Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (139)

Search Parameters:
Keywords = feed-forward backpropagation network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7473 KB  
Article
Modeling the Soil Surface Temperature–Wind Speed–Evaporation Relationship Using a Feedforward Backpropagation ANN in Al Medina, Saudi Arabia
by Samyah Salem Refadah, Sultan AlAbadi, Mansour Almazroui, Mohammad Ayaz Khan, Mohamed ElKashouty and Mohd Yawar Ali Khan
Technologies 2025, 13(10), 461; https://doi.org/10.3390/technologies13100461 - 12 Oct 2025
Viewed by 238
Abstract
Artificial neural networks (ANNs) offer considerable advantages in predicting evaporation (EVAP), particularly in handling nonlinear relationships and complex interactions among factors like soil surface temperature (SST) and wind speed (WS). In Al Medina, Saudi Arabia, the connections [...] Read more.
Artificial neural networks (ANNs) offer considerable advantages in predicting evaporation (EVAP), particularly in handling nonlinear relationships and complex interactions among factors like soil surface temperature (SST) and wind speed (WS). In Al Medina, Saudi Arabia, the connections among WS, SST at 5 cm, SST at 10 cm, and EVAP have been modeled using an ANN. This study demonstrates the practical effectiveness and applicability of the approach in simulating complex nonlinear dynamics in real-life systems. The modeling process employs time series data for WS, SST at both 5 cm and 10 cm, and EVAP, gathered from January to December (2002–2010). Four ANNs labeled T1–T4 were developed and trained with the feedforward backpropagation (FFBP) algorithm using MATLAB routines, each featuring a distinct configuration. The networks were further refined through the enumeration technique, ultimately selecting the most efficient network for forecasting EVAP values. The results from the ANN model are compared with the actual measured EVAP values. The mean square error (MSE) values for the optimal network topology are 0.00343, 0.00394, 0.00309, and 0.00306 for T1, T2, T3, and T4, respectively. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

27 pages, 1321 KB  
Article
Learnable Petri Net Neural Network Using Max-Plus Algebra
by Mohammed Sharafath Abdul Hameed, Sofiene Lassoued and Andreas Schwung
Mach. Learn. Knowl. Extr. 2025, 7(3), 100; https://doi.org/10.3390/make7030100 - 13 Sep 2025
Viewed by 480
Abstract
Interpretable decision-making algorithms are important when used in the context of production optimization. While concepts like Petri nets are inherently interpretable, they are not straightforwardly learnable. This paper presents a novel approach to transform the Petri net model into a learnable entity. This [...] Read more.
Interpretable decision-making algorithms are important when used in the context of production optimization. While concepts like Petri nets are inherently interpretable, they are not straightforwardly learnable. This paper presents a novel approach to transform the Petri net model into a learnable entity. This is accomplished by establishing a relationship between the Petri net description in the event domain, its representation in the max-plus algebra, and a one-layer perceptron neural network. This allows us to apply standard supervised learning methods adapted to the max-plus domain to infer the parameters of the Petri net. To this end, the feed-forward and back-propagation paths are modified to accommodate the differing mathematical operations in the context of max-plus algebra. We apply our approach to a multi-robot handling system with potentially varying processing and operation times. The results show that essential timing parameters can be inferred from data with high precision. Full article
Show Figures

