Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = fiber-optic ultrasound sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2744 KiB  
Article
Experimental Crack Width Quantification in Reinforced Concrete Using Ultrasound and Coda Wave Interferometry
by Noah Sträter, Felix Clauß, Mark Alexander Ahrens and Peter Mark
Materials 2025, 18(15), 3684; https://doi.org/10.3390/ma18153684 - 6 Aug 2025
Abstract
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges [...] Read more.
For the first time, comprehensive investigations into the tensile load-bearing behavior and crack formation of reinforced concrete based on ultrasound are presented. Uniaxial tensile tests are performed on reinforced concrete tension members equipped with embedded ultrasonic transducers. Key mechanical parameters across all ranges of tensile behavior are continuously quantified by recording ultrasonic signals and evaluated with coda wave interferometry. The investigations include member configurations of different lengths to cover different numbers of cracks. For reference, crack patterns and crack widths are analyzed using digital image correlation, while the strain in the reinforcement is monitored with distributed fiber optic sensors. For the first time, a direct proportional relationship between the relative velocity change in ultrasonic signals and crack widths is established in the ranges of crack formation and stabilized cracking. In the non-cracked state, linear correlations are found between the velocity change and the average strain, as well as the length of the specimens. The experimental results significantly enhance the general understanding of the phenomena related to ultrasonic signals in flexural reinforced concrete members, particularly concerning cracking in the tensile zone. Consequently, this study contributes to the broader objective of employing coda wave interferometry to evaluate the condition of infrastructure. Full article
Show Figures

Figure 1

16 pages, 4009 KiB  
Article
Curved Fabry-Pérot Ultrasound Detectors: Optical and Mechanical Analysis
by Barbara Rossi, Maria Alessandra Cutolo, Martino Giaquinto, Andrea Cusano and Giovanni Breglio
Sensors 2025, 25(4), 1014; https://doi.org/10.3390/s25041014 - 8 Feb 2025
Cited by 1 | Viewed by 983
Abstract
Optical fiber-based acoustic detectors for ultrasound imaging in medical field feature plano-concave Fabry–Perot cavities integrated on fiber tips, realized via dip-coating. This technique imposes constraints on sensor geometry, potentially limiting performance. Lab-on-Fiber technology enables complex three-dimensional structures with precise control over geometric parameters, [...] Read more.
Optical fiber-based acoustic detectors for ultrasound imaging in medical field feature plano-concave Fabry–Perot cavities integrated on fiber tips, realized via dip-coating. This technique imposes constraints on sensor geometry, potentially limiting performance. Lab-on-Fiber technology enables complex three-dimensional structures with precise control over geometric parameters, such as the curvature radius. A careful investigation of the optical and mechanical aspects involved in the sensors’ performances is crucial for determining the design rules of such probes. In this study, we numerically analyzed the impact of curvature on the optical and acoustic properties of a plano-concave cavity using the Finite Element Method. Performance metrics, including sensitivity, bandwidth, and directivity, were compared to planar Fabry–Perot configurations. The results suggest that introducing curvature significantly enhances sensitivity by improving light confinement, especially for cavity thicknesses exceeding half the Rayleigh zone (∼45 μm), reaching an enhancement of 2.5 a L = 60 μm compared to planar designs. The curved structure maintains high spectral quality (FOM) despite 2% fabrication perturbations. A mechanical analysis confirms no disadvantages in acoustic response and bandwidth (∼40 MHz). These findings establish curved plano-concave structures as robust and reliable for high-sensitivity polymeric lab-on-fiber ultrasound detectors, offering improved performance and fabrication tolerance for MHz-scale bandwidth applications. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

