Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = filled fissure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 194
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

27 pages, 9975 KiB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 256
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 5737 KiB  
Article
Geophysical Log Responses and Predictive Modeling of Coal Quality in the Shanxi Formation, Northern Jiangsu, China
by Xuejuan Song, Meng Wu, Nong Zhang, Yong Qin, Yang Yu, Yaqun Ren and Hao Ma
Appl. Sci. 2025, 15(13), 7338; https://doi.org/10.3390/app15137338 - 30 Jun 2025
Viewed by 294
Abstract
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal [...] Read more.
Traditional coal quality assessment methods rely exclusively on the laboratory testing of physical samples, which impedes detailed stratigraphic evaluation and limits the integration of intelligent precision mining technologies. To resolve this challenge, this study investigates geophysical logging as an innovative method for coal quality prediction. By integrating scanning electron microscopy (SEM), X-ray analysis, and optical microscopy with interdisciplinary methodologies spanning mathematics, mineralogy, and applied geophysics, this research analyzes the coal quality and mineral composition of the Shanxi Formation coal seams in northern Jiangsu, China. A predictive model linking geophysical logging responses to coal quality parameters was established to delineate relationships between subsurface geophysical data and material properties. The results demonstrate that the Shanxi Formation coals are gas coal (a medium-metamorphic bituminous subclass) characterized by low sulfur content, low ash yield, low fixed carbon, high volatile matter, and high calorific value. Mineralogical analysis identifies calcite, pyrite, and clay minerals as the dominant constituents. Pyrite occurs in diverse microscopic forms, including euhedral and semi-euhedral fine grains, fissure-filling aggregates, irregular blocky structures, framboidal clusters, and disseminated particles. Systematic relationships were observed between logging parameters and coal quality: moisture, ash content, and volatile matter exhibit an initial decrease, followed by an increase with rising apparent resistivity (LLD) and bulk density (DEN). Conversely, fixed carbon and calorific value display an inverse trend, peaking at intermediate LLD/DEN values before declining. Total sulfur increases with density up to a threshold before decreasing, while showing a concave upward relationship with resistivity. Negative correlations exist between moisture, fixed carbon, calorific value lateral resistivity (LLS), natural gamma (GR), short-spaced gamma-gamma (SSGG), and acoustic transit time (AC). In contrast, ash yield, volatile matter, and total sulfur correlate positively with these logging parameters. These trends are governed by coalification processes, lithotype composition, reservoir physical properties, and the types and mass fractions of minerals. Validation through independent two-sample t-tests confirms the feasibility of the neural network model for predicting coal quality parameters from geophysical logging data. The predictive model provides technical and theoretical support for advancing intelligent coal mining practices and optimizing efficiency in coal chemical industries, enabling real-time subsurface characterization to facilitate precision resource extraction. Full article
Show Figures

Figure 1

18 pages, 4676 KiB  
Article
Integrated Leakage Control Technology for Underground Structures in Karst Terrains: Multi-Stage Grouting and Zoned Remediation at Guangzhou Baiyun Metro Station
by Yanhong Wang, Wentian Xu, Shi Zheng, Jinsong Liu, Muyu Li and Yili Yuan
Buildings 2025, 15(13), 2239; https://doi.org/10.3390/buildings15132239 - 26 Jun 2025
Viewed by 367
Abstract
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively [...] Read more.
This study presents a comprehensive treatment system for addressing leakage challenges in underground structure construction within complex karst terrains, demonstrated through the case of Baiyun Station in Guangzhou. Integrating advanced geological investigation, dynamic grouting techniques, and adaptive structural remediation strategies, this methodology effectively mitigates water inflow risks in structurally heterogeneous karst environments. Key innovations include the “one-trench two-drilling” exploration-grouting system for karst cave detection and filling, a multi-stage emergency water-gushing control protocol combining cofferdam sealing and dual-fluid grouting, and a zoned epoxy resin injection scheme for structural fissure remediation. Implementation at Baiyun Station achieved quantifiable outcomes: karst cave filling rates increased from 35.98% to 82.6%, foundation pit horizontal displacements reduced by 67–68%, and structural seepage repair rates reached 96.4%. The treatment system reduced construction costs by CNY 12 million and shortened schedules by 45 days through optimized pile formation efficiency (98% qualification rate) and minimized rework. While demonstrating superior performance in sealing > 0.2 mm fissures, limitations persist in addressing sub-micron fractures and ensuring long-term epoxy resin durability. This research establishes a replicable framework for underground engineering in karst regions, emphasizing real-time monitoring, multi-technology synergy, and environmental sustainability. Full article
Show Figures

