Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = femtosecond pumping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1588 KiB  
Communication
Sub-60 fs, 1300 nm Laser Pulses Generation from Soliton Self-Frequency Shift Pumped by Femtosecond Yb-Doped Fiber Laser
by Hongyuan Xuan, Kong Gao, Xingyang Zou, Ze Zhang, Wenchao Qiao and Yizhou Liu
Photonics 2025, 12(8), 802; https://doi.org/10.3390/photonics12080802 - 10 Aug 2025
Viewed by 325
Abstract
We report on the generation of 1300 nm ultrashort laser pulses via the soliton self-frequency shift in a high-nonlinearity fiber, pumped by the 41.9 MHz, 67.9 fs, 1073 nm femtosecond laser emitted from an Yb-doped fiber laser system. A numerical simulation was applied [...] Read more.
We report on the generation of 1300 nm ultrashort laser pulses via the soliton self-frequency shift in a high-nonlinearity fiber, pumped by the 41.9 MHz, 67.9 fs, 1073 nm femtosecond laser emitted from an Yb-doped fiber laser system. A numerical simulation was applied to investigate the spectral broadening process driven by the soliton self-frequency shift with increased pump power. The experimental results are in good agreement with the numerical results, delivering a 33 mW, 57.8 fs 1300 nm Raman soliton filtered by a longpass filter. The impact of the polarization direction of the injected pump laser on the soliton self-frequency shift process was also further investigated. The root means squares of the Yb-doped fiber laser and the nonlinearly spectral broadened laser were 0.19%@1h and 0.23%@1h, respectively. Full article
Show Figures

Figure 1

8 pages, 10733 KiB  
Article
Integrated NV Center-Based Temperature Sensor for Internal Thermal Monitoring in Optical Waveguides
by Yifan Zhao, Shihan Ding, Shuo Wang, Yiming Hu, Hongliang Liu, Zhen Shang and Yongjian Gu
Sensors 2025, 25(13), 4123; https://doi.org/10.3390/s25134123 - 2 Jul 2025
Viewed by 536
Abstract
Color centers in solids, such as nitrogen-vacancy (NV) centers in diamonds, have gained significant attention in recent years due to their exceptional properties for quantum sensing. In this work, we demonstrate an NV center-based temperature sensor integrated into an optical waveguide to enable [...] Read more.
Color centers in solids, such as nitrogen-vacancy (NV) centers in diamonds, have gained significant attention in recent years due to their exceptional properties for quantum sensing. In this work, we demonstrate an NV center-based temperature sensor integrated into an optical waveguide to enable internal temperature sensing. A surface-cladding optical waveguide was fabricated in a diamond wafer containing NV centers using femtosecond laser direct writing. By analyzing the resonant peaks of optically detected magnetic resonance (ODMR) spectra, we established a precise correlation between temperature changes induced by the pump laser and shifts in the ODMR peak positions. This approach enabled temperature monitoring with a sensitivity of 1.1 mK/Hz. These results highlight the significant potential of color centers in solids for non-contact, micro-scale temperature monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

8 pages, 1287 KiB  
Communication
0.74 W Broadband Degenerate Femtosecond MgO-Doped Periodically Poled Lithium Niobate (MgO: PPLN) Optical Parametric Oscillator at 2056 nm
by Yuxiang Zhao, Bobo Wang, Jinfang Yang, Taotao He, Hao Xu, Xue Qiu, Zhong Dong and Weijun Ling
Photonics 2025, 12(6), 543; https://doi.org/10.3390/photonics12060543 - 27 May 2025
Viewed by 436
Abstract
The degenerate optical parametric oscillator (OPO) is demonstrated to generate high-power, broadband mid-infrared MgO-doped periodically poled lithium niobate (MgO:PPLN) femtosecond laser at 151 MHz, synchronously pumped by a commercial Kerr-lens mode-locked Yb:KGW oscillator at 1028 nm. The average power of the degenerate OPO [...] Read more.
The degenerate optical parametric oscillator (OPO) is demonstrated to generate high-power, broadband mid-infrared MgO-doped periodically poled lithium niobate (MgO:PPLN) femtosecond laser at 151 MHz, synchronously pumped by a commercial Kerr-lens mode-locked Yb:KGW oscillator at 1028 nm. The average power of the degenerate OPO centered at 2056 nm is as high as 740 mW, which is the highest output power from a reported 2 μm degenerate femtosecond OPO, pumped by a bulk solid-state laser. The full width at half maximum (FWHM) spectral bandwidth of the degenerate OPO is 87.4 nm, corresponding to a theoretical, Fourier-limited pulse duration of 51 fs. These remarkable results indicate that degenerate OPO is a great potential candidate technology for generating high-power and few-cycle femtosecond pulses around 2 μm. Such mid-infrared sources are well-suited for high harmonic generation, a pumping source for mid- to far-infrared OPO. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