11 pages, 1995 KiB  
Article
Angle-Tunable Method for Optimizing Rear Reflectance in Fabry–Perot Interferometers and Its Application in Fiber-Optic Ultrasound Sensing
by Yufei Chu, Mohammed Alshammari, Xiaoli Wang and Ming Han
Photonics 2024, 11(12), 1100; https://doi.org/10.3390/photonics11121100 - 21 Nov 2024
Cited by 2 | Viewed by 1068
Abstract
With the introduction of advanced Fiber Bragg Grating (FBG) technology, Fabry–Pérot (FP) interferometers have become widely used in fiber-optic ultrasound detection. In these applications, the slope of the reflectance is a critical factor influencing detection results. Due to the intensity limitations of the [...] Read more.
With the introduction of advanced Fiber Bragg Grating (FBG) technology, Fabry–Pérot (FP) interferometers have become widely used in fiber-optic ultrasound detection. In these applications, the slope of the reflectance is a critical factor influencing detection results. Due to the intensity limitations of the laser source in fiber-optic ultrasound detection, the reflectance of the FBG is generally increased to enhance the signal-to-noise ratio (SNR). However, increasing reflectance can cause the reflectance curve to deviate from a sinusoidal shape, which in turn affects the slope of the reflectance and introduces greater errors. This paper first investigates the relationship between the transmission curve of the FP interferometer and reflectance, with a focus on the errors introduced by simplified assumptions. Further research shows that in sensors with asymmetric reflectance slopes, their transmittance curves deviate significantly from sinusoidal signals. This discrepancy highlights the importance of achieving symmetrical slopes to ensure consistent and accurate detection. To address this issue, this paper proposes an innovative method to adjust the rear-end reflectance of the FP interferometer by combining stress modulation, UV adhesive, and a high-reflectivity metal disk. Additionally, by adjusting the rear-end reflectance to ensure that the transmittance curve approximates a sinusoidal signal, the symmetry of the slope is maintained. Finally, through practical ultrasound testing, by adjusting the incident wavelength to the positions of slope extrema (or zero) at equal intervals, the expected ultrasound signals at extrema (or zero) can be detected. This method converts the problem of approximating a sinusoidal signal into a problem of the slope adjustment of the transmittance curve, making it easier and more direct to determine its impact on detection results. The proposed method not only improves the performance of fiber-optic ultrasound sensors but also reduces costs, paving the way for broader applications in medical diagnostics and structural health monitoring. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

12 pages, 4110 KiB  
Article
Wavelength Locking and Calibration of Fiber-Optic Ultrasonic Sensors Using Single-Sideband-Modulated Laser
by Mohammed Alshammari and Ming Han
Photonics 2024, 11(11), 1063; https://doi.org/10.3390/photonics11111063 - 13 Nov 2024
Viewed by 1225
Abstract
Implementation of edge-filter detection for interrogating optical interferometric ultrasonic sensors is often hindered by the lack of cost-effective laser sources with agile wavelength tunability and good noise performance. The detected signal can also be affected by optical power variations and locking-point drift, negatively [...] Read more.
Implementation of edge-filter detection for interrogating optical interferometric ultrasonic sensors is often hindered by the lack of cost-effective laser sources with agile wavelength tunability and good noise performance. The detected signal can also be affected by optical power variations and locking-point drift, negatively affecting the sensor accuracy. Here, we report the use of laser single-sideband generation with a dual-parallel Mach–Zehnder interferometer (DP-MZI) for laser wavelength tuning and locking in edge-filter detection of fiber-optic ultrasonic sensors. We also demonstrate real-time in situ calibration of the sensor response to ultrasound-induced wavelength shift tuning. The DP-MZI is employed to generate a known wavelength modulation of the laser, whose response is used to gauge the sensor response to the ultrasound-induced wavelength shifts in real time and in situ. Experiments were performed on a fiber-optic ultrasonic sensor based on a high-finesse Fabry–Perot interferometer formed by two fiber Bragg gratings. The results demonstrated the effectiveness of the laser locking against laser wavelength drift and temperature variations and the effectiveness of the calibration method against optical power variations and locking-point drift. These techniques can enhance the operational robustness and increase the measurement accuracy of optical ultrasonic sensors. Full article
(This article belongs to the Special Issue Recent Research on Optical Sensing and Precision Measurement)
Show Figures