Figure 1

15 pages, 1993 KB  
Article
AI-Driven Firmness Prediction of Kiwifruit Using Image-Based Vibration Response Analysis
by Seyedeh Fatemeh Nouri, Saman Abdanan Mehdizadeh and Yiannis Ampatzidis
Sensors 2025, 25(17), 5279; https://doi.org/10.3390/s25175279 - 25 Aug 2025
Viewed by 948
Abstract
Accurate and non-destructive assessment of fruit firmness is critical for evaluating quality and ripeness, particularly in postharvest handling and supply chain management. This study presents the development of an image-based vibration analysis system for evaluating the firmness of kiwifruit using computer vision and [...] Read more.
Accurate and non-destructive assessment of fruit firmness is critical for evaluating quality and ripeness, particularly in postharvest handling and supply chain management. This study presents the development of an image-based vibration analysis system for evaluating the firmness of kiwifruit using computer vision and machine learning. In the proposed setup, 120 kiwifruits were subjected to controlled excitation in the frequency range of 200–300 Hz using a vibration motor. A digital camera captured surface displacement over time (for 20 s), enabling the extraction of key dynamic features, namely, the damping coefficient (damping is a measure of a material’s ability to dissipate energy) and natural frequency (the first peak in the frequency spectrum), through image processing techniques. Results showed that firmer fruits exhibited higher natural frequencies and lower damping, while softer, more ripened fruits showed the opposite trend. These vibration-based features were then used as inputs to a feed-forward backpropagation neural network to predict fruit firmness. The neural network consisted of an input layer with two neurons (damping coefficient and natural frequency), a hidden layer with ten neurons, and an output layer representing firmness. The model demonstrated strong predictive performance, with a correlation coefficient (R2) of 0.9951 and a root mean square error (RMSE) of 0.0185, confirming its high accuracy. This study confirms the feasibility of using vibration-induced image data combined with machine learning for non-destructive firmness evaluation. The proposed method provides a reliable and efficient alternative to traditional firmness testing techniques and offers potential for real-time implementation in automated grading and quality control systems for kiwi and other fruit types. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

19 pages, 3719 KB  
Article
Simulating the Impacts of Climate Change on the Hydrology of Doğancı Dam in Bursa, Turkey, Using Feed-Forward Neural Networks
by Aslıhan Katip and Asifa Anwar
Sustainability 2025, 17(14), 6273; https://doi.org/10.3390/su17146273 - 9 Jul 2025
Viewed by 1198
Abstract
Climate change continues to pose significant challenges to global water security, with dams being particularly vulnerable to hydrological cycle alterations. This study investigated the climate-based impact on the hydrology of the Doğancı dam, located in Bursa, Turkey, using feed-forward neural networks (FNNs). The [...] Read more.
Climate change continues to pose significant challenges to global water security, with dams being particularly vulnerable to hydrological cycle alterations. This study investigated the climate-based impact on the hydrology of the Doğancı dam, located in Bursa, Turkey, using feed-forward neural networks (FNNs). The modeling used meteorological parameters as inputs. The employed FNN comprised one input, hidden, and output layer. The efficacy of the models was evaluated by comparing the correlation coefficients (R), mean squared errors (MSE), and mean absolute percentage errors (MAPE). Furthermore, two training algorithms, namely Levenberg-Marquardt and resilient backpropagation, were employed to determine the algorithm that yields more accurate output predictions. The findings of the study showed that the model using air temperature, solar radiation, solar intensity, evaporation, and evapotranspiration as predictors for the water budget and water level of the Doğancı dam exhibited the lowest MSE (0.59) and MAPE (1.31%) and the highest R (0.99) compared to other models under LM training. The statistical analysis determined no significant difference (p > 0.05) between the Levenberg and Marquardt and resilient backpropagation training algorithms. However, a visual interpretation revealed that the Levenberg-Marquardt algorithm outperformed the resilient backpropagation, yielding lower errors, higher correlation values, and faster convergence for the models tested in this study. The novelty of this study lies in the use of certain meteorological inputs, particularly snow depth, for dam inflow forecasting, which has seldom been explored. Moreover, this study compared two widely used ANN training algorithms and applied the modeling framework to a region of strategic importance for Turkey’s water security. This study highlights the effectiveness of ANN-based modeling for hydrological forecasting and determining climate-induced impacts on water bodies such as dams and reservoirs. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