27 pages, 14431 KiB  
Article
Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene
by Zhaofa Li, Jiawei Peng, Yifei Zhu, Chao Xu, Maxim F. Gelin, Feng Long Gu and Zhenggang Lan
Molecules 2025, 30(7), 1439; https://doi.org/10.3390/molecules30071439 - 24 Mar 2025
Viewed by 872
Abstract
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion [...] Read more.
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer–Miller–Stock–Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode–mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals. Full article
Show Figures

Figure 1

18 pages, 8648 KiB  
Article
The Study of Soliton Mode-Locked and Bound States in Erbium-Doped Fiber Lasers Based on Cr2S3 Saturable Absorbers
by Dong Li, Ruizhan Zhai, Yongjing Wu, Minzhe Liu, Kun Zhao, Qi Yang, Youwei Dong, Xiaoying Li, Xiaoyang Wu and Zhongqing Jia
Materials 2025, 18(4), 864; https://doi.org/10.3390/ma18040864 - 16 Feb 2025
Viewed by 843
Abstract
Femtosecond fiber lasers are widely utilized across various fields and also serve as an ideal platform for studying soliton dynamics. Bound-state solitons, as a significant soliton dynamic phenomenon, attract widespread attention and research interest because of their potential applications in high-speed optical communication, [...] Read more.
Femtosecond fiber lasers are widely utilized across various fields and also serve as an ideal platform for studying soliton dynamics. Bound-state solitons, as a significant soliton dynamic phenomenon, attract widespread attention and research interest because of their potential applications in high-speed optical communication, all-optical information storage, quantum computing, optical switching, and high-resolution spectroscopy. We investigate the effects of pump power variations on the formation of mode-locked solitons and bound-state solitons in a femtosecond fiber laser with a Cr2S3 saturable absorber (SA) through numerical simulations while observing the transition, formation, and break-up process of bound soliton pulses. By optimizing the cavity structure and adjusting the net dispersion, the mode-locked soliton is obtained based on this SA. This is the narrowest solitons produced by this SA to date, exhibiting the smallest time-bandwidth product. Moreover, stable double-bound solitons and unique (2 + 1) triple-bound solitons are successfully obtained. The diverse bound-state solitons not only demonstrate the excellent nonlinear absorption properties of Cr2S3 as a saturable absorber but also expand the scope of applications for Cr2S3 saturable absorbers in fiber lasers. Full article
(This article belongs to the Special Issue Terahertz Materials and Technologies in Materials Science)
Show Figures

