Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (196)

Search Parameters:
Keywords = fiber-reinforced sand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3081 KiB  
Article
Numerical Evaluation of Modified Mortar Coatings for Thermal Protection of Reinforced Concrete and Steel Structures Under Standardized Fire Exposure
by Fabrício Longhi Bolina, Arthur S. Henn, Débora Bretas Silva and Eduardo Cesar Pachla
Coatings 2025, 15(7), 806; https://doi.org/10.3390/coatings15070806 - 9 Jul 2025
Viewed by 282
Abstract
This study investigates the thermal performance of 23 different mortar types, each containing different mixes, properties, and additives. A comprehensive literature review was conducted to collect experimental data on the thermal properties of these mortars, which were then used in a numerical analysis [...] Read more.
This study investigates the thermal performance of 23 different mortar types, each containing different mixes, properties, and additives. A comprehensive literature review was conducted to collect experimental data on the thermal properties of these mortars, which were then used in a numerical analysis through thermal finite element modeling. The results showed that all mortar types contributed to reducing the internal temperature of structural steel and reinforced concrete elements, with performance primarily influenced by key factors such as the mortar’s thermal conductivity, specific heat capacity, thermal diffusivity, and coating thickness. In particular, the mortar with glass fiber reinforced polymer (GFRP) as a slag substitute and the mortar with expanded perlite replacing sand showed the highest thermal protection and achieved a temperature reduction on the order of 100%. In contrast, mortars containing 30% vermiculite or 15% light expanded polyvinyl chloride (PVC) as a sand substitute showed the lowest thermal performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

15 pages, 3040 KiB  
Article
Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete
by Weihao Zhang, Xiaoyan Zhou, Menglu Liu, Peng Yuan, Zhao Liu, Chen Shen, Mingwang Hao, Fengchen Zhang and Hongqiang Chu
Materials 2025, 18(14), 3209; https://doi.org/10.3390/ma18143209 - 8 Jul 2025
Viewed by 312
Abstract
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting [...] Read more.
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting concrete was modified using basalt fibers to enhance its mechanical and permeability-related properties. A series of laboratory tests was conducted to evaluate compressive strength, porosity, and sand permeability. The results indicated that the incorporation of basalt fibers effectively improved the compressive strength of the phosphogypsum planting concrete, with longer fibers (18 mm) contributing to a more pronounced enhancement than shorter fibers (6 mm). Moreover, an increase in fiber content led to a gradual decrease in porosity. The addition of basalt fibers also reduced both sand permeability and the water permeability coefficient. Meanwhile, specimens containing 6 mm fibers exhibited a greater reduction in permeability than those with 18 mm fibers. Furthermore, higher fiber content was found to significantly enhance the water retention capacity of the concrete. These findings provide a theoretical basis for the design and optimization of fiber-reinforced planting concrete for ecological engineering applications. Full article
Show Figures

Figure 1

22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 535
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

25 pages, 5830 KiB  
Article
Effect of Dispersed Polypropylene Fibers on the Strength and Stiffness of Cement-Stabilized Clayey Sand
by Maciej Miturski, Justyna Dzięcioł and Olga Szlachetka
Sustainability 2025, 17(13), 5803; https://doi.org/10.3390/su17135803 - 24 Jun 2025
Viewed by 448
Abstract
Soil stabilization with hydraulic binders like cement is widely used in road construction but significantly contributes to CO2 emissions. This study investigates a more sustainable alternative involving the use of dispersed polypropylene fiber reinforcement to improve the mechanical properties of stabilized soils [...] Read more.
Soil stabilization with hydraulic binders like cement is widely used in road construction but significantly contributes to CO2 emissions. This study investigates a more sustainable alternative involving the use of dispersed polypropylene fiber reinforcement to improve the mechanical properties of stabilized soils while reducing cement consumption. Nine clay sand mixtures with varying cement (2–6%) and fiber (0–0.5%) contents were tested using unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) methods. Fiber addition improved UCS by 5.59% in a mix with 2% cement and 0.25% fibers and by 25.45% in one with 4% cement and 0.25% fibers. This shows that fibers can improve strength at different cement levels. A novel reinforcement index (Ri) was introduced to predict UCS empirically. The model showed that using 0.5% fibers (Ri=1.0%) enabled a 25.12% reduction in cement without compromising strength. However, this improvement came at the cost of stiffness: deformation modulus E50 decreased by up to 67.51% at 0.5% fiber content. Statistical validation using MAE, RMSE, and MAPE confirmed the model’s accuracy. Although the results were based on a single soil type, they showed that polypropylene fibers can support decarbonization efforts by reducing cement demand and represent a technically feasible approach to more sustainable geotechnical engineering applications. Full article
(This article belongs to the Special Issue Sustainability of Pavement Engineering and Road Materials)
Show Figures