Figure 1

11 pages, 254 KiB  
Article
Regional Epidemiological Study on the Dental Status of the First Permanent Molar in Romanian Schoolchildren
by Liana Beresescu, Gabriela Felicia Beresescu, Daniela Esian, Alexandru Vlasa, Csilla Benedek, Raluca Sabau and Alexandra Mihaela Stoica
Dent. J. 2025, 13(1), 26; https://doi.org/10.3390/dj13010026 - 10 Jan 2025
Cited by 1 | Viewed by 1033
Abstract
Background/Objectives: Dental caries remains a significant public health challenge in Romania, with recent studies reporting a prevalence of 40% in children’s permanent teeth, with 90% of cases untreated. This study aimed to evaluate the dental status of the first permanent molars in children [...] Read more.
Background/Objectives: Dental caries remains a significant public health challenge in Romania, with recent studies reporting a prevalence of 40% in children’s permanent teeth, with 90% of cases untreated. This study aimed to evaluate the dental status of the first permanent molars in children aged 11–12 years. Methods: This cross-sectional study was conducted over 12 months at the Integrated Center for Dental Medicine in Târgu Mureș and two private clinics in Transylvania. A total of 516 children, aged 11–12 years, were examined using the ICDAS II classification. Data on carious lesions and dental treatments performed were collected. Results: Of the 2064 first permanent molars examined, 57.99% had carious lesions, fillings, or extractions, while 41.28% were free from caries. Among the affected molars, 41.71% had untreated caries, 9.30% were filled, and 6.25% were sealed. Boys showed a significantly higher prevalence of advanced lesions (ICDAS 4–6) compared to girls. Caries predominantly affected the pits and fissures (87.46%). Conclusions: This study reveals a high prevalence of carious lesions in first permanent molars and a low rate of treatment. The findings emphasize the need for improved oral health education, increased access to dental care, and the development of national strategies to prevent and treat dental caries in children. Full article
(This article belongs to the Special Issue Oral Health Care in Paediatric Dentistry Volume 2)
16 pages, 8144 KiB  
Article
Simulation of Dynamic Mechanical Properties of Sustainable Lightweight Aggregate Concrete with Mesoscopic Model
by Lin Chen, Fei Yang and Xin Li
Infrastructures 2024, 9(12), 230; https://doi.org/10.3390/infrastructures9120230 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1005
Abstract
In the current paper, the dynamic mechanical properties of sustainable lightweight aggregate concrete (SLAC) were numerically studied with a newly developed mesoscopic model. In the model, a fissure-based filling method was utilized for placing spherical aggregates, in which the aggregate geometric data were [...] Read more.
In the current paper, the dynamic mechanical properties of sustainable lightweight aggregate concrete (SLAC) were numerically studied with a newly developed mesoscopic model. In the model, a fissure-based filling method was utilized for placing spherical aggregates, in which the aggregate geometric data were collected from specimen cross-profiles. The interfacial transition zone (ITZ) was also created in the meso-scale finite element model. The model was then utilized to simulate the Split Hopkinson Pressure Bar (SHPB) test of SLAC. The results indicated that the waveforms, dynamic compression strength, and strain rate effects obtained from the simulation closely matched the experimental ones, which demonstrated the effectiveness of the established mesoscopic model. The parametric analysis showed that the aggregate content and ITZ thickness had an important effect on the dynamic mechanical behavior of SLAC. It is believed that the current study can provide a valuable reference for the numerical study of the failure mechanism of sustainable lightweight aggregate concrete. Full article
Show Figures