Figure 1

13 pages, 4875 KiB  
Article
Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields
by Joong-Mok Park, Zhi Xiang Chong, Richard H. J. Kim, Samuel Haeuser, Randy Chan, Akshay A. Murthy, Cameron J. Kopas, Jayss Marshall, Daniel Setiawan, Ella Lachman, Joshua Y. Mutus, Kameshwar Yadavalli, Anna Grassellino, Alex Romanenko and Jigang Wang
Materials 2025, 18(3), 569; https://doi.org/10.3390/ma18030569 - 27 Jan 2025
Cited by 1 | Viewed by 1320
Abstract
We conducted a comprehensive study of the non-equilibrium dynamics of Cooper pair breaking, quasiparticle (QP) generation, and relaxation in niobium (Nb) cut from superconducting radio-frequency (SRF) cavities, as well as various Nb resonator films from transmon qubits. Using ultrafast pump–probe spectroscopy, we were [...] Read more.
We conducted a comprehensive study of the non-equilibrium dynamics of Cooper pair breaking, quasiparticle (QP) generation, and relaxation in niobium (Nb) cut from superconducting radio-frequency (SRF) cavities, as well as various Nb resonator films from transmon qubits. Using ultrafast pump–probe spectroscopy, we were able to isolate the superconducting coherence and pair-breaking responses. Our results reveal both similarities and notable differences in the temperature- and magnetic-field-dependent dynamics of the SRF cavity and thin-film resonator samples. Moreover, femtosecond-resolved QP generation and relaxation under an applied magnetic field reveals a clear correlation between non-equilibrium QPs and the quality factor of resonators fabricated by using different deposition methods, such as DC sputtering and high-power impulse magnetron sputtering. These findings highlight the pivotal influence of fabrication techniques on the coherence and performance of Nb-based quantum devices, which are vital for applications in superconducting qubits and high-energy superconducting radio-frequency applications. Full article
Show Figures

Figure 1

11 pages, 4528 KiB  
Article
Random Raman Lasing in Diode-Pumped Multi-Mode Graded-Index Fiber with Femtosecond Laser-Inscribed Random Refractive Index Structures of Various Shapes
by Alexey G. Kuznetsov, Zhibzema E. Munkueva, Alexandr V. Dostovalov, Alexey Y. Kokhanovskiy, Polina A. Elizarova, Ilya N. Nemov, Alexandr A. Revyakin, Denis S. Kharenko and Sergey A. Babin
Photonics 2024, 11(10), 981; https://doi.org/10.3390/photonics11100981 - 18 Oct 2024
Viewed by 1215
Abstract
Diode-pumped multi-mode graded-index (GRIN) fiber Raman lasers provide prominent brightness enhancement both in linear and half-open cavities with random distributed feedback via natural Rayleigh backscattering. Femtosecond laser-inscribed random refractive index structures allow for the sufficient reduction in the Raman threshold by means of [...] Read more.
Diode-pumped multi-mode graded-index (GRIN) fiber Raman lasers provide prominent brightness enhancement both in linear and half-open cavities with random distributed feedback via natural Rayleigh backscattering. Femtosecond laser-inscribed random refractive index structures allow for the sufficient reduction in the Raman threshold by means of Rayleigh backscattering signal enhancement by +50 + 66 dB relative to the intrinsic fiber level. At the same time, they offer an opportunity to generate Stokes beams with a shape close to fundamental transverse mode (LP01), as well as to select higher-order modes such as LP11 with a near-1D longitudinal random structure shifted off the fiber axis. Further development of the inscription technology includes the fabrication of 3D ring-shaped random structures using a spatial light modulator (SLM) in a 100/140 μm GRIN multi-mode fiber. This allows for the generation of a multi-mode diode-pumped GRIN fiber random Raman laser at 976 nm with a ring-shaped output beam at a relatively low pumping threshold (~160 W), demonstrated for the first time to our knowledge. Full article
(This article belongs to the Special Issue Advancements in Fiber Lasers and Their Applications)
Show Figures