11 pages, 770 KB  
Technical Note
Swelling Prediction for Fissured Expansive Soil Used in Dam Construction, Based on a BP Neural Network
by Shuangping Li, Han Tang, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Junxing Zheng
Intell. Infrastruct. Constr. 2025, 1(1), 4; https://doi.org/10.3390/iic1010004 - 30 May 2025
Viewed by 941
Abstract
Fissured expansive soils exhibit pronounced moisture-induced swelling, posing significant risks to the stability of geotechnical structures such as dam foundations and core zones. To improve predictive capacity in such environments, this study developed a back-propagation (BP) neural network model to estimate the swelling [...] Read more.
Fissured expansive soils exhibit pronounced moisture-induced swelling, posing significant risks to the stability of geotechnical structures such as dam foundations and core zones. To improve predictive capacity in such environments, this study developed a back-propagation (BP) neural network model to estimate the swelling behavior of fissured expansive soils. The model incorporated four key geotechnical parameters—fissure ratio, dry density, initial moisture content, and overburden pressure—and was implemented in MATLAB using a three-layer feedforward architecture with four inputs, five hidden neurons, and a single output neuron to predict the swelling ratio (increase in specimen height due to water-induced expansion). The model was trained on 81 laboratory-tested samples, with all variables normalized to the range [−1, 1] to ensure numerical stability. Two training algorithms were evaluated: gradient descent with momentum (traingdm) and the Fletcher–Reeves conjugate gradient method (traincgf). The optimal network configuration achieved a mean squared error (MSE) below 0.01, indicating strong predictive accuracy for expansive soil swelling behavior. Comparative results showed that the conjugate gradient algorithm converged nearly 30 times faster than the gradient descent method, while maintaining similar prediction accuracy. Validation on an independent dataset confirmed high agreement with measured swelling ratios. The proposed BP model demonstrates robust generalization and computational efficiency, offering a practical decision-support tool for expansive soil deformation control in dam engineering. Its rapid and accurate predictions make it valuable for Smart City applications such as embankment stabilization, intelligent dam core design, and real-time geotechnical risk assessment. Full article
Show Figures

Figure 1

20 pages, 6608 KB  
Article
Leveraging Intelligent Machines for Sustainable and Intelligent Manufacturing Systems
by Somkiat Tangjitsitcharoen, Nattawut Suksomcheewin and Alessio Faccia
J. Manuf. Mater. Process. 2025, 9(5), 153; https://doi.org/10.3390/jmmp9050153 - 6 May 2025
Viewed by 956
Abstract
This study presents an intelligent machine developed for real-time quality monitoring during CNC turning, aimed at improving cutting efficiency and reducing production energy. A dynamometer integrated into the CNC machine captures decomposed cutting forces using the Daubechies wavelet transform. These force ratios are [...] Read more.
This study presents an intelligent machine developed for real-time quality monitoring during CNC turning, aimed at improving cutting efficiency and reducing production energy. A dynamometer integrated into the CNC machine captures decomposed cutting forces using the Daubechies wavelet transform. These force ratios are correlated with key workpiece dimensions: surface roughness, average roughness, straightness, and roundness. Two predictive models—nonlinear regression and a feed-forward neural network with Levenberg–Marquardt backpropagation—are employed to estimate these parameters under varying cutting conditions. Experimental results indicate that nonlinear regression models outperform neural networks in predictive accuracy. The proposed system offers effective in-process control of machining quality, contributing to shorter cycle times, lower defect rates, and more sustainable manufacturing practices. Full article
Show Figures

Figure 1

19 pages, 2108 KB  
Article
Modeling the Influence of Climate Change on the Water Quality of Doğancı Dam in Bursa, Turkey, Using Artificial Neural Networks
by Aslıhan Katip and Asifa Anwar
Water 2025, 17(5), 728; https://doi.org/10.3390/w17050728 - 2 Mar 2025
Cited by 2 | Viewed by 1597
Abstract
Population growth, industrialization, excessive energy consumption, and deforestation have led to climate change and affected water resources like dams intended for public drinking water. Meteorological parameters could be used to understand these effects better to anticipate the water quality of the dam. Artificial [...] Read more.
Population growth, industrialization, excessive energy consumption, and deforestation have led to climate change and affected water resources like dams intended for public drinking water. Meteorological parameters could be used to understand these effects better to anticipate the water quality of the dam. Artificial neural networks (ANNs) are favored in hydrology due to their accuracy and robustness. This study modeled climatic effects on the water quality of Doğancı dam using a feed-forward neural network with one input, one hidden, and one output layer. Three models were tested using various combinations of meteorological data as input and Doğancı dam’s water quality data as output. Model success was determined by the mean squared error and correlation coefficient (R) between the observed and predicted data. Resilient back-propagation and Levenberg–Marquardt were tested for each model to find an appropriate training algorithm. The model with the least error (1.12–1.68) and highest R value (0.93–0.99) used three meteorological inputs (air temperature, global solar radiation, and solar intensity), six water quality parameters of Doğancı dam as output (water temperature, pH, dissolved oxygen, manganese, arsenic, and iron concentrations), and ten hidden nodes. The two training algorithms employed in this study did not differ statistically (p > 0.05). However, the Levenberg–Marquardt training approach demonstrated a slight advantage over the resilient back-propagation algorithm by achieving reduced error and higher correlation in most of the models tested in this study. Also, better convergence and faster training with a lesser gradient value were noted for the LM algorithm. It was concluded that ANNs could predict a dam’s water quality using meteorological data, making it a useful tool for climatological water quality management and contributing to sustainable water resource planning. Full article
Show Figures