Figure 1

14 pages, 1267 KiB  
Article
Workability and Mechanical Properties of PVA Fiber-Reinforced Concrete with Hybrid Dune Sand and Steel Slag Aggregates
by Yanhua Liu, Xirui Wang, Senyan Jiang, Qingxin Ren and Tong Li
Materials 2025, 18(13), 2956; https://doi.org/10.3390/ma18132956 - 22 Jun 2025
Cited by 1 | Viewed by 311
Abstract
To mitigate ecological damage from excessive natural aggregate extraction, this study developed an eco-friendly concrete using dune sand and steel slag as natural aggregates, enhanced with polyvinyl alcohol (PVA) fibers. Through orthogonal testing, the effects of the dune sand replacement ratio, steel slag [...] Read more.
To mitigate ecological damage from excessive natural aggregate extraction, this study developed an eco-friendly concrete using dune sand and steel slag as natural aggregates, enhanced with polyvinyl alcohol (PVA) fibers. Through orthogonal testing, the effects of the dune sand replacement ratio, steel slag replacement ratio, PVA fiber length, and PVA fiber content on concrete workability and mechanical properties were analyzed. The results show that slump exceeded 120 mm (meeting engineering requirements) in mixes except that with 40% dune sand, 60% steel slag, 18 mm PVA fiber length, and 0.4% PVA fiber content; 50% steel slag replacement significantly improved mechanical properties, yielding a 21.2% increase in 28 d compressive strength when replacement increased from 30% to 50%; 20% dune sand replacement for river sand is optimal; and while increased PVA content enhanced splitting tensile and flexural strengths, both its length and content should not exceed 9 mm and 0.3%, respectively. The concrete delivers acceptable performance while providing dual environmental benefits: reduced aggregate consumption pressure and achieved high-value-added dune sand–steel slag utilization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

22 pages, 1950 KiB  
Article
Mechanical Properties and Structural Design of PVA Fiber-Reinforced Cementitious Composites with Fly Ash Replacement for Natural Sand Aggregates
by Camelia Maria Negrutiu, Pavel Ioan Sosa, Cristina Mihaela Campian and Maria Ileana Pop
Fibers 2025, 13(6), 72; https://doi.org/10.3390/fib13060072 - 3 Jun 2025
Viewed by 1239
Abstract
This paper investigates nine PVA fiber-reinforced cementitious composites with varying fiber content (1–2.5%) and types (oil-coated and non-coated). The experimental compositions utilize locally available cement, high volumes of fly ash, silica fume, PVA fibers, and a superplasticizer, entirely omitting natural aggregates. Key parameters [...] Read more.
This paper investigates nine PVA fiber-reinforced cementitious composites with varying fiber content (1–2.5%) and types (oil-coated and non-coated). The experimental compositions utilize locally available cement, high volumes of fly ash, silica fume, PVA fibers, and a superplasticizer, entirely omitting natural aggregates. Key parameters evaluated include bulk density, compressive strength, secant modulus of elasticity, flexural tensile strength, fracture energy, and structural design applicability. The results show that FRCs without natural aggregates achieves significantly lower densities (1500–1720 kg/m3). Compressive strength is influenced by matrix density, with the highest value recorded at 30.98 MPa. The high fly ash content reduces the secant modulus of elasticity, while flexural tensile strength follows a similar pattern to compressive strength. Oil-coated fibers generally lower fracture energy, except for the 1.5% PVA content, where the 2.5% composition performs best. All specimens exhibit tension softening rather than the strain-hardening behavior of ECCs. Structural design equations were developed, though experimental validation is necessary. The 2.5% PVA composition increases the compression zone height by 7% while requiring 2% more reinforcement. As a sustainable alternative to conventional concrete, the composites offer promising mechanical properties and structural viability for construction applications. Full article
Show Figures