Figure 1

17 pages, 2732 KiB  
Article
Prediction and Analysis of Surface Residual Deformation Considering the Impact of Groundwater in Mines
by Nan Zhu, Guangli Guo, Huaizhan Li, Tiening Wang and Xin Wang
Sustainability 2024, 16(19), 8682; https://doi.org/10.3390/su16198682 - 8 Oct 2024
Viewed by 965
Abstract
With economic development and coal resource exploitation, the area of mined-out zones is expanding continuously. The traditional waste disposal methods no longer meet the current demands, making it urgent to evaluate and reuse the surface stability of these mined-out zones. Surface residual deformation [...] Read more.
With economic development and coal resource exploitation, the area of mined-out zones is expanding continuously. The traditional waste disposal methods no longer meet the current demands, making it urgent to evaluate and reuse the surface stability of these mined-out zones. Surface residual deformation is a process where voids and fissures within the mined-out zones are gradually filled and compacted, affecting the overlying rock structure. Additionally, groundwater significantly impacts the strength of the overlying rock, leading to increased subsidence. Therefore, predicting surface residual deformation while considering the effects of groundwater is crucial for forecasting surface deformation and assessing stability in mined-out zones. This study, taking into account the characteristics of subsidence zones and the impact of groundwater on the compaction of fractured rock masses, uses equivalent mining height and probability integral methods to develop a predictive model for surface residual deformation incorporating groundwater effects. Predictions for the study area show that groundwater exacerbates surface residual deformation, with various deformation values ranging from 33.8% to 51.9%. The surface stability categories are divided into stable and essentially stable regions based on the residual deformation’s impact on the working face. This model fully considers the influence of groundwater on residual deformation in mined-out zones, refining existing mining subsidence theories, addressing deformation issues caused by adverse groundwater factors, and providing a theoretical basis for predicting residual deformation and evaluating stability in mined-out zones, promoting the sustainable development of land and environmental resources in mining areas. Full article
Show Figures

Figure 1

20 pages, 6543 KiB  
Article
A Solidified Controllable Resin System Suitable for Fracture Cavity Formation Plugging and Its Performance Characterization
by Shuanggui Li, Biao Qi, Qitao Zhang and Jingbin Yang
Gels 2024, 10(9), 599; https://doi.org/10.3390/gels10090599 - 20 Sep 2024
Cited by 2 | Viewed by 1599
Abstract
Thermosetting resins have good temperature resistance and high strength and have been widely used as plugging agents in oil fields. However, the current resin materials have high costs, and unmodified thermosetting resins are brittle or have deteriorated properties such as flame retardancy after [...] Read more.
Thermosetting resins have good temperature resistance and high strength and have been widely used as plugging agents in oil fields. However, the current resin materials have high costs, and unmodified thermosetting resins are brittle or have deteriorated properties such as flame retardancy after curing to form a crosslinked network structure. In this study, the resin was modified via physical blending. The curing strength and temperature resistance were used as the main indicators. The resin matrix, curing agent, rheology modifier, and filling materials were modified and formulated optimally to form a high-strength resin gel plugging system. The resin gel system exhibited good fluidity and pumpability. When the shear rate was 200 s−1 at 25 °C, the initial viscosity was 300–400 mPa·s. The viscosity gradually decreased with increasing shear rate, and the apparent viscosity had good long-term stability at room temperature. A contamination test of different types of drilling fluids on the resin gel system showed that this system had good anti-contamination capability and could maintain a high curing strength even after being contaminated. At the same time, the system exhibited good plugging capability. A wedge-shaped fracture with an inlet size of 7 mm and an outlet size of 5 mm was plugged at 12.84 MPa for 10 min without leakage. A sand-filling pipe (with a diameter of 3.8 cm and pipe length of 30 cm) connected to the pipeline with a 6 mm outlet was subjected to a constant pressure of 11.29 MPa and plugged for 8 min before breaking through. Therefore, it exhibited good capability for plugging fissures and cavities. The resin gel leakage-plugging system has significant potential to realize effective plugging of the deep large-fracture leakage layer. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

