Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ferrite-assisted synchronous reluctance machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 19193 KiB  
Article
Design of a Novel Nine-Phase Ferrite-Assisted Synchronous Reluctance Machine with Skewed Stator Slots
by Hongliang Guo, Tianci Wang, Hongwu Chen, Zaixin Song and Chunhua Liu
Energies 2025, 18(9), 2323; https://doi.org/10.3390/en18092323 - 2 May 2025
Viewed by 512
Abstract
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from [...] Read more.
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from increased torque ripples and harmonic distortion, while reliance on rare-earth materials raises cost and sustainability concerns. To address these issues, the proposed design incorporates low-cost ferrite magnets embedded within the rotor flux barriers to achieve a flux-concentrated effect and enhanced torque production. The nine-phase winding configuration is utilized to improve fault tolerance, reduce harmonic distortion, and enable smoother torque output compared with conventional three-phase counterparts. In addition, the skewed stator slot design further minimizes harmonic components, reducing overall distortion. The proposed machine is validated through finite element analysis (FEA), and experimental verification is obtained by measuring the inductance characteristics and back-EMF of the nine-phase winding, confirming the feasibility of the electromagnetic design. The results demonstrate significant reductions in harmonic distortion and torque ripples, verifying the potential of this design. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

35 pages, 43715 KiB  
Review
Reducing Rare-Earth Magnet Reliance in Modern Traction Electric Machines
by Oliver Mitchell Lee and Mohammadali Abbasian
Energies 2025, 18(9), 2274; https://doi.org/10.3390/en18092274 - 29 Apr 2025
Viewed by 1179
Abstract
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study [...] Read more.
Currently, electric machines predominantly rely on costly rare-earth NdFeB magnets, which pose both economic and environmental challenges due to rising demand. This research explores recent advancements in machine topologies and magnetic materials to identify and assess promising solutions to this issue. The study investigates two alternative machine topologies to the conventional permanent magnet synchronous machine (PMSM): the permanent magnet-assisted synchronous reluctance machine (PMaSynRM), which reduces magnet usage, and the wound-field synchronous machine (WFSM), which eliminates magnets entirely. Additionally, the potential of ferrite and recycled NdFeB magnets as substitutes for primary NdFeB magnets is evaluated. Through detailed simulations, the study compares the performance and cost-effectiveness of these solutions against a reference permanent magnet synchronous machine (PMSM). Given their promising performance characteristics and potential to reduce or eliminate the use of rare-earth materials in next-generation electric machines, it is recommended that future research should focus on novel topologies like hybrid-excitation, axial-flux, and switched reluctance machines with an emphasis on manufacturability and also novel magnetic materials such as FeN and MnBi that are currently seeing synthesis challenges. Full article
Show Figures

Figure 1

23 pages, 5590 KiB  
Article
In-Depth Exploration of Design and Analysis for PM-Assisted Synchronous Reluctance Machines: Implications for Light Electric Vehicles
by Cristina Adăscăliței, Radu Andrei Marțiș, Petros Karaisas and Claudia Steluța Marțiș
Machines 2024, 12(6), 361; https://doi.org/10.3390/machines12060361 - 23 May 2024
Cited by 2 | Viewed by 2163
Abstract
In electric or hybrid vehicles’ propulsion systems, Permanent Magnet-Assisted Synchronous Reluctance Machines represent a viable alternative to Permanent Magnet Synchronous Machines. Based on previous research work, the present paper proposes, designs, and optimizes two ferrite PMaSynRM topologies, analyzed against a reference machine (also [...] Read more.
In electric or hybrid vehicles’ propulsion systems, Permanent Magnet-Assisted Synchronous Reluctance Machines represent a viable alternative to Permanent Magnet Synchronous Machines. Based on previous research work, the present paper proposes, designs, and optimizes two ferrite PMaSynRM topologies, analyzed against a reference machine (also PMaSynRM) with improved torque ripple content, based on similar specifications and dimensional constraints. Considering the trend of increasing the DC voltage level in electric and hybrid vehicles, the optimal topology is included in an analysis of the DC voltage level impact on the design and performances of PMSynRM. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