Figure 1

13 pages, 3446 KiB  
Article
Femtosecond Laser Ablation and Delamination of Functional Magnetic Multilayers at the Nanoscale
by Pavel Varlamov, Jan Marx, Yoav Urbina Elgueta, Andreas Ostendorf, Ji-Wan Kim, Paolo Vavassori and Vasily Temnov
Nanomaterials 2024, 14(18), 1488; https://doi.org/10.3390/nano14181488 - 13 Sep 2024
Cited by 7 | Viewed by 1909
Abstract
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as [...] Read more.
Laser nanostructuring of thin films with ultrashort laser pulses is widely used for nanofabrication across various fields. A crucial parameter for optimizing and understanding the processes underlying laser processing is the absorbed laser fluence, which is essential for all damage phenomena such as melting, ablation, spallation, and delamination. While threshold fluences have been extensively studied for single compound thin films, advancements in ultrafast acoustics, magneto-acoustics, and acousto-magneto-plasmonics necessitate understanding the laser nanofabrication processes for functional multilayer films. In this work, we investigated the thickness dependence of ablation and delamination thresholds in Ni/Au bilayers by varying the thickness of the Ni layer. The results were compared with experimental data on Ni thin films. Additionally, we performed femtosecond time-resolved pump-probe measurements of transient reflectivity in Ni to determine the heat penetration depth and evaluate the melting threshold. Delamination thresholds for Ni films were found to exceed the surface melting threshold suggesting the thermal mechanism in a liquid phase. Damage thresholds for Ni/Au bilayers were found to be significantly lower than those for Ni and fingerprint the non-thermal mechanism without Ni melting, which we attribute to the much weaker mechanical adhesion at the Au/glass interface. This finding suggests the potential of femtosecond laser delamination for nondestructive, energy-efficient nanostructuring, enabling the creation of high-quality acoustic resonators and other functional nanostructures for applications in nanosciences. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

27 pages, 7833 KiB  
Review
Time-Resolved Circular Dichroism in Molecules: Experimental and Theoretical Advances
by Marta Monti, Leonardo Biancorosso and Emanuele Coccia
Molecules 2024, 29(17), 4049; https://doi.org/10.3390/molecules29174049 - 27 Aug 2024
Cited by 1 | Viewed by 3349
Abstract
Following changes in chirality can give access to relevant information on the function or reactivity of molecular systems. Time-resolved circular dichroism (TRCD) spectroscopy proves to be a valid tool to achieve this goal. Depending on the class of molecules, different temporal ranges, spanning [...] Read more.
Following changes in chirality can give access to relevant information on the function or reactivity of molecular systems. Time-resolved circular dichroism (TRCD) spectroscopy proves to be a valid tool to achieve this goal. Depending on the class of molecules, different temporal ranges, spanning from seconds to femtoseconds, need to be investigated to observe such chiroptical changes. Therefore, over the years, several approaches have been adopted to cover the timescale of interest, especially based on pump–probe schemes. Moreover, various theoretical approaches have been proposed to simulate and explain TRCD spectra, including linear and non-linear response methods as well as non-adiabatic molecular dynamics. In this review, an overview on both experimental and theoretical advances in the TRCD field is provided, together with selected applications. A discussion on future theoretical developments for TRCD is also given. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Figure 1

7 pages, 2029 KiB  
Communication
A Chirped Characteristic-Tunable Terahertz Source for Terahertz Sensing
by Feilong Gao, Mingzhe Jiang and Shaodong Hou
Sensors 2024, 24(16), 5419; https://doi.org/10.3390/s24165419 - 22 Aug 2024
Cited by 1 | Viewed by 1039
Abstract
In broadband terahertz waves generated by femtosecond lasers, spatial chirp will be simultaneously produced with the introduction of angular dispersion. The chirp characteristics of the terahertz wave will directly affect the frequency response, bandwidth response, and intensity response of the terahertz sensor. To [...] Read more.
In broadband terahertz waves generated by femtosecond lasers, spatial chirp will be simultaneously produced with the introduction of angular dispersion. The chirp characteristics of the terahertz wave will directly affect the frequency response, bandwidth response, and intensity response of the terahertz sensor. To enhance the capability of terahertz sensors, it is necessary to control and improve the chirped characteristics of broadband terahertz sources. We generate a chirped terahertz wave via optical rectification in a LiNbO3 prism using the technique of pulse front tilt. The effect of the pump-beam spot size on THz generation is systematically studied. The pump’s spot size is manipulated using a telescope system. With a pump spot diameter of 1.8 mm, the scanning spectrum of the THz pulse is narrower and is divided into multiple distinct peaks. In contrast, using a pump spot diameter of 3.7 mm leads to increased efficiency in the generation of THz pulses. Also, we investigate the underlying properties governing the generation of chirped terahertz pulses using varying pump pulse spot diameters. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