Graphical abstract

20 pages, 8692 KB  
Article
Forecasting Model for Danube River Water Temperature Using Artificial Neural Networks
by Cristina-Sorana Ionescu, Ioana Opriș, Daniela-Elena Gogoașe Nistoran and Constantin-Alexandru Baciu
Hydrology 2025, 12(2), 21; https://doi.org/10.3390/hydrology12020021 - 21 Jan 2025
Viewed by 1910
Abstract
The objective of this paper is to propose an artificial neural network (ANN) model to forecast the Danube River temperature at Chiciu–Călărași, Romania, bordered by Romanian and Bulgarian ecological sites, and situated upstream of the Cernavoda nuclear power plant. Given the temperature increase [...] Read more.
The objective of this paper is to propose an artificial neural network (ANN) model to forecast the Danube River temperature at Chiciu–Călărași, Romania, bordered by Romanian and Bulgarian ecological sites, and situated upstream of the Cernavoda nuclear power plant. Given the temperature increase trend, the potential of thermal pollution is rising, impacting aquatic and terrestrial ecosystems. The available data covered a period of eight years, between 2008 and 2015. Using as input data actual air and water temperatures, and discharge, as well as air temperature data provided by weather forecasts, the ANN model predicts the Danube water temperature one week in advance with a root mean square deviation (RMSE) of 0.954 °C for training and 0.803 °C for testing. The ANN uses the Levenberg–Marquardt feedforward backpropagation algorithm. This feature is useful for the irrigation systems and for the power plants in the area that use river water for different purposes. The results are encouraging for developing similar studies in other locations and extending the ANN model to include more parameters that can have a significant influence on water temperature. Full article
Show Figures

Figure 1

29 pages, 11635 KB  
Article
A Feed-Forward Back-Propagation Neural Network Approach for Integration of Electric Vehicles into Vehicle-to-Grid (V2G) to Predict State of Charge for Lithium-Ion Batteries
by Alice Cervellieri
Energies 2024, 17(23), 6107; https://doi.org/10.3390/en17236107 - 4 Dec 2024
Cited by 2 | Viewed by 1171
Abstract
The accurate prediction and efficient management of the State of Charge (SoC) of electric vehicle (EV) batteries are critical challenges in the integration of vehicle-to-grid (V2G) systems within multi-energy microgrid (MMO) models. Inaccurate SoC estimation can lead to inefficiencies, increased costs, and potential [...] Read more.
The accurate prediction and efficient management of the State of Charge (SoC) of electric vehicle (EV) batteries are critical challenges in the integration of vehicle-to-grid (V2G) systems within multi-energy microgrid (MMO) models. Inaccurate SoC estimation can lead to inefficiencies, increased costs, and potential disruptions in power generation. This paper addresses the problem of optimizing SoC estimation to enhance the reliability and efficiency of V2G scheduling and MMO coordination. In this work, we develop a Feed-Forward Back-Propagation Network (FFBPN) using MATLAB 2024 software, employing the Levenberg–Marquardt algorithm and varying the number of hidden neurons to achieve better performance; performance was measured by the maximum coefficient of determination (R2) and the minimum mean squared error (MSE). Utilizing the NASA Prognostics Center of Excellence (PCoE) dataset, we validate the model’s capability to accurately predict the life cycle of EV batteries. Our proposed FFBPN model demonstrates superior performance compared to existing methods from the literature, offering significant implications for future V2G system developments. The comparison between training, validation, and testing phases underscores the model’s validity and precisely identifies the characteristic curves of FFBPN, showcasing its potential to enhance profitability, efficiency, production, energy savings, and minimize environmental impact. Full article
(This article belongs to the Special Issue Advances in Battery Technologies for Electric Vehicles)
Show Figures

