Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. FBG Fabrication and Calibrated Reflection Spectrum
3.2. Raw Acoustic Signal and Fast Fourier Transformation
3.3. Wavelet Decomposition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Q.; Yu, F.; Okabe, Y.; Saito, K.; Kobayashi, S. Acoustic emission detection and position identification of transverse cracks in carbon fiber–reinforced plastic laminates by using a novel optical fiber ultrasonic sensing system. Struct. Health Monit. 2015, 14, 205–213. [Google Scholar] [CrossRef]
- Fatemi, M.; Greenleaf, J.F. Ultrasound-stimulated vibro-acoustic spectrography. Science 1998, 280, 82–85. [Google Scholar] [CrossRef]
- Betz, D.C.; Thursby, G.; Culshaw, B.; Staszewski, W.J. Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Mater. Struct. 2003, 12, 122. [Google Scholar] [CrossRef]
- Gallego, D.; Lamela, H. Photons Plus Ultrasound: Imaging and Sensing 2017. In Microstructured Polymer Optical Fiber Sensors for Optoacoustic Endoscopy; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; p. 1006412. [Google Scholar]
- Wild, G.; Hinckley, S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art. IEEE Sens. J. 2008, 8, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pei, L.; Dong, B.; Ma, C.; Wang, A. Analysis of ultrasonic frequency response of surface attached fiber Bragg grating. Appl. Opt. 2012, 51, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Culshaw, B.; Thursby, G.; Betz, D.; Sorazu, B. The detection of ultrasound using fiber-optic sensors. IEEE Sens. J. 2008, 8, 1360–1367. [Google Scholar] [CrossRef]
- Javorsky, I.B.; Silva, R.E.; Pohl, A.A.P. Wavelength Tunable Filter Based on Acousto-Optic Modulation of a Double-Core Fiber. IEEE Photon Technol. Lett. 2019, 31, 1135–1138. [Google Scholar] [CrossRef]
- Bucaro, J.A.; Dardy, H.D.; Carome, E.F. Optical fiber acoustic sensor. Appl. Opt. 1977, 16, 1761–1762. [Google Scholar] [CrossRef]
- Bucaro, J.; Carome, E. Single fiber interferometric acoustic sensor. Appl. Opt. 1978, 17, 330–331. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Webb, D.J.; Surowiec, J.; Sweeney, M.; Jackson, D.A.; Gavrilov, L.; Hand, J.; Zhang, L.; Bennion, I. Miniature Fiber Optic Ultrasonic Probe; Fiber Optic and Laser Sensors XIV; International Society for Optics and Photonics: Denver, CO, USA, 1996; pp. 76–81. [Google Scholar]
- Gatti, D.; Galzerano, G.; Janner, D.; Longhi, S.; Laporta, P. Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique. Opt. Express 2008, 16, 1945–1950. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Okabe, Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Opt. Express 2012, 20, 28353–28362. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jin, W.; Ho, H.L.; Wang, F.; Liu, W.; Ma, L.; Hu, Y. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers. Opt. Express 2013, 21, 15514–15521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, D.; Sáez-Rodríguez, D.; Webb, D.; Bang, O.; Lamela, H. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications. In Proceedings of the 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; p. 91574X. [Google Scholar]
- Pereira, L.M.; Pospori, A.; Antunes, P.; Domingues, M.F.; Marques, S.; Bang, O.; Webb, D.J.; Marques, C.A. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248-nm UV radiation. J. Light. Technol. 2017, 35, 5176–5184. [Google Scholar] [CrossRef] [Green Version]
- Broadway, C.; Gallego, D.; Pospori, A.; Zubel, M.; Webb, D.J.; Sugden, K.; Carpintero, G.; Lamela, H. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy. In Micro-Structured and Specialty Optical Fibres IV, 2016; International Society for Optics and Photonics: Brussels, Belgium, 2016; p. 98860S. [Google Scholar]
- Broadway, C.; Kalli, K.; Theodosiou, A.; Zubel, M.; Sugden, K.; Megret, P.; Caucheteur, C. L-band CYTOP® Bragg gratings for ultrasound sensing. In Micro-Structured and Specialty Optical Fibres V, 2018; International Society for Optics and Photonics: Strasbourg, France, 2018; p. 1068109. [Google Scholar]
- Marques, C.A.; Bilro, L.; Kahn, L.; Oliveira, R.A.; Webb, D.J.; Nogueira, R.N. Acousto-Optic effect in microstructured polymer fiber Bragg gratings: Simulation and experimental overview. J. Light. Technol. 2013, 31, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Broadway, C.; Min, R.; Leal-Junior, A.G.; Marques, C.; Caucheteur, C. Toward commercial polymer fiber Bragg grating sensors: Review and applications. J. Light. Technol. 2019, 37, 2605–2615. [Google Scholar] [CrossRef]
- Cole, J.H.; Sunderman, C.; Tveten, A.B.; Kirkendall, C.; Dandridge, A. Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors. In Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, 10 May 2002; pp. 317–320. [Google Scholar]
