is more than three times that of ordinary, diamond-coated tools, which greatly improves the service life of the tool. Full article
(This article belongs to the Special Issue Surface Modification Treatments of Metallic Materials)
Show Figures

Figure 1

Back to TopTop