8 pages, 1830 KiB  
Article
Femtosecond Laser-Written Small-Period Long-Period Fiber Grating for an L-Band Normal Dispersion Mode-Locked Fiber Laser
by Qianying Li, Peiyun Cheng, Rong Zhao and Xuewen Shu
Photonics 2024, 11(8), 693; https://doi.org/10.3390/photonics11080693 - 25 Jul 2024
Cited by 1 | Viewed by 1603
Abstract
We utilize a femtosecond laser-inscribed small-period long-period fiber grating (SP-LPFG) to induce a nonlinear polarization rotation (NPR) effect for mode-locking pulses in a normal dispersion erbium-doped fiber laser (EDFL). The SP-LPFG has a length of 2.5 mm and a period of 25 μm. [...] Read more.
We utilize a femtosecond laser-inscribed small-period long-period fiber grating (SP-LPFG) to induce a nonlinear polarization rotation (NPR) effect for mode-locking pulses in a normal dispersion erbium-doped fiber laser (EDFL). The SP-LPFG has a length of 2.5 mm and a period of 25 μm. At wavelengths of 1556 nm and 1561 nm, it exhibits polarization-dependent loss (PDL) values of 20 dB and 14.5 dB, respectively, sufficient to trigger the NPR mechanism. With the pump power increased to 500 mW, the laser achieves normal dispersion mode-locked pulses centered at 1575 nm in the L-band, with a 3 dB bandwidth of 1.35 nm and a pulse width of 1.61 ps. The radio frequency (RF) spectrum reveals an signal-to-noise ratio (SNR) of up to 63.6 dB, demonstrating the excellent stability of the laser operation. This SP-LPFG holds promising applications, paving the way for efficient, compact, and stable normal dispersion ultrafast fiber lasers. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Fiber Laser)
Show Figures

Figure 1

10 pages, 2954 KiB  
Communication
Polarization-Dependent Formation of Extremely Compressed Femtosecond Wave Packets and Supercontinuum Generation in Fused Silica
by Ilia Geints and Olga Kosareva
Photonics 2024, 11(7), 620; https://doi.org/10.3390/photonics11070620 - 28 Jun 2024
Viewed by 1034
Abstract
Previous studies of formation of extremely compressed wave packets during femtosecond filamentation in the region of anomalous group velocity dispersion in solid dielectrics mostly considered the case of linearly polarized laser pulses. However, recent results suggest potential applications of polarization state manipulation for [...] Read more.
Previous studies of formation of extremely compressed wave packets during femtosecond filamentation in the region of anomalous group velocity dispersion in solid dielectrics mostly considered the case of linearly polarized laser pulses. However, recent results suggest potential applications of polarization state manipulation for ultrafast laser writing of optical structures in bulk solid-state media. In the present work, evolution of radiation polarization parameters during formation of such extreme wave packets at the pump wavelength of 1900 nm in fused silica is studied numerically on the basis of the carrier-resolved unidirectional pulse propagation equation (UPPE). It was revealed that initial close-to-circular polarization leads to higher intensity of the anti-Stokes wing in the spectrum of the generated supercontinuum. Numerical simulations indicate a complex, space–time variant polarization state, and the resulting spatiotemporal electric field distribution exhibits a strong dependence on the initial polarization of the femtosecond pulse. At the same time, electric field polarization tends to linear one in the region with the highest field strength regardless of the initial parameters. The origin of this behavior is attributed to the properties of the supercontinuum components generation during filament-induced plasma formation. Full article
(This article belongs to the Special Issue Ultrafast Intense Laser Filamentation and Beyond)
Show Figures