Figure 1

22 pages, 14889 KB  
Article
Optimizing High-Performance Predictive Modeling of the Medium-Speed WEDM Processing of Inconel 718
by Osama Salem, Mahmoud Hewidy, Dong Won Jung and Choon Man Lee
J. Manuf. Mater. Process. 2024, 8(5), 206; https://doi.org/10.3390/jmmp8050206 - 22 Sep 2024
Cited by 2 | Viewed by 1653
Abstract
The purpose of this research was to create a predictive model for a medium-speed wire electrical discharge machine (WEDM) utilizing an artificial neural network (ANN). Medium-speed WEDM experiments were developed based on the I-optimal mixture design for machining, the Inconel 718 superalloy. During [...] Read more.
The purpose of this research was to create a predictive model for a medium-speed wire electrical discharge machine (WEDM) utilizing an artificial neural network (ANN). Medium-speed WEDM experiments were developed based on the I-optimal mixture design for machining, the Inconel 718 superalloy. During the experiment, the input parameters were the spark ontime, spark offtime, wire feed, and current, with the material removal rate (MRR) and surface roughness (Ra) selected as performance indicators. The ANN model was trained on experimental data and built using a feed-forward backpropagation neural network with a (4-8-2) structure and the Bayesian regularization (BR) learning approach. The model correctly predicted the relationship between the medium-speed WEDM’s primary process parameters and machining performance. An integrated ANN model and the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) were used to determine the ideal parameters for the MRR and Ra, resulting in a set of Pareto-optimal solutions. The confirmation experiment revealed that the mean prediction error between the experimental and ideal solutions had a maximum error percentage of 1% for the MRR and 2% for the Ra, which are within acceptable ranges. This showed that the best process–parameter combinations were better for the MRR and Ra. Full article
Show Figures

Graphical abstract

16 pages, 4551 KB  
Article
Artificial Intelligence Model Used for Optimizing Abrasive Water Jet Machining Parameters to Minimize Delamination in Carbon Fiber-Reinforced Polymer
by Ioan Alexandru Popan, Vlad I. Bocăneț, Selver Softic, Alina Ioana Popan, Nicolae Panc and Nicolae Balc
Appl. Sci. 2024, 14(18), 8512; https://doi.org/10.3390/app14188512 - 21 Sep 2024
Cited by 6 | Viewed by 2199
Abstract
This study introduces an artificial neural network (ANN) model for optimizing process parameters to reduce the chances of delamination in carbon fiber-reinforced polymer (CFRP) materials during abrasive water jet (AWJ) piercing. AWJ is a proper method for cutting CFRP. The initial step in [...] Read more.
This study introduces an artificial neural network (ANN) model for optimizing process parameters to reduce the chances of delamination in carbon fiber-reinforced polymer (CFRP) materials during abrasive water jet (AWJ) piercing. AWJ is a proper method for cutting CFRP. The initial step in this process is AWJ piercing, which creates entry holes in the material to facilitate further cutting operations. However, AWJ piercing is particularly challenging due to the high energy applied to the material. If it is not properly controlled, this high-energy impact can cause material delamination. Avoiding CFRP delamination is a critical aspect when expensive parts are processed with AWJ, particularly in the aerospace and automotive industries. This can compromise the CFRP workpiece, and this induces extra costs for rework. The ANN model was trained using backpropagation to predict delamination. It features a feed-forward architecture that balances model complexity and performance. Validation showed that the ANN model effectively predicted optimal process parameters, eliminating delamination in machined CFRP parts. This study underscores the potential of ANNs in enhancing AWJ piercing processes and provides a robust and reliable method of improving the quality of CFRP parts. Full article
(This article belongs to the Special Issue Advancement in Smart Manufacturing and Industry 4.0)
Show Figures