18 pages, 8399 KiB  
Article
Study on the Diffusion Characteristics of Polymer Grouting Materials Applied for Crack Filling in Underground Mines Based on Numerical Simulation and Experimental Methods
by Xuanning Zhang and Ende Wang
Polymers 2024, 16(18), 2612; https://doi.org/10.3390/polym16182612 - 15 Sep 2024
Cited by 2 | Viewed by 1274
Abstract
Polymer grouting materials are increasingly used in the filling of mine fissures. Unlike conventional inorganic grouting materials, the self-expansion of polymers adds complexity to their diffusion process within the crack. The objective of this research was to examine how polymer grouting material spreads [...] Read more.
Polymer grouting materials are increasingly used in the filling of mine fissures. Unlike conventional inorganic grouting materials, the self-expansion of polymers adds complexity to their diffusion process within the crack. The objective of this research was to examine how polymer grouting material spreads in cracks at ambient temperatures and pressure. The investigation involved conducting grouting tests and performing numerical fluid simulation calculations using the finite-volume method in the computational fluid dynamics software, ANSYS FLUENT 2022 R1. The fluid volume approach was employed to determine the boundary between fluid and air and to ascertain the variation patterns of density in the slurry and the fracture system. This study applied the principles of fluid mechanics to investigate the patterns of variation in the physical characteristics of polymer grouting materials, including their density, pressure, flow velocity, and movement distance, during the diffusion process. The results indicated that the density of the polymer grouting material decreased exponentially over time throughout the diffusion process. With the increase in the grouting’s volume, the grout’s pressure and the permeable distance of the grout increased. The slurry’s pressure near the grouting hole exceeded the other points’ pressure. The physical parameters of the slurry were numerically simulated by ANSYS FLUENT 2022 R1 software, and the results were compared with the experimental data. After comparing the numerical simulation results with the test data, it was clear that the numerical simulation method was superior in accurately predicting the distribution pattern of each parameter of the polymer slurry during diffusion. The grouting volume, pressure distribution, and real-time change in the position of the flow of slurry could be efficiently determined through numerical calculation and simulated grouting tests. This work can offer valuable information for designing polymer grouting materials used in underground mine fissures. Full article
Show Figures

Figure 1

18 pages, 6375 KiB  
Article
Study on Ratio Optimization and Diffusion-Gelation Process of Polymer Grouting Materials for Fracture Filling in Underground Mines
by Xuanning Zhang and Ende Wang
Materials 2024, 17(13), 3064; https://doi.org/10.3390/ma17133064 - 21 Jun 2024
Cited by 3 | Viewed by 1186
Abstract
The existence of fissures poses a serious threat to the safe production of underground mines, and this paper investigates a polymer grouting material for filling fissures in underground mines. To optimise the ratio of polymer grouting materials, this paper designed 16 test groups [...] Read more.
The existence of fissures poses a serious threat to the safe production of underground mines, and this paper investigates a polymer grouting material for filling fissures in underground mines. To optimise the ratio of polymer grouting materials, this paper designed 16 test groups using the orthogonal test method to find the most reasonable slurry ratio. In order to study the gel diffusion process of polymer slurry in the fissure and to explore the changes of various parameters of the slurry after injection, simulated grouting tests were carried out, and the distribution laws of viscosity, pressure, and diffusion distance of the slurry were discussed. The findings indicate that when the proportion of ethylenediamine polypropylene oxide tetrol: glycerol polyether: catalyst: foam stabiliser is 10:8:0.5:0.4, the polymer grouting material has excellent compressive strength, and the maximum compressive strength can reach 12.31 MPa. Prior to reaching the gel time point, the viscosity of the polymer slurry was nearly constant, which is basically maintained at 0.772 Pa·s under normal temperature and pressure, but after reaching the gel time point, it abruptly rose. As the slurry mass increased, so did the penetration distance and pressure; in the simulated grouting test, when the slurry mass was 400 g, the maximum diffusion distance of the slurry reached 39 cm. Conversely, as the fracture pore size increased, the diffusion distance and pressure of the slurry decreased. Along the diffusion path, the slurry pressure progressively drops, but this change is not synchronised with the diffusion distance’s change. This work can serve as a reference for the configuration of polymer slurry and aid in comprehending the diffusion law of the slurry within the fissure. Full article
Show Figures