22 pages, 8920 KiB  
Article
Performance Comparison of Traction Synchronous Motors with Ferrite Magnets for a Subway Train: Reluctance versus Homopolar Variants
by Vladimir Dmitrievskii, Vadim Kazakbaev and Vladimir Prakht
Appl. Sci. 2023, 13(17), 9988; https://doi.org/10.3390/app13179988 - 4 Sep 2023
Cited by 3 | Viewed by 2152
Abstract
Due to the high cost and the predicted shortage of rare earth elements in the near future, the task of developing energy-efficient electric machines without rare earth magnets is of great importance. This article presents a comparative analysis of optimized designs of a [...] Read more.
Due to the high cost and the predicted shortage of rare earth elements in the near future, the task of developing energy-efficient electric machines without rare earth magnets is of great importance. This article presents a comparative analysis of optimized designs of a ferrite-assisted synchronous reluctance machine (FaSynRM) and a ferrite-assisted synchronous homopolar machine (FaSHM) in a 370-kW subway train drive. The objectives of optimizing these traction machines are to reduce their losses, maximum armature current, and torque ripple. The optimization considers the characteristics of the machines in the subway train moving cycle. The problem of the risk of irreversible demagnetization of ferrites in the FaSynRM and FaSHM is also considered. To reduce the computational burden, the Nelder-Mead method is used for the optimization. It is shown that the FaSHM demonstrates better field weakening capability, which can reduce the maximum current, power, and cost of the inverter power modules. At the same time, the FaSynRM requires less permanent magnet mass for the same torque density and is more resistant to irreversible demagnetization, which can reduce costs and improve the reliability of the electric machine. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

18 pages, 10929 KiB  
Article
Comprehensive Comparative Study on Permanent-Magnet-Assisted Synchronous Reluctance Motors and Other Types of Motor
by Guanghui Du, Guiyuan Zhang, Hui Li and Chengshuai Hu
Appl. Sci. 2023, 13(14), 8557; https://doi.org/10.3390/app13148557 - 24 Jul 2023
Cited by 14 | Viewed by 6133
Abstract
At present, the induction motor (IM), synchronous reluctance motor (SynRM), ferrite-assisted synchronous reluctance motor (ferrite-assisted SynRM) and interior permanent magnet motor (IPM) are research hotspots, but comprehensive comparative research on the four motors is still rare. This paper mainly compares the four motors [...] Read more.
At present, the induction motor (IM), synchronous reluctance motor (SynRM), ferrite-assisted synchronous reluctance motor (ferrite-assisted SynRM) and interior permanent magnet motor (IPM) are research hotspots, but comprehensive comparative research on the four motors is still rare. This paper mainly compares the four motors from the aspects of electromagnetic performance, material cost and temperature distribution. Firstly, the volume of the four motors is ensured to be the same. The influence of the rotor design parameters of the SynRM, ferrite-assisted SynRM and IPM on the electromagnetic properties of the machine is analyzed. Secondly, based on the effects of each parameter, the overall design parameters of the four motors are determined. The electromagnetic performance, material cost and temperature of the four motors are compared and discussed. Finally, the comparison results are summarized, and the advantages of the four motors are analyzed. In different applications, the electromagnetic performance, heat dissipation and cost requirements of the four motors are different. Therefore, this paper makes a comprehensive comparison of the four motors to provide a reference for the selection of motors for different applications. Full article
Show Figures

Figure 1

17 pages, 2934 KiB  
Article
Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines
by Carlos Candelo-Zuluaga, Jordi-Roger Riba, Dinesh V. Thangamuthu and Antoni Garcia
Energies 2020, 13(13), 3496; https://doi.org/10.3390/en13133496 - 6 Jul 2020
Cited by 10 | Viewed by 4244
Abstract
This paper analyzes partial demagnetization faults in a five-phase permanent magnet assisted synchronous reluctance motor (fPMa-SynRM) incorporating ferrite permanent magnets (PMs). These faults are relevant because of the application of field weakening, or due to high operating temperatures or short circuit currents, the [...] Read more.
This paper analyzes partial demagnetization faults in a five-phase permanent magnet assisted synchronous reluctance motor (fPMa-SynRM) incorporating ferrite permanent magnets (PMs). These faults are relevant because of the application of field weakening, or due to high operating temperatures or short circuit currents, the PMs can become irreversibly demagnetized, thus affecting the performance and safe operation of the machine. This paper proposes fault indicators to detect such fault modes with low demagnetization levels between 5.0% to 16.7% relative demagnetization. Four partial demagnetization fault detection methods are tested, which are based on the analysis of the harmonic content of the electromotive force (EMF) under no load conditions, the harmonic content of the line currents, the harmonic content of the zero-sequence voltage component (ZSVC) and the analysis of the power factor (PF). This work also compares the sensitivity and performance of the proposed detection methods. According to the fault indicators proposed in this paper, the results show that the analysis of the EMF, ZSVC and PF are the most sensitive detection methods. Experimental results are presented to validate finite element analysis (FEA) simulations. Full article
(This article belongs to the Special Issue Electrical Machine Design 2020)
Show Figures