Figure 1

13 pages, 7427 KiB  
Article
Research on Transformer Omnidirectional Partial Discharge Ultrasound Sensing Method Combining F-P Cavity and FBG
by Guochao Qian, Weigen Chen, Kejie Wu, Hong Liu, Jianxin Wang and Zhixian Zhang
Sensors 2023, 23(24), 9642; https://doi.org/10.3390/s23249642 - 5 Dec 2023
Cited by 7 | Viewed by 1691
Abstract
To achieve omnidirectional sensitive detection of partial discharge (PD) in transformers and to avoid missing PD signals, a fiber optic omnidirectional sensing method for PD in transformers combined with the fiber Bragg grating (FBG) and Fabry-Perot (F-P) cavity is proposed. The fiber optic [...] Read more.
To achieve omnidirectional sensitive detection of partial discharge (PD) in transformers and to avoid missing PD signals, a fiber optic omnidirectional sensing method for PD in transformers combined with the fiber Bragg grating (FBG) and Fabry-Perot (F-P) cavity is proposed. The fiber optic omnidirectional sensor for PD as a triangular prism was developed. The hollow structure of the probe was used to insert a single-mode fiber to form an F-P cavity. In addition, the three sides of the probe were used to form a diaphragm-type FBG sensing structure. The ultrasound sensitization diaphragm was designed based on the frequency characteristics of PD in the transformer and the vibration model of the diaphragm in the liquid environment. The fiber optic sensing system for PD was built and the performance test was conducted. The results show that the resonant frequency of the FBG acoustic diaphragm is around 20 kHz and that of the F-P cavity acoustic diaphragm is 94 kHz. The sensitivity of the developed fiber optic sensor is higher than that of the piezoelectric transducer (PZT). The lower limit of PD detection is 68.72 pC for the FBG sensing part and 47.97 pC for the F-P cavity sensing part. The directional testing of the sensor and its testing within a transformer simulation model indicate that the proposed sensor achieves higher detection sensitivity of PD in all directions. The omnidirectional partial discharge ultrasound sensing method proposed in this paper is expected to reduce the missed detection rate of PD. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

10 pages, 2889 KiB  
Communication
Numerical Modelling of the Optical–Acoustical Characterization of an Anti-Resonant Bragg Hollow Core Fiber
by Ying Shi, Yilin Zhou, Wenjun Ni, Yongsheng Tian, Zhenggang Lian and Perry Ping Shum
Photonics 2023, 10(7), 814; https://doi.org/10.3390/photonics10070814 - 13 Jul 2023
Cited by 3 | Viewed by 1524
Abstract
Anti-resonant hollow core fibers (AR-HCFs) provide a promising solution for photothermal spectroscopy and photoacoustic imaging applications. Here, the AR-HCF serves as a micro platform to induce the photothermal/photoacoustic effect. Since the Bragg structure can induce multiple AR effects compared with the general AR-HCF, [...] Read more.
Anti-resonant hollow core fibers (AR-HCFs) provide a promising solution for photothermal spectroscopy and photoacoustic imaging applications. Here, the AR-HCF serves as a micro platform to induce the photothermal/photoacoustic effect. Since the Bragg structure can induce multiple AR effects compared with the general AR-HCF, we proposed a novel device, the AR-BHCF (AR-HCF with Bragg cladding), to enhance the excitation efficiency. The simulation and experimental results validate that the AR-BHCF dominates in having a stronger ability to confine the optical field in the air core indeed. Then, the acoustic signal stimulated by the photoacoustic effect will propagate along with the fiber axial, and part of it will penetrate out of the AR-BHCF. The results revealed that the transmission bandwidth of the acoustic wave in the AR-BHCF ranges from 1 Hz to 1 MHz, covering infrasound to ultrasound. In particular, a constant coefficient of 0.5 exists in the acoustic wave fading process, related to the propagation frequency and time. The acoustic signal can be monitored in real time, assisted by the ultra-highly sensitive sensor head. Therefore, BHCF-based devices combined with photoacoustic techniques may accelerate their sensing applications. Meanwhile, this scheme shines a light on the theoretical foundation of novel short-haul distributed acoustic sensing. Full article
Show Figures