Figure 1

12 pages, 1157 KiB  
Article
Survival Analysis of Glass Ionomer Cement and Resin-Based Sealant Retention: A 10-Year Follow-Up Study
by Sandra Petrauskienė, Kristina Saldūnaitė-Mikučionienė and Julija Narbutaitė
Medicina 2024, 60(5), 756; https://doi.org/10.3390/medicina60050756 - 1 May 2024
Cited by 1 | Viewed by 3160
Abstract
Background and Objective: Sealant application is a proven method to prevent occlusal caries; however, long-term studies on this topic are scarce. This study aimed to assess the survival rate and clinical effectiveness of glass ionomer cement (GIC) and resin-based sealants (RBSs) on [...] Read more.
Background and Objective: Sealant application is a proven method to prevent occlusal caries; however, long-term studies on this topic are scarce. This study aimed to assess the survival rate and clinical effectiveness of glass ionomer cement (GIC) and resin-based sealants (RBSs) on second permanent molars over a long-term follow-up period. Materials and methods: Sixteen patients aged 11–13 years with all four completely erupted permanent second molars were enrolled in the study. All patients attended 1-year and 3-year follow-ups; however, one participant did not respond after 10 years and was excluded from the final analyses. The oral health status evaluation was based on WHO criteria. A total of 32 teeth received an RBS (Clinpro), and a further 32 teeth were sealed with GIC (Fuji IX). The sealant retention was determined according to the Kilpatrick criteria after 1 year, 3 years, and 10 years, respectively. Statistical analysis included a chi-square test, the Kaplan–Meier method, and the Cox proportional hazard model. Results: At baseline, seven boys and eight girls participated in the study, with a mean age of 12.3 ± 0.9 years. The 1-year follow-up results revealed that 90% of the RBSs and 43.3% of the GIC sealants were completely retained, and no caries lesions were recorded (p = 0.01). The 3-year follow-up results showed that 23.3% of the RBSs and 0% of the GIC sealants demonstrated complete retention (p = 0.034). Moreover, 10.0% of the occlusal surfaces in the RBS group and 13.3% of the occlusal surfaces in the GIC group were filled (p > 0.05). A total of 6.7% of the RBSs showed complete retention. One-third of the sealed teeth (30.0% of the teeth sealed with RBSs and 36.7% of teeth applied with GIC) were filled after 10 years. The Kaplan–Meier analysis demonstrated a higher survival rate in the RBS group when compared with the GIC over the entire follow-up period (p = 0.001). Conclusions: Although the survival rate of RBSs was higher than GIC sealants, their effectiveness in preventing fissure caries in permanent second molars did not differ significantly over a 10-year follow-up. Full article
(This article belongs to the Special Issue Updates on Caries Management in the Primary and Permanent Dentition)
Show Figures

Figure 1

15 pages, 5683 KiB  
Article
Variability in Mechanical Properties and Cracking Behavior of Frozen Sandstone Containing En Echelon Flaws under Compression
by Weimin Liu, Li Han, Di Wu, Hailiang Jia and Liyun Tang
Appl. Sci. 2024, 14(8), 3427; https://doi.org/10.3390/app14083427 - 18 Apr 2024
Cited by 2 | Viewed by 999
Abstract
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with [...] Read more.
The mechanical properties of frozen fissured rock masses are crucial considerations for engineering in frozen earth. However, there has been little research on the mechanical properties of frozen fissured sandstone, including its strength, deformation, and geometric parameters. In this study, sandstone samples with three open en echelon fissures were observed using high-speed photography and acoustic emissions during uniaxial compression tests. The aim was to investigate sandstone’s strength, deformability, and failure process in order to elucidate the effects of freezing on its mechanical properties. In the frozen-saturated and dried states, the uniaxial compression strength (UCS) initially decreases and then increases with an increase in fissure inclination angle. Conversely, the UCS of samples in the saturated state continuously increases. The UCS follows a decreasing trend, as follows: frozen-saturated state > dried state > saturated state. The initial crack angle decreases as the fissure inclination increases in all states, irrespective of temperature and moisture conditions. However, the initial crack stress and time show an increasing trend. The uniaxial compression strength (UCS) of frozen fissured sandstone is influenced by four mechanisms: (1) ice provides support to the rock under compression, (2) ice fills microcracks, (3) unfrozen water films act as a cementing agent under tension or shearing loads, and (4) frost damage leads to softening of the rock. Full article
Show Figures