Figure 1

17 pages, 13676 KiB  
Article
A Near Fourier-Limited Pulse-Preserving Monochromator for Extreme-Ultraviolet Pulses in the Few-Fs Regime
by Yudong Yang, Tanja Neumann, Julia Hengster, Roland E. Mainz, Jakob Elsner, Oliver D. Mücke, Franz X. Kärtner and Thorsten Uphues
Photonics 2024, 11(6), 525; https://doi.org/10.3390/photonics11060525 - 1 Jun 2024
Viewed by 1352
Abstract
We present a pulse-preserving multilayer-based extreme-ultraviolet (XUV) monochromator providing ultra-narrow bandwidth (ΔE<0.6eV, Ec=92eV) and compact footprint (28×10cm2) for easy integration into high-harmonic generation (HHG) or free-electron [...] Read more.
We present a pulse-preserving multilayer-based extreme-ultraviolet (XUV) monochromator providing ultra-narrow bandwidth (ΔE<0.6eV, Ec=92eV) and compact footprint (28×10cm2) for easy integration into high-harmonic generation (HHG) or free-electron laser (FEL) sources. The temporal resolution of the novel design supports pulse durations of typical pump–probe setups in the femtosecond and attosecond regime, depending on the mirror design and focusing geometries over the tuning range of the monochromator. The theoretical design is analyzed and experimentally characterized in a laser-driven HHG setup. Full article
Show Figures

Figure 1

20 pages, 2719 KiB  
Article
The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source
by Cali Antolini, Victor Sosa Alfaro, Marco Reinhard, Gourab Chatterjee, Ryan Ribson, Dimosthenis Sokaras, Leland Gee, Takahiro Sato, Patrick L. Kramer, Sumana Laxmi Raj, Brandon Hayes, Pamela Schleissner, Angel T. Garcia-Esparza, Jinkyu Lim, Jeffrey T. Babicz, Alec H. Follmer, Silke Nelson, Matthieu Chollet, Roberto Alonso-Mori and Tim B. van Driel
Molecules 2024, 29(10), 2323; https://doi.org/10.3390/molecules29102323 - 15 May 2024
Cited by 4 | Viewed by 2474
Abstract
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires [...] Read more.
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump–probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE. Full article
(This article belongs to the Special Issue Photochemical Studies of Metal Complexes)
Show Figures

Graphical abstract

11 pages, 2702 KiB  
Article
Low-Threshold Anti-Stokes Raman Microlaser on Thin-Film Lithium Niobate Chip
by Jianglin Guan, Jintian Lin, Renhong Gao, Chuntao Li, Guanghui Zhao, Minghui Li, Min Wang, Lingling Qiao and Ya Cheng
Materials 2024, 17(5), 1042; https://doi.org/10.3390/ma17051042 - 24 Feb 2024
Cited by 2 | Viewed by 2043
Abstract
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based [...] Read more.
Raman microlasers form on-chip versatile light sources by optical pumping, enabling numerical applications ranging from telecommunications to biological detection. Stimulated Raman scattering (SRS) lasing has been demonstrated in optical microresonators, leveraging high Q factors and small mode volume to generate downconverted photons based on the interaction of light with the Stokes vibrational mode. Unlike redshifted SRS, stimulated anti-Stokes Raman scattering (SARS) further involves the interplay between the pump photon and the SRS photon to generate an upconverted photon, depending on a highly efficient SRS signal as an essential prerequisite. Therefore, achieving SARS in microresonators is challenging due to the low lasing efficiencies of integrated Raman lasers caused by intrinsically low Raman gain. In this work, high-Q whispering gallery microresonators were fabricated by femtosecond laser photolithography assisted chemo-mechanical etching on thin-film lithium niobate (TFLN), which is a strong Raman-gain photonic platform. The high Q factor reached 4.42 × 106, which dramatically increased the circulating light intensity within a small volume. And a strong Stokes vibrational frequency of 264 cm−1 of lithium niobate was selectively excited, leading to a highly efficient SRS lasing signal with a conversion efficiency of 40.6%. And the threshold for SRS was only 0.33 mW, which is about half the best record previously reported on a TFLN platform. The combination of high Q factors, a small cavity size of 120 μm, and the excitation of a strong Raman mode allowed the formation of SARS lasing with only a 0.46 mW pump threshold. Full article
Show Figures

Figure 1

Back to TopTop