Figure 1

16 pages, 3546 KiB  
Article
Sensing System Based on FBG for Corrosion Monitoring in Metallic Structures
by Israel Sousa, Luis Pereira, Esequiel Mesquita, Vitória L. Souza, Walney S. Araújo, Antônio Cabral, Nélia Alberto, Humberto Varum and Paulo Antunes
Sensors 2022, 22(16), 5947; https://doi.org/10.3390/s22165947 - 9 Aug 2022
Cited by 11 | Viewed by 3073
Abstract
As corrosion has slow development, its detection at an early age could be an alternative for reducing costs of structural rehabilitation. Therefore, the employment of structural health monitoring (SHM) systems, sensing configurations collecting data over time allowing for observing changes in the properties [...] Read more.
As corrosion has slow development, its detection at an early age could be an alternative for reducing costs of structural rehabilitation. Therefore, the employment of structural health monitoring (SHM) systems, sensing configurations collecting data over time allowing for observing changes in the properties of the materials and damage emergence, for monitoring corrosion can be a good strategy to measure the damage and to decide the better moment for intervention. Nonetheless, the current corrosion sensor technology and the high costs of the sensing system implementation are limiting this application in the field. In this work, an optical fiber Bragg grating (FBG)-based sensing system is proposed for monitoring the thickness loss of a 1020 carbon steel metal plate subjected to controlled corrosion. The natural frequency of the plate was collected as a function of the corrosion time over 3744 h. To validate the experimental results, ultrasound measures and electrochemical tests were also carried out under similar conditions. The experimental results show adequate reliability, indicating the suitable functionality of the proposed system for monitoring the thickness loss caused by corrosion in metallic structures, in comparison with traditional methods, as ultrasonic and electrochemical measures. Full article
(This article belongs to the Topic Advance and Applications of Fiber Optic Measurement)
Show Figures

Figure 1

11 pages, 14490 KiB  
Article
MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Waves
by Jan Niklas Haus, Walter Lang, Thomas Roloff, Liv Rittmeier, Sarah Bornemann, Michael Sinapius and Andreas Dietzel
Sensors 2022, 22(14), 5368; https://doi.org/10.3390/s22145368 - 19 Jul 2022
Cited by 9 | Viewed by 4194
Abstract
Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, [...] Read more.
Structural health monitoring of lightweight constructions made of composite materials can be performed using guided ultrasonic waves. If modern fiber metal laminates are used, this requires integrated sensors that can record the inner displacement oscillations caused by the propagating guided ultrasonic waves. Therefore, we developed a robust MEMS vibrometer that can be integrated while maintaining the structural and functional compliance of the laminate. This vibrometer is directly sensitive to the high-frequency displacements from structure-borne ultrasound when excited in a frequency range between its first and second eigenfrequency. The vibrometer is mostly realized by processes earlier developed for a pressure sensor but with additional femtosecond laser ablation and encapsulation. The piezoresistive transducer, made from silicon, is encapsulated between top and bottom glass lids. The eigenfrequencies are experimentally determined using an optical micro vibrometer setup. The MEMS vibrometer functionality and usability for structural health monitoring are demonstrated on a customized test rig by recording application-relevant guided ultrasonic wave packages with a central frequency of 100 kHz at a distance of 0.2 m from the exciting ultrasound transducer. Full article
Show Figures