Figure 1

18 pages, 14029 KiB  
Article
Distribution and Genesis of the Deep Buried, Fractured and Vuggy Dolostone Reservoir in the Lower Ordovician Succession, North Tarim Basin, Northwestern China
by Lijun Gao, Jie Li, Guorong Li, Liyun Fu and Yongli Liu
Minerals 2024, 14(1), 58; https://doi.org/10.3390/min14010058 - 2 Jan 2024
Viewed by 1894
Abstract
Recently, a series of prolific fracture-vug reservoirs have been discovered in the lower Ordovician dolostone successions of the northern Tarim Basin. However, the genesis of these reservoirs remains unclear. In this study, observations on drilling cores and thin sections identify the pore space [...] Read more.
Recently, a series of prolific fracture-vug reservoirs have been discovered in the lower Ordovician dolostone successions of the northern Tarim Basin. However, the genesis of these reservoirs remains unclear. In this study, observations on drilling cores and thin sections identify the pore space characterized by dissolved fractures, fissures, and vugs. Petrology, cathodoluminescence, and homogenization temperatures of fluid inclusions aid in establishing the diagenetic paragenetic sequence. Dissolving enlargement occurred after chemical compaction of overlying limestone and before the Permian volcanic activity. Breccia pores containing unique fillings of terrestrial materials (quartz sand and allogenic kaolinite) and calcite cements with negative δ18OPDB values (−18.4‰) along with 87Sr/86Sr ratios (up to 0.71026) indicate that the dissolving fluid originated from meteoric freshwater at the surface. The δ18OSMOW values of the calcite precipitating fluid (−2.1‰ to −8.7‰) further suggest freshwater as the source of the dissolving fluid, buffered by the Ordovician wall rocks or formation water. As the distance from the unconformity surface increases, both the homogenization temperature and δ18OPDB values of the breccia pore-filling calcite in the southern study area gradually elevate and deplete, respectively, indicating a rise in temperature during the infiltration of meteoric freshwater with increasing subsurface temperatures. The abnormal reflection bodies identified as reservoirs in seismic profiles along deep-seated strike-slip faults delineate these faults as the channel for the infiltration of meteoric freshwater. The penetrating strata of these faults and the high 87Sr/86Sr values of breccia pore-filling calcite suggest that karstification occurred during the Devonian period. Accordingly, we establish a deep karst model in which the Devonian meteoric freshwater penetrated along the strike-slip faults and dissolved the Ordovician dolostones, resulting in the development of deep buried karstic fault reservoirs in the southern region of the northern Tarim Basin. Full article
Show Figures

Figure 1

23 pages, 9714 KiB  
Article
Characterization of Red, Pink, Orange, and Purple Gem-Quality Spinel from Four Important Areas
by Qian Xu, Bo Xu, Yujie Gao and Siying Li
Crystals 2024, 14(1), 50; https://doi.org/10.3390/cryst14010050 - 29 Dec 2023
Cited by 6 | Viewed by 3022
Abstract
Spinel is a precious stone with a long history. In ancient societies spinel was considered to be an imitation of ruby. With the depletion of ruby mineral resources, gem—grade spinel has attracted more and more attention from consumers. In the last decade, as [...] Read more.
Spinel is a precious stone with a long history. In ancient societies spinel was considered to be an imitation of ruby. With the depletion of ruby mineral resources, gem—grade spinel has attracted more and more attention from consumers. In the last decade, as the popularity of spinel in the global colored gem market continues to rise, plenty of domestic and foreign jewelry brands have launched spinel based jewelry. This study takes spinels from Burma, Vietnam, Sri Lanka, and Tanzania as its research objects and performs a series of tests to obtain their gemological characteristics, spectral characteristics, and chemical composition, with the aim of comparing the differences between spinels with different colors from different areas and exploring the chromogenic mechanism of spinels. Only Burmese red spinels have a typical Cr spectrum. The types of inclusions and the contents of trace elements are the main differences between spinels from the four areas. Burmese spinel is characterized by an octahedral negative crystal filled with dolomite or a mixture of dolomite and calcite. Magnesite is present in Sri Lankan spinels, and dolomite is present in Tanzanian spinel. Dislocation systems and the presence of titanite and talc inclusions are strongly indicative features of Vietnamese spinel. Sri Lankan spinel is characterized by abundant gas–liquid inclusions, such as the beaded healing fissure. The trace element contents of the four areas are different. Burmese spinel is poor in Fe and Zn (Fe: 135.68–3925 ppm; Zn: 338.58–1312 ppm), while Burmese red spinel is rich in Cr (up to 7387 ppm). Vietnamese spinel is rich in Fe (3669.63–19,425 ppm) and poor in Ti content (<89 ppm), while Tanzanian spinel is rich in Zn (5129.96–7008 ppm). High content of Cr + V can lead to the red color in spinel, and the contents of Cr and V change obviously with color. Spinels appear red when Cr content is higher than V, while spinels appear orange when V content is higher than Cr. The red, pink, and orange spinels are colored by Cr3+ and V3+, showing a wide absorption band centered at 400 nm and 550 nm. Fe plays a dominant role in purple spinels. The purple spinel is colored by Fe3+ and Fe2+. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