Graphical abstract

15 pages, 2948 KiB  
Article
Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines
by Carlos Candelo-Zuluaga, Jordi-Roger Riba, Carlos López-Torres and Antoni Garcia
Energies 2019, 12(14), 2733; https://doi.org/10.3390/en12142733 - 17 Jul 2019
Cited by 10 | Viewed by 2975
Abstract
Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes [...] Read more.
Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes the feasibility of detecting such harmful faults in their early stage, with only one short-circuited turn, since there is a lack of works related to this topic in multi-phase fPMa-SynRMs. Two methods are tested for this purpose, the analysis of the spectral content of the zero-sequence voltage component (ZSVC) and the analysis of the stator current spectra, also known as motor current signature analysis (MCSA), which is a well-known fault diagnosis method. This paper compares the performance and sensitivity of both methods under different operating conditions. It is proven that inter-turn faults can be detected in the early stage, with the ZSVC providing more sensitivity than the MCSA method. It is also proven that the working conditions have little effect on the sensitivity of both methods. To conclude, this paper proposes two inter-turn fault indicators and the threshold values to detect such faults in the early stage, which are calculated from the spectral information of the ZSVC and the line currents. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

16 pages, 10648 KiB  
Article
Performance Analysis of Single-Phase Electrical Machine for Military Applications
by Aswin Uvaraj Ganesan, Sathyanarayanan Nandhagopal, Arvind Shiyam Venkat, Sanjeevikumar Padmanaban, John K. Pedersen, Lenin Natesan Chokkalingam and Zbigniew Leonowicz
Energies 2019, 12(12), 2285; https://doi.org/10.3390/en12122285 - 14 Jun 2019
Cited by 2 | Viewed by 2982
Abstract
A permanent magnet assisted synchronous reluctance generator (PMA-SynRG) and an induction generator (IG) were compared for portable generator applications. PMA-SynRG with two rotor configurations, namely rotors with ferrite magnet and NdFeB, were designed. Furthermore, a design strategy for both PMA-SynRG and IG is [...] Read more.
A permanent magnet assisted synchronous reluctance generator (PMA-SynRG) and an induction generator (IG) were compared for portable generator applications. PMA-SynRG with two rotor configurations, namely rotors with ferrite magnet and NdFeB, were designed. Furthermore, a design strategy for both PMA-SynRG and IG is presented with their geometrical dimensions. The machine was designed and results were analyzed using finite element analysis. Results such as flux density, open circuit and full load voltages, torque in generating mode, weight comparison and detailed cost analysis were investigated. In addition, thermal analysis for various ambient conditions (−40 °C, +30 °C, +65 °C) was evaluated for both PMA-SynRG and IG. Furthermore, acoustic versus frequency plot and acoustic pressure level were investigated for both the generators. Finally, the results confirmed that the machine with a higher power-to-weight ratio was the right choice for military applications. Full article
(This article belongs to the Special Issue Electrical Machine Design)
Show Figures

Figure 1

14 pages, 2749 KiB  
Article
Detection of Eccentricity Faults in Five-Phase Ferrite-PM Assisted Synchronous Reluctance Machines
by Carlos López-Torres, Jordi-Roger Riba, Antonio Garcia and Luís Romeral
Appl. Sci. 2017, 7(6), 565; https://doi.org/10.3390/app7060565 - 31 May 2017
Cited by 12 | Viewed by 5755
Abstract
Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs) tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component). However, there is a [...] Read more.
Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs) tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component). However, there is a lack of research dealing with the topic of fault diagnosis in multi-phase PMa-SynRMs, and in particular, those focused on detecting eccentricity faults. An analysis of the spectral components of the line currents and the ZSVC allows the development of fault diagnosis algorithms to detect eccentricity faults. The effect of the operating conditions is also analyzed, since this paper shows that it has a non-negligible impact on the effectivity and sensitivity of the diagnosis based on an analysis of the stator currents and the ZSVC. To this end, different operating conditions are analyzed. The paper also evaluates the influence of the operating conditions on the harmonic content of the line currents and the ZSVC, and determines the most suitable operating conditions to enhance the sensitivity of the analyzed methods. Finally, fault indicators employed to detect eccentricity faults, which are based on the spectral content of the stator currents and the ZSVC, are derived and their performance is assessed. The approach presented in this work may be useful for developing fault diagnosis strategies based on the acquisition and subsequent analysis and interpretation of the spectral content of the line currents and the ZSVC. Full article
(This article belongs to the Special Issue Deep Learning Based Machine Fault Diagnosis and Prognosis)
Show Figures

Figure 1

Back to TopTop