Figure 1

30 pages, 14758 KiB  
Article
Fiber-Optic Hydrophone Based on Michelson’s Interferometer with Active Stabilization for Liquid Volume Measurement
by Welton Sthel Duque, Camilo Arturo Rodríguez Díaz, Arnaldo Gomes Leal-Junior and Anselmo Frizera
Sensors 2022, 22(12), 4404; https://doi.org/10.3390/s22124404 - 10 Jun 2022
Cited by 10 | Viewed by 3732
Abstract
Sensing technologies using optical fibers have been studied and applied since the 1970s in oil and gas, industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves through fiber-optic hydrophone (FOH) sensors can be one solution for continuous measurement of volumes inside production [...] Read more.
Sensing technologies using optical fibers have been studied and applied since the 1970s in oil and gas, industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves through fiber-optic hydrophone (FOH) sensors can be one solution for continuous measurement of volumes inside production tanks used by these industries. This work presents an FOH system composed of two optical fiber coils made with commercial single mode fiber (SMF) working in the sensor head of a Michelson’s interferometer (MI) supported by an active stabilization mechanism that drives another optical coil wound around a piezoelectric actuator (PZT) in the reference arm to mitigate external mechanical and thermal noise from the environment. A 1000 mL glass graduated cylinder filled with water is used as a test tank, inside which the sensor head and an ultrasound source are placed. For detection, amplitudes and phases are measured, and machine learning algorithms predict their respective liquid volumes. The acoustic waves create patterns electronically detected with resolution of 1 mL and sensitivity of 340 mrad/mL and 70 mvolts/mL. The nonlinear behavior of both measurands requires classification, distance metrics, and regression algorithms to define an adequate model. The results show the system can determine liquid volumes with an accuracy of 99.4% using a k-nearest neighbors (k-NN) classification with one neighbor and Manhattan’s distance. Moreover, Gaussian process regression using rational quadratic metrics presented a root mean squared error (RMSE) of 0.211 mL. Full article
(This article belongs to the Special Issue Recent Advances in Liquid Level Sensors)
Show Figures

Figure 1

15 pages, 3082 KiB  
Article
Compact Interrogation System of Fiber Bragg Grating Sensors Based on Multiheterodyne Dispersion Interferometry for Dynamic Strain Measurements
by Dragos A. Poiana, Julio E. Posada-Roman and Jose A. Garcia-Souto
Sensors 2022, 22(9), 3561; https://doi.org/10.3390/s22093561 - 7 May 2022
Cited by 6 | Viewed by 3189
Abstract
Dual-comb multiheterodyne spectroscopy is a well-established technology for the highly sensitive real-time detection and measurement of the optical spectra of samples, including gases and fiber sensors. However, a common drawback of dual-comb spectroscopy is the need for a broadband amplitude-resolved absorption or reflection [...] Read more.
Dual-comb multiheterodyne spectroscopy is a well-established technology for the highly sensitive real-time detection and measurement of the optical spectra of samples, including gases and fiber sensors. However, a common drawback of dual-comb spectroscopy is the need for a broadband amplitude-resolved absorption or reflection measurement, which increases the complexity of the dual comb and requires the precise calibration of the optical detection. In the present study, we present an alternative dispersion-based approach applied to fiber Bragg grating sensors in which the dual comb is compacted by a single dual-drive-unit optical modulator, and the fiber sensor is part of a dispersion interferometer. The incident dual comb samples a few points in the spectrum that are sensitive to Bragg wavelength changes through the optical phase. The spectra reading is improved due to the external interferometer and is desensitized to changes in the amplitude of the comb tones. The narrow-band detection of the fiber sensor dispersion changes that we demonstrate enables the compact, cost-effective, high-resolution multiheterodyne interrogation of high-throughput interferometric fiber sensors. These characteristics open its application both to the detection of fast phenomena, such as ultrasound, and to the precise measurement at high speed of chemical-/biological-sensing samples. The results with a low-reflectivity fiber Bragg grating show the detection of dynamic strain in the range of 215 nε with a 30 dB signal to noise ratio and up to 130 kHz (ultrasonic range). Full article
Show Figures