Figure 1

26 pages, 767 KB  
Tutorial
Hands-On Fundamentals of 1D Convolutional Neural Networks—A Tutorial for Beginner Users
by Ilaria Cacciari and Anedio Ranfagni
Appl. Sci. 2024, 14(18), 8500; https://doi.org/10.3390/app14188500 - 20 Sep 2024
Cited by 8 | Viewed by 11424
Abstract
In recent years, deep learning (DL) has garnered significant attention for its successful applications across various domains in solving complex problems. This interest has spurred the development of numerous neural network architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial [...] Read more.
In recent years, deep learning (DL) has garnered significant attention for its successful applications across various domains in solving complex problems. This interest has spurred the development of numerous neural network architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and the more recently introduced Transformers. The choice of architecture depends on the data characteristics and the specific task at hand. In the 1D domain, one-dimensional CNNs (1D CNNs) are widely used, particularly for tasks involving the classification and recognition of 1D signals. While there are many applications of 1D CNNs in the literature, the technical details of their training are often not thoroughly explained, posing challenges for those developing new libraries in languages other than those supported by available open-source solutions. This paper offers a comprehensive, step-by-step tutorial on deriving feedforward and backpropagation equations for 1D CNNs, applicable to both regression and classification tasks. By linking neural networks with linear algebra, statistics, and optimization, this tutorial aims to clarify concepts related to 1D CNNs, making it a valuable resource for those interested in developing new libraries beyond existing ones. Full article
(This article belongs to the Special Issue Advances in Neural Networks and Deep Learning)
Show Figures

Figure 1

27 pages, 5838 KB  
Article
Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins
by Talent Diotrefe Banda and Muthukrishnavellaisamy Kumarasamy
Water 2024, 16(11), 1485; https://doi.org/10.3390/w16111485 - 23 May 2024
Cited by 11 | Viewed by 3215
Abstract
Artificial neural networks (ANNs) are powerful data-oriented “black-box” algorithms capable of assessing and delineating linear and multifaceted non-linear correlations between the dependent and explanatory variables. Through the years, neural networks have proven to be effective and robust analytical techniques for establishing artificial intelligence-based [...] Read more.
Artificial neural networks (ANNs) are powerful data-oriented “black-box” algorithms capable of assessing and delineating linear and multifaceted non-linear correlations between the dependent and explanatory variables. Through the years, neural networks have proven to be effective and robust analytical techniques for establishing artificial intelligence-based tools for modelling, estimating, and projecting spatial and temporal variations in water bodies. Accordingly, ANN-based algorithms gained increased attention and have emerged as practical alternatives to traditional approaches for hydro-chemical analysis. ANNs are among the widely used computer systems for modelling surface water quality. Considering their wide recognition, resilience, flexibility, and accuracy, the current study employs a neural network-based methodology to construct a novel water quality index (WQI) model suitable for analysing South African rivers. The feed-forward, back-propagated multilayered perceptron model has three parallel-distributed neuron layers interconnected with seventy weighted links orientated laterally from left to right. First, the input layer includes thirteen neuro-nodes symbolising thirteen explanatory variables, including NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, NO3, pH, SO4, and turbidity (NTU). Second, the hidden layer consists of eleven neuro-nodes accountable for computational tasks. Lastly, the output layer features one neuron responsible for conveying network outcomes using a single-digit WQI rating extending from zero to one hundred, where zero represents substandard water quality and one hundred denotes exceptional water quality. The AI-based model was developed using water quality data obtained from six monitoring locations within four drainage basins under the management of the Umgeni Water Board in the KwaZulu-Natal Province of South Africa. The dataset comprises 416 samples randomly divided into training, testing, and validation sets using a proportional split of 70:15:15%. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) technique was utilised to conduct backpropagation training and adjust synapse weights. The dependent variables are the WQI scores from the universal water quality index (UWQI) model developed specifically for South African river basins. The ANN demonstrated enhanced efficiency through an overall correlation coefficient (R) of 0.985. Furthermore, the neural network attained R-values of 0.987, 0.992, and 0.977 for the training, testing, and validation intervals. The ANN model achieved a Nash–Sutcliffe efficiency (NSE) value of 0.974 and coefficient of determination (R2) of 0.970. Sensitivity analysis provided additional validation of the preparedness and computational competence of the ANN model. The typical target-to-output error tolerance for the ANN model is 0.242, demonstrating an adequate predictive ability to deliver results comparable with the target UWQI, having the lowest and highest index ratings of 75.995 and 94.420, respectively. Accordingly, the three-layer neural network is scientifically sound, with index values and water quality evaluations corresponding to the UWQI results. The current research project seeks to document the processes used and the outcomes obtained. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