Graphical abstract

19 pages, 9292 KiB  
Article
Research on the Anti-Erosion Capacity of Aeolian Sand Solidified with Enzyme Mineralization and Fiber Reinforcement Under Ultraviolet Erosion and Freeze–Thaw Erosion
by Jia Liu, Qinchen Zhu, Gang Li, Jing Qu and Jinli Zhang
Sustainability 2025, 17(11), 5053; https://doi.org/10.3390/su17115053 - 30 May 2025
Viewed by 535
Abstract
Aeolian sand is susceptible to wind and water erosion, which seriously restricts the ecological restoration and sustainable development in desert areas. Traditional solidification methods have characteristics of high cost, easy pollution, and unstable solidification. Enzyme-induced calcium carbonate precipitation (EICP) is an emerging method [...] Read more.
Aeolian sand is susceptible to wind and water erosion, which seriously restricts the ecological restoration and sustainable development in desert areas. Traditional solidification methods have characteristics of high cost, easy pollution, and unstable solidification. Enzyme-induced calcium carbonate precipitation (EICP) is an emerging method that has advantages in terms of cost-effectiveness, environmental friendliness, and durability, and, especially when coupled with fiber reinforcement (FR), it can significantly prevent brittle fracture. In this paper, ultraviolet (UV) erosion and freeze–thaw (FT) erosion tests were conducted to investigate the anti-erosion capacity of aeolian sand solidified by EICP and basalt fiber reinforcement (BFR) or wool fiber reinforcement (WFR). According to the analysis of the variation laws of sample appearance, quality losses, and unconfined compressive strength (UCS) during the UV and FT erosion process, the erosion mechanism was revealed, and the UCS models considering the damage effects were established. The research results indicated that the UCS of aeolian sand solidified by MICP and FR was significantly improved under UV and FT erosion. The strength loss rates of aeolian sand solidified by EICP, EICP–BFR, and EICP–WFR reached 45.4%, 46.6%, and 51.6%, respectively, under 90 h UV erosion. When the FT cycles reached 8, the strength loss rate of aeolian sand solidified by EICP, EICP–BFR, and EICP–WFR attained 41.0%, 49.2%, and 55.8%, respectively. The determination coefficients of the UCS models were all greater than 0.876, indicating that the experimental results were in good agreement with the predicted results, verifying the reliability of the established models. The research results can offer reference values for windproof and sand fixation in desert areas. Full article
Show Figures