43 pages, 19705 KiB  
Article
Timing of Opalization at Lightning Ridge, Australia: New Evidence from Opalized Fossils
by George E. Mustoe and Elizabeth T. Smith
Minerals 2023, 13(12), 1471; https://doi.org/10.3390/min13121471 - 23 Nov 2023
Cited by 3 | Viewed by 6716
Abstract
Microscopic analysis of fossils from the Lightning Ridge district of northwestern New South Wales, Australia, shows that opal has been typically deposited in variable cavities left by the degradation of the original organic material. Fine-grained, clay-rich sediments have preserved the external morphology, and [...] Read more.
Microscopic analysis of fossils from the Lightning Ridge district of northwestern New South Wales, Australia, shows that opal has been typically deposited in variable cavities left by the degradation of the original organic material. Fine-grained, clay-rich sediments have preserved the external morphology, and opalization has produced detailed casts with different modes of preservation of internal details. Plant remains include cones, cone scales, fruiting bodies, and seeds, but the most common specimens are twigs, stems, and wood fragments. These specimens commonly contain angular inclusions that represent small tissue fragments produced by the degradation of the original wood. Inclusions commonly have a “hollow box” structure where the organic material has decomposed after the initial opal filling of the mold. These spaces commonly contain traces of the cellular architecture, in the form of wood fiber textures imprinted on the cavity wall, degraded cellular material, and silicified tracheids. Opal casts of mollusk shells and crustacean bioliths preserve the shape but no calcium carbonate residue. Likewise, opal casts of vertebrate remains (bones, teeth, osteoderms) lack preservation of the original bioapatite. These compositions are evidence that burial in fine clays and silts, isolated from the effects of water and oxygen, caused protracted delays between the timing of burial, decomposition, and the development of vacuities in the claystones that became sites for opal precipitation. The length of time required for the dissolution of cellulosic/ligninitic plant remains, calcium carbonate items, and calcium phosphates in bones and teeth cannot be quantified, but evidence from opal-bearing formations worldwide reveals that these processes can be very slow. The timing of opalization can be inferred from previous studies that concluded that Cenozoic tectonism produced faults and fissures that allowed horizontal and lateral movement of silica-bearing groundwater. Comparisons of Australian opal-AG with opal from international localities suggest that opalization was a Neogene phenomenon. The transformation of Opal-AG → Opal-CT is well-documented for the diagenesis of siliceous biogenic sediments and siliceous sinter from geothermal areas. Likewise, precious and common opal from the late Miocene Virgin Valley Formation in northern Nevada, USA, shows the rapidity of the Opal-AG → Opal-CT transformation. Taken together, we consider this evidence to indicate a Neogene age for Lightning Ridge opalization and by inference for the opalization of the extensive opal deposits of the Great Artesian Basin in Australia. New paleontology discoveries include a surprising level of cellular detail in plant fossils, the preservation of individual tracheids as opal casts, evidence of opalized plant pith or vascular tissue (non-gymnosperm), and the first report of Early Cretaceous coprolites from New South Wales, Australia. Full article
Show Figures

Graphical abstract

Back to TopTop