Figure 1

17 pages, 14844 KiB  
Article
Correlation of Load-Bearing Behavior of Reinforced Concrete Members and Velocity Changes of Coda Waves
by Felix Clauß, Niklas Epple, Mark Alexander Ahrens, Ernst Niederleithinger and Peter Mark
Materials 2022, 15(3), 738; https://doi.org/10.3390/ma15030738 - 19 Jan 2022
Cited by 15 | Viewed by 2767
Abstract
The integral collection of information such as strains, cracks, or temperatures by ultrasound offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach is proposed which uses the collected information in the coda of ultrasonic signals to [...] Read more.
The integral collection of information such as strains, cracks, or temperatures by ultrasound offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach is proposed which uses the collected information in the coda of ultrasonic signals to infer the condition of a structure. This approach is derived from component tests on a reinforced concrete beam subjected to four-point bending in the lab at Ruhr University Bochum. In addition to ultrasonic measurements, strain of the reinforcement is measured with fiber optic sensors. Approached by the methods of moment-curvature relations, the steel strains serve as a reference for velocity changes of the coda waves. In particular, a correlation between the relative velocity change and the average steel strain in the reinforcement is derived that covers 90% of the total bearing capacity. The purely empirical model yields a linear function with a high level of accuracy (R2=0.99, RMSE90μstrain). Full article
(This article belongs to the Special Issue Concrete and Concrete Structures Monitored by Ultrasound)
Show Figures

Figure 1

20 pages, 6798 KiB  
Article
Multichannel Detection of Acoustic Emissions and Localization of the Source with External and Internal Sensors for Partial Discharge Monitoring of Power Transformers
by Iago Búa-Núñez, Julio E. Posada-Román and José A. García-Souto
Energies 2021, 14(23), 7873; https://doi.org/10.3390/en14237873 - 24 Nov 2021
Cited by 7 | Viewed by 3037
Abstract
The detection of acoustic emissions with multiple channels and different kinds of sensors (external ultrasound electronic sensors and internal optical fiber sensors) for monitoring power transformers is presented. The source localization based on the times of arrival was previously studied, comparing different strategies [...] Read more.
The detection of acoustic emissions with multiple channels and different kinds of sensors (external ultrasound electronic sensors and internal optical fiber sensors) for monitoring power transformers is presented. The source localization based on the times of arrival was previously studied, comparing different strategies for solving the location equations and the most efficient strategy in terms of computational and complexity costs versus performance was selected for analyzing the error propagation. The errors of the acoustic emission source location (localization process) are evaluated from the errors of the times of arrival (detection process). A hybrid programming architecture is proposed to optimize both stages of detection and location. It is formed by a virtual instrumentation system for the acquisition, detection and noise reduction of multiple acoustic channels and an algorithms-oriented programming system for the implementation of the localization techniques (back-propagation and multiple-source separation algorithms could also be implemented in this system). The communication between both systems is performed by a packet transfer protocol that allows continuous operation (e.g., on-line monitoring) and remote operation (e.g., a local monitoring and a remote analysis and diagnosis). For the first time, delay errors are modeled and error propagation is applied with this error source and localization algorithms. The 1% mean delay error propagation gives an accuracy of 9.5 mm (dispersion) and a maximum offset of 4 mm (<1% in both cases) in the AE source localization process. This increases proportionally for more severe errors (up to 5% reported). In the case of a multi-channel internal fiber-optic detection system, the resulting location error with a delay error of 2% is negligible when selecting the most repeated calculated position. These aim at determining the PD area of activity with a precision of better than 1% (<10 mm in 110 cm). Full article
(This article belongs to the Special Issue Advances in Oil Power Transformers)
Show Figures