Figure 1

26 pages, 28824 KiB  
Review
Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete
by Bo Nan, Jiantong Xin and Wei Yu
Materials 2025, 18(11), 2531; https://doi.org/10.3390/ma18112531 - 27 May 2025
Viewed by 405
Abstract
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure [...] Read more.
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure of fiber-reinforced desert sand concrete (FRDSC). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) assessed hydration byproducts and elucidated the material’s toughening mechanisms. The optimal compressive strength occurs at 40% DSRR; further increases in the replacement ratio lead to a decline in performance. At this optimal DSRR, the addition of 0.5% steel fibers by volume results in a 27.6% increase in the compressive strength of the specimens. Moreover, the splitting tensile strength of specimens reinforced with a hybrid combination of basalt fibers and polypropylene fibers increased by 9.7% compared to those reinforced with basalt fibers alone. Microstructural observations reveal that fiber bridging promotes denser calcium silicate hydrate (C-S-H) gel development. These findings underscore the promising viability of FRDSC as a sustainable construction material, particularly for infrastructure projects in desert regions, offering both environmental and economic advantages. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 12021 KiB  
Article
Seismic Performance of Beam–Column Joints in Seawater Sand Concrete Reinforced with Steel-FRP Composite Bars
by Ruiqing Liang, Botao Zhang, Zhensheng Liang, Xiemi Li and Shuhua Xiao
Materials 2025, 18(10), 2282; https://doi.org/10.3390/ma18102282 - 14 May 2025
Viewed by 401
Abstract
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of [...] Read more.
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of SFCB-reinforced seawater sea–sand concrete beam–column joints remains underexplored. This study presents pseudo-static tests on SFCB-reinforced beam–column joints with varying column SFCB longitudinal reinforcement fiber volume ratios (64%, 75%, and 84%), beam reinforcement fiber volume ratios (60.9%, 75%, and 86%), and axial compression ratios (0.1 and 0.2). The results indicate that increasing the axial compression ratio enhances nodal shear capacity and bond strength, limits slip, and reduces crack propagation, but also accelerates bearing capacity degradation. Higher column reinforcement fiber volumes improve crack distribution and ductility, while beam reinforcement volume significantly affects energy dissipation and crack distribution, with moderate volumes (e.g., 75%) yielding optimal seismic performance. These findings provide insights for the seismic design of SFCB-composite-reinforced concrete structures in marine environments. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

18 pages, 10070 KiB  
Article
Experimental Study on Uniaxial Compression Stress-Strain Relationship of Hybrid Fiber-Reinforced Coral Sand Ultra-High Performance Concrete
by Xiao Xue, Wei Li, Dongxu Hou, Hongwei Han and Yudong Han
Materials 2025, 18(10), 2233; https://doi.org/10.3390/ma18102233 - 12 May 2025
Viewed by 477
Abstract
The utilization of coral aggregates in the preparation of Ultra-High Performance Concrete (UHPC) effectively addresses the material scarcity challenges in island and reef construction environments, thereby advancing the sustainable development of building materials technology. This research systematically investigates the physical and mechanical properties [...] Read more.
The utilization of coral aggregates in the preparation of Ultra-High Performance Concrete (UHPC) effectively addresses the material scarcity challenges in island and reef construction environments, thereby advancing the sustainable development of building materials technology. This research systematically investigates the physical and mechanical properties of Coral Sand UHPC (CSUHPC) with varying fiber contents through uniaxial compression tests, splitting tensile tests, and stress–strain curve tests under compression. The experimental results demonstrate that the incorporation of fibers significantly enhances both the mechanical strength and ductility of CSUHPC. The test data indicate that CSUHPC specimens with a steel fiber volume fraction of 3% exhibit the highest performance, attaining a compressive strength of 131.9 MPa and a splitting tensile strength of 18.5 MPa. The compressive stress–strain curve tests reveal that the incorporation of fibers induces a failure mode transition in CSUHPC specimens from brittle to ductile. Furthermore, a constitutive equation for CSUHPC was proposed, and a multi-dimensional assessment system based on the radar chart, which encompasses compressive strength, splitting tensile strength, peak strain, compressive toughness, and an energy dissipation coefficient. The optimal fiber combination was determined as a hybrid fiber system comprising 2% steel fibers and 1% polyethylene (PE) fibers, which demonstrates superior comprehensive performance. Full article
(This article belongs to the Special Issue Advances in Ultra-High-Performance Fiber-Reinforced Concrete)
Show Figures