37 pages, 21095 KB  
Article
Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304
by Marwan T. Mezher, Alejandro Pereira, Tomasz Trzepieciński and Jorge Acevedo
Materials 2024, 17(9), 2167; https://doi.org/10.3390/ma17092167 - 6 May 2024
Cited by 12 | Viewed by 2107
Abstract
The automobile industry relies primarily on spot welding operations, particularly resistance spot welding (RSW). The performance and durability of the resistance spot-welded joints are significantly impacted by the welding quality outputs, such as the shear force, nugget diameter, failure mode, and the hardness [...] Read more.
The automobile industry relies primarily on spot welding operations, particularly resistance spot welding (RSW). The performance and durability of the resistance spot-welded joints are significantly impacted by the welding quality outputs, such as the shear force, nugget diameter, failure mode, and the hardness of the welded joints. In light of this, the present study sought to determine how the aforementioned welding quality outputs of 0.5 and 1 mm thick austenitic stainless steel AISI 304 were affected by RSW parameters, such as welding current, welding time, pressure, holding time, squeezing time, and pulse welding. In order to guarantee precise evaluation and experimental analysis, it is essential that they are supported by a numerical model using an intelligent model. The primary objective of this research is to develop and enhance an intelligent model employing artificial neural network (ANN) models. This model aims to provide deeper knowledge of how the RSW parameters affect the quality of optimum joint behavior. The proposed neural network (NN) models were executed using different ANN structures with various training and transfer functions based on the feedforward backpropagation approach to find the optimal model. The performance of the ANN models was evaluated in accordance with validation metrics, like the mean squared error (MSE) and correlation coefficient (R2). Assessing the experimental findings revealed the maximum shear force and nugget diameter emerged to be 8.6 kN and 5.4 mm for the case of 1–1 mm, 3.298 kN and 4.1 mm for the case of 0.5–0.5 mm, and 4.031 kN and 4.9 mm for the case of 0.5–1 mm. Based on the results of the Pareto charts generated by the Minitab program, the most important parameter for the 1–1 mm case was the welding current; for the 0.5–0.5 mm case, it was pulse welding; and for the 0.5–1 mm case, it was holding time. When looking at the hardness results, it is clear that the nugget zone is much higher than the heat-affected zone (HZ) and base metal (BM) in all three cases. The ANN models showed that the one-output shear force model gave the best prediction, relating to the highest R and the lowest MSE compared to the one-output nugget diameter model and two-output structure. However, the Levenberg–Marquardt backpropagation (Trainlm) training function with the log sigmoid transfer function recorded the best prediction results of both ANN structures. Full article
(This article belongs to the Special Issue Advanced Materials and Manufacturing Processes)
Show Figures

Figure 1

26 pages, 19388 KB  
Article
Condition Monitoring of Pneumatic Drive Systems Based on the AI Method Feed-Forward Backpropagation Neural Network
by Monica Tiboni and Carlo Remino
Sensors 2024, 24(6), 1783; https://doi.org/10.3390/s24061783 - 10 Mar 2024
Cited by 6 | Viewed by 2192
Abstract
Machine condition monitoring is used in a variety of industries as a very efficient strategy for equipment maintenance. This paper presents a study on monitoring a pneumatic system using a feed-forward backpropagation neural network as a classifier and compares the results obtained with [...] Read more.
Machine condition monitoring is used in a variety of industries as a very efficient strategy for equipment maintenance. This paper presents a study on monitoring a pneumatic system using a feed-forward backpropagation neural network as a classifier and compares the results obtained with different sensor signals and associated extracted features as input for classification. The vibrations of the body of a pneumatic cylinder are acquired using both common industrial sensors and low-cost sensors integrated into an Arduino board. Pressure sensors for both chambers and a position sensor are also used. Power spectral density (PSD) is used to extract features from the acceleration signals, as well as statistical indices. Statistical indices are considered for pressure and position sensors. The results, which are based on experimental data obtained on a test bench, show that a feed-forward neural network makes it possible to identify the operating states with a good degree of reliability. Even with low-cost instrumentation, it is possible to realize reliable condition monitoring based on vibrations. This last result is particularly important as it can help to further increase the uptake of this maintenance approach in the industrial environment. Full article
Show Figures

Figure 1

Back to TopTop