Figure 1

11 pages, 2099 KiB  
Letter
Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters
by Georgios Violakis, Tri Le-Quang, Sergey A. Shevchik and Kilian Wasmer
Sensors 2020, 20(22), 6511; https://doi.org/10.3390/s20226511 - 14 Nov 2020
Cited by 6 | Viewed by 3491
Abstract
Acoustic Emission (AE) detection and, in particular, ultrasound detection are excellent tools for structural health monitoring or medical diagnosis. Despite the technological maturity of the well-received piezoelectric transducer, optical fiber AE detection sensors are attracting increasing attention due to their small size, and [...] Read more.
Acoustic Emission (AE) detection and, in particular, ultrasound detection are excellent tools for structural health monitoring or medical diagnosis. Despite the technological maturity of the well-received piezoelectric transducer, optical fiber AE detection sensors are attracting increasing attention due to their small size, and electromagnetic and chemical immunity as well as the broad frequency response of Fiber Bragg Grating (FBG) sensors in these fibers. Due to the merits of their small size, FBGs were inscribed in optical fibers with diameters of 50 and 80 μm in this work. The manufactured FBGs were used for the detection of reproducible acoustic waves using the edge filter detection method. The acquired acoustic signals were compared to the ones captured by a standard 125 μm-diameter optical fiber FBG. Result analysis was performed by utilizing fast Fourier and wavelet decompositions. Both analyses reveal a higher sensitivity and dynamic range for the 50 μm-diameter optical fiber, despite it being more prone to noise than the other two, due to non-standard splicing methods and mode field mismatch losses. Consequently, the use of smaller-diameter optical fibers for AE detection is favorable for both the sensor sensitivity as well as physical footprint. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Bragg Grating Sensing)
Show Figures

Figure 1

16 pages, 39221 KiB  
Article
Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry
by Felix Clauß, Niklas Epple, Mark Alexander Ahrens, Ernst Niederleithinger and Peter Mark
Sensors 2020, 20(14), 4023; https://doi.org/10.3390/s20144023 - 20 Jul 2020
Cited by 19 | Viewed by 3130
Abstract
Due to the high sensitivity of coda waves to the smallest structural alterations such as strain, humidity or temperature changes, ultrasonic waves are a valid means to examine entire structures employing networks of ultrasonic transducers. In order to substantiate this ex ante assessment, [...] Read more.
Due to the high sensitivity of coda waves to the smallest structural alterations such as strain, humidity or temperature changes, ultrasonic waves are a valid means to examine entire structures employing networks of ultrasonic transducers. In order to substantiate this ex ante assessment, the viability of measuring ultrasonic waves as a valid point of reference and inference for structural changes is to be further scrutinized in this work. In order to investigate the influence of mechanical strain on ultrasonic signals, a four-point bending test was carried out on a reinforced concrete beam at Ruhr University Bochum. Thus, measurements collected from a network of selected transducer pairings arranged across the central, shear-free segment of the test specimen, were correlated to their respective strain fields. Detected ultrasonic signals were evaluated employing Coda Wave Interferometry. Such analysis comprised the initial non-cracked state as well as later stages with incremental crack depth and quantity. It was to ascertain that the test specimen can in fact be qualitatively compartmentalized into areas of compression and tension identified via Relative Velocity Changes presented in Attribute Maps. However, since results did not entail a zero crossing, i.e., neither positive nor negative values were to be calculated, only relative changes in this work displayed staggered over the height of the object under test, are discussed. Under the given methodological premises, additional information is currently required to make quantitative assertions regarding this correlation of ultrasonic and strain results. This holds true for the comparability of the ultrasonic and strain results for both non-cracked and even the cracked state. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 3403 KiB  
Review
Dual-Polarized Fiber Laser Sensor for Photoacoustic Microscopy
by Xiangwei Lin, Yizhi Liang, Long Jin and Lidai Wang
Sensors 2019, 19(21), 4632; https://doi.org/10.3390/s19214632 - 24 Oct 2019
Cited by 12 | Viewed by 4949
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we [...] Read more.
Optical resolution photoacoustic microscopy (OR-PAM) provides high-resolution, label-free and non-invasive functional imaging for broad biomedical applications. Dual-polarized fiber laser sensors have high sensitivity, low noise, a miniature size, and excellent stability; thus, they have been used in acoustic detection in OR-PAM. Here, we review recent progress in fiber-laser-based ultrasound sensors for photoacoustic microscopy, especially the dual-polarized fiber laser sensor with high sensitivity. The principle, characterization and sensitivity optimization of this type of sensor are presented. In vivo experiments demonstrate its excellent performance in the detection of photoacoustic (PA) signals in OR-PAM. This review summarizes representative applications of fiber laser sensors in OR-PAM and discusses their further improvements. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Applications)
Show Figures

Figure 1

Back to TopTop