Figure 1

18 pages, 8668 KiB  
Article
The Preparation and Properties of Ultra-High-Performance Concrete with Aeolian Sand: A Lab Study on the Effect of the Curing Method
by Yang Lv, Boyu Zhao, Jie Zhu, Chenhao He, Yunlu Ge, Yuanshuai Wu, Yanchao Zhu, Jianming Dan, Yang Zhou and Xiangguo Li
Materials 2025, 18(9), 2031; https://doi.org/10.3390/ma18092031 - 29 Apr 2025
Viewed by 372
Abstract
The utilization of aeolian sand (AS) as a substitute for river sand (RS) in ultra-high-performance concrete (UHPC) offers a sustainable solution to address natural sand resource shortages while enhancing AS utilization. This study systematically evaluates the influence of AS content (0–100% RS replacement [...] Read more.
The utilization of aeolian sand (AS) as a substitute for river sand (RS) in ultra-high-performance concrete (UHPC) offers a sustainable solution to address natural sand resource shortages while enhancing AS utilization. This study systematically evaluates the influence of AS content (0–100% RS replacement by mass) on the workability, mechanical properties, and microstructure of UHPC under different curing regimes. All mixtures incorporate 0.65% by volume of straight steel fibers to ensure adequate fiber reinforcement. The results reveal that the spherical morphology, smooth surface nature, and fine particle size of AS enhance the matrix fluidity and reduce the early autogenous shrinkage of UHPC. By employing steam curing at 90 °C for 2 d followed by standard curing for 7 d (M3), UHPC samples with a 60% and 80% AS substitution achieve a compressive strength of 132.4 MPa and 130.8 MPa, respectively; a flexural strength exceeding 18 MPa; a porosity below 10%; and a gel pore content exceeding 60%. The steel fiber reinforcement contributes significantly to the flexural performance, with the fiber–matrix interface quality maintained even at high AS replacement levels. These findings highlight the feasibility of AS as an alternative fine aggregate in UHPC. Full article
Show Figures

Graphical abstract

28 pages, 12901 KiB  
Article
Cracking Behavior of Fiber-Reinforced Concrete Beams Made of Waste Sand
by Jacek Domski, Joanna Laskowska-Bury and Anna Dudzińska
Appl. Sci. 2025, 15(9), 4790; https://doi.org/10.3390/app15094790 - 25 Apr 2025
Viewed by 358
Abstract
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms [...] Read more.
This report presents the results of cracking tests on concrete beams. The test specimens were created in ten different series. Each series comprised two beams, six cylinders, and twelve cubic samples intended for the determination of strength properties. These samples varied in terms of the type of concrete mixture (fiber-reinforced fine aggregate concrete and plain concrete), the applied steel fibers (50/0.8 mm and 30/0.55 mm), the longitudinal reinforcement ratio in beams (0.6%, 0.9%, 1.3%, and 1.8%), and the inclusion (or exclusion) of compressed reinforcement and vertical stirrups. The fine aggregate concrete was made from waste sand, which is a byproduct of the hydroclassification process of gravel. The use of this sand in fiber concrete will help reduce the exploitation of natural resources and lower carbon dioxide emissions. Based on four-point beam bending tests, the study experimentally determined cracking moments, crack spacing, and crack width. Additionally, these results were compared with calculations proposed by L. Vandewalle and Domski, as well as with the methods outlined in Eurocode 2. The analyses conducted show that the best agreement between the research results and the calculations was obtained for Domski’s proposal. It follows that the average percentage error was 38.4%, indicating the safe use of this method. Full article
Show Figures