- Takuma, M.; Hisada, S.; Saitoh, K.; Takahashi, Y.; Kobayashi, Y.; Kadono, A.; Murata, A.; Iwata, S.; Sasaki, T. Acoustic emission measurement by fiber Bragg grating glued to cylindrical sensor holder. Adv. Mater. Sci. Eng. 2014, 2014, 274071. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, Y.; Sun, M.; Zhang, Z.-W.; Dong, X.-Y.; Zhang, Z.-X.; Jin, S.-Z. Acoustic vibration sensor based on nonadiabatic tapered fibers. Opt. Lett. 2012, 37, 4768–4770. [Google Scholar] [CrossRef]
- Yeom, D.I.; Park, H.S.; Kim, B.Y. Tunable narrow-bandwidth optical filter based on acoustically modulated fiber Bragg grating. IEEE PhotonTechnol. Lett. 2004, 16, 1313–1315. [Google Scholar] [CrossRef]
- Liu, W.; Russell, P.S.J.; Dong, L. 100% efficient narrow-band acoustooptic tunable reflector using fiber Bragg grating. J. Light. Technol. 1998, 16, 2006–2009. [Google Scholar] [CrossRef]
- Marques, C.A.; Leal-Junior, A.G.; Min, R.; Domingues, M.; Leitão, C.; Antunes, P.; Ortega, B.; André, P.J.F. Advances on polymer optical fiber gratings using a KrF pulsed laser system operating at 248 nm. Fibers 2018, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Fisher, N.E.; Webb, D.J.; Pannell, C.N.; Jackson, D.A.; Gavrilov, L.; Hand, J.; Zhang, L.; Bennion, I. Ultrasonic hydrophone based on short in-fiber Bragg gratings. Appl. Opt. 1998, 37, 8120–8128. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Shum, P.; Lu, C.; Lacquet, M.; Swart, P.; Chtcherbakov, A.; Spammer, S. Temperature insensitive measurements of static displacements using a fiber Bragg grating. Opt. Express 2003, 11, 1918–1924. [Google Scholar] [CrossRef]
- Zhou, W.; Dong, X.; Ni, K.; Chan, C.; Shum, P. Temperature-insensitive accelerometer based on a strain-chirped FBG. Sens. Actuators A Phys. 2010, 157, 15–18. [Google Scholar] [CrossRef]
- Guo, T.; Ivanov, A.; Chen, C.; Albert, J. Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling. Opt. Lett. 2008, 33, 1004–1006. [Google Scholar] [CrossRef]
- Fender, A.; MacPherson, W.N.; Maier, R.R.J.; Barton, J.S.; George, D.S.; Howden, R.I.; Smith, G.W.; Jones, B.J.S.; McCulloch, S.; Chen, X.; et al. Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sens. J. 2008, 8, 1292–1298. [Google Scholar] [CrossRef]
- McLaskey, G.C.; Glaser, S.D.J.T.J. Hertzian impact: Experimental study of the force pulse and resulting stress waves. J. Acoust. Soc. Am. 2010, 128, 1087–1096. [Google Scholar] [CrossRef]
- Akay, A.J.T.J. A review of impact noise. J. Acoust. Soc. Am. 1978, 64, 977–987. [Google Scholar] [CrossRef]
- Duchene, P.; Chaki, S.; Krawczak, P. Acousto-Ultrasonic Damage Evaluation of Carbon Fibre Composites Using Pencil Lead Break Sources. In Proceedings of the 18th European Conference on Composites Materials, Athens, Greece, 24–28 June 2018. [Google Scholar]
- Beadle, B.M.; Weis, R.S. Longitudinal vibrations of a silica fiber segment characterized using a fiber Bragg grating. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998, 45, 1100–1104. [Google Scholar] [CrossRef]
- Engan, H.E.; Kim, B.Y.; Blake, J.N.; Shaw, H.J. Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. J. Light. Technol. 1988, 6, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Marcuse, D. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 1977, 56, 703–718. [Google Scholar] [CrossRef]
- Violakis, G.; Aggarwal, N.; Limberger, H.G. Fabrication of mode field converter in H 2-loaded SMF-28e using CW-Ar+ laser. In Proceedings of the 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; pp. 1–3. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Shevchik, S.A.; Meylan, B.; Violakis, G.; Wasmer, K. 3D reconstruction of cracks propagation in mechanical workpieces analyzing non-stationary acoustic mixtures. Mech. Syst. Signal Process. 2019, 119, 55–64. [Google Scholar]
- Shevchik, S.A.; Le-Quang, T.; Farahani, F.V.; Faivre, N.; Meylan, B.; Zanoli, S.; Wasmer, K.J.I.A. Laser welding quality monitoring via graph support vector machine with data adaptive kernel. IEEE Access 2019, 7, 93108–93122. [Google Scholar]
Frequency (kHz) | Signal-to-Noise Ratio (SNR in dB) for Optical Fibers with Diameter: | ||
---|---|---|---|
125 μm | 80 μm | 50 μm | |
298.4 | 2.83 | 6.42 | 7.90 |
596.7 | 2.29 | 5.46 | 7.59 |
962.7 | 1.48 | 2.34 | 4.86 |
1546.6 | 3.20 | 3.40 | 3.45 |
2217.6 | NA | NA | 2.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Violakis, G.; Le-Quang, T.; Shevchik, S.A.; Wasmer, K. Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters. Sensors 2020, 20, 6511. https://doi.org/10.3390/s20226511
Violakis G, Le-Quang T, Shevchik SA, Wasmer K. Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters. Sensors. 2020; 20(22):6511. https://doi.org/10.3390/s20226511
Chicago/Turabian StyleViolakis, Georgios, Tri Le-Quang, Sergey A. Shevchik, and Kilian Wasmer. 2020. "Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters" Sensors 20, no. 22: 6511. https://doi.org/10.3390/s20226511
APA StyleViolakis, G., Le-Quang, T., Shevchik, S. A., & Wasmer, K. (2020). Sensitivity Analysis of Acoustic Emission Detection Using Fiber Bragg Gratings with Different Optical Fiber Diameters. Sensors, 20(22), 6511. https://doi.org/10.3390/s20226511