Figure 1

24 pages, 20309 KiB  
Article
Study on the Influence and Mechanism of Steel, Polyvinyl Alcohol, and Polyethylene Fibers on Slag–Yellow River Sediment Geopolymers
by Ge Zhang, Enhui Jiang, Kunpeng Li, Huawei Shi, Chen Chen and Chengfang Yuan
Polymers 2025, 17(8), 1072; https://doi.org/10.3390/polym17081072 - 16 Apr 2025
Cited by 1 | Viewed by 391
Abstract
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand [...] Read more.
Steel fibers (STs), polyvinyl alcohol fibers (PVAs), and polyethylene fibers (PEs) were selected to systematically investigate the effects of different fiber types and dosages on the workability (slump and spread) and mechanical properties (compressive strength and splitting tensile strength) of slag–Yellow River sand geopolymer eco-cementitious materials. By combining microstructural testing techniques such as thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), the influence mechanisms of fibers on the characteristic products and microstructure of the matrix were thoroughly revealed, and the role of fibers in the strength development of Yellow River sediment-based geopolymers was elucidated. The results show that as the fiber content increases, the workability of the mixture significantly decreases. The appropriate incorporation of steel fibers and PVAs can significantly enhance the strength and toughness of the matrix. When the fiber dosage is 1%, the 28-day compressive strength of specimens with steel fibers and PVAs increased by 25.93% and 21.96%, respectively, compared to the control group, while the splitting tensile strength increased by 50.00% and 60.34%, respectively. However, the mechanisms of action differ significantly; steel fibers primarily enhance the compressive performance of the matrix through their high stiffness and strength, whereas PVAs inhibit crack propagation through their flexibility and excellent bonding properties. In contrast, the strength improvement of PEs is mainly reflected in toughening. When the fiber dosage is 1.5%, the 28-day splitting tensile strength of PE specimens increased by 72.61%, and the tensile-to-compressive ratio increased by 92.32% compared to the control group. Microstructural analysis indicates that the incorporation of different types of fibers does not alter the types of characteristic products in alkali-activated cementitious materials, but excessive fiber content affects the generation of gel-like products and the distribution of free water, thereby altering the thermal decomposition behavior of characteristic gel products. Additionally, the matrix incorporating PEs forms a honeycomb-like amorphous gel, resulting in weak interfacial bonding between the fibers and the matrix. This is one of the main reasons for the limited reinforcing effect of PEs at the microscopic scale and a key factor for their inferior long-term performance compared to steel fibers and PVAs. This study provides theoretical foundations and practical guidance for optimizing the performance of fiber-reinforced geopolymer materials. Full article
Show Figures

Figure 1

30 pages, 8086 KiB  
Article
Effect of Mechanical Interlocking Damage on Bond Durability of Ribbed and Sand-Coated GFRP Bars Embedded in Concrete Under Chloride Dry–Wet Exposure
by Zhennan Yang, Chunhua Lu, Siqi Yuan and Hao Ge
Polymers 2025, 17(6), 733; https://doi.org/10.3390/polym17060733 - 11 Mar 2025
Viewed by 754
Abstract
The substitution conventional steel reinforcement with glass fiber-reinforced polymer (GFRP) bars is a widely adopted strategy used to improve the durability of concrete structures in chloride environments, offering benefits such as enhanced corrosion resistance, reduced maintenance needs, and increased service life. This study [...] Read more.
The substitution conventional steel reinforcement with glass fiber-reinforced polymer (GFRP) bars is a widely adopted strategy used to improve the durability of concrete structures in chloride environments, offering benefits such as enhanced corrosion resistance, reduced maintenance needs, and increased service life. This study investigates the bond behavior between glass fiber-reinforced polymer (GFRP) bars and concrete under long-term chloride dry–wet cycling exposure. Pull-out tests were conducted on various specimens subjected to exposure durations of 0, 3, 6, 9, and 12 months. The experimental results indicate that, after 12 months of chloride dry–wet cycling, the bond strength retention rates of threaded ribbed GFRP with a bond length of 5d, sand-coated GFRP with a bond length of 5d, and threaded ribbed GFRP with a bond length of 7d were 57.9%, 62.2%, and 63.8%, respectively. To predict the GFRP–concrete bond performance after chloride exposure, a novel bond strength model for GFRP bars embedded in concrete, considering the mechanical interlocking effect of ribs, was proposed and validated by the test results. The overall prediction errors for RG-5d, SG-5d, and RG-7d specimens were 0.98, 0.81, and 0.93, respectively. Additionally, a sensitivity analysis was conducted on the main parameters in the model. Finally, the long-term GFRP–concrete bond performance deterioration was estimated using the proposed model. These findings are expected to provide valuable insights into the long-term bond performance and service life prediction of GFRP–concrete members in chloride environments. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

Back to TopTop