Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. Sampling Stations
2.3. Study Area
2.3.1. Umgeni River Catchment
2.3.2. Umdloti River Catchment
2.3.3. Nungwane River Catchment
2.3.4. Umzinto/uMuziwezinto River Catchment
2.4. Water Quality Evaluation
- (1)
- Explanatory variables: Thirteen preselected independent water quality indicators, namely NH3, Ca, Cl, Chl-a, EC, F, CaCO3, Mg, Mn, NO3, pH, SO4, and Turb, were adopted based on expert opinion [25,27]. The study incorporated expert opinion through the Rand Corporation’s Delphi Technique, where a panel of thirty water scientists from the private sector, government institutions, and academia were consulted. Delphi Questionnaires were distributed to water specialists (the participants), and the panellists were requested to select about twenty-one water quality indicators for potential inclusion in the UWQI. The respondents were directed to decide on each parameter using: “Include” and “Exclude” and further designate a proportional significance ranking for each parameter specified as “Include”. The ranking system utilised is scaled from one to five, with “scale 1” indicating the highest significance and “scale 5” indicating an exceptionally low relevance. Apart from the twenty-one indicators specified, professionals could include up to five additional parameters where necessary. Amongst the thirty questionnaires distributed, a total of twenty-one surveys were returned. The Rand Corporation’s Delphi Technique is comprehensively discussed by Horton [28], Brown et al. [29], Linstone and Turoff [30,33], and Gazzaz et al. [3].
- (2)
- Weighting coefficients: Weight multipliers (bi) starting from one (relating to minimum impact) and extending to five (resembling maximum impact) were allocated to each variable after aggregating significance rankings obtained from the participatory-based Delphi approach, together with significance rankings drawn from the existing literature. After that, weighting coefficients (wi) were derived using Equation (1) below [25,27,56]:
- (3)
- Sub-index functions and rating curves: Given that water quality indicators are measured using several scientific units, sub-indices (si) are employed to transform multiple units of measurement into one conventional non-dimensional scale [25,57]. Using sub-indices to transfigure multiple parameter dimensions is standard practice, and the traditional method includes sub-index rating curves, which are then converted into mathematical equations called sub-indices. In this case, the designated key points that define the rating curves are geometrically established using the permitted concentration limits. After that, straight-line plots are utilised to converge the mapped points and generate a sequence of linear graphs, which are then transformed into linear sub-index equations (index functions). The study extracted permissible concentration limits from the Target Water Quality Ranges (TWQRs) documented by the Department of Water and Sanitation (DWS), formerly the Department of Water Affairs and Forestry (DWAF) [58,59,60],
- (4)
- Aggregation equation (model): The UWQI model represents a weighted arithmetic sum model, a modified form of the weighted sum algorithm. As indicated in Equation (2) [25,27], the scenario-based analysis was implemented to adjust and synchronise the index algorithm with local conditions and establish the final UWQI model:
2.5. Water Classification
2.6. Artificial Neural Network (ANN) Model
2.6.1. The ANN Model Optimisation and Structure
2.6.2. Activation Functions and Learning Procedure
- (i)
- First Step—data inputting: f(xi) accepts as an input variable to the relevant neuron within the first layer of the artificial neural network (x1, x2, …, xn).
- (ii)
- Second Step—data transmission: Transfer or feed through channel links to the next layer of neurons, and the synapses are designated with relative coefficients called weights (wij).
- (iii)
- Third Step—application of weighting coefficients: Inputs received in the first layer are adjusted using the relative numeric weight coefficients and considered as input to the next cluster of neuro-nodes in the hidden layer (x1w1 + x2x2 + … + xnwn) = (∑xiwi).
- (iv)
- Fourth Step—application of bias constants and activation functions: Every hidden layer neuro-node is assigned a numeric constant called bias (b1, b2, …, bn), which is added to the input sum (∑xiwi + bi). Subsequently, the information passes through a threshold function, namely the activation function, specifying whether a particular neuron gets activated or not. The activated neuron transfers data further to the following group of neurons. In this systematic approach, water quality information is forward propagated through the neural network from left to right.
3. Results and Discussion
3.1. Artificial Neural Network Architecture and Rationale
3.2. Optimisation and Performance Analysis
3.3. Sensitivity Analysis
3.4. Assessing Spatial and Temporal Trends
3.5. Index Categorisation Schema
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nayak, J.G.; Patil, L.G.; Patki, V.K. Artificial neural network based water quality index (WQI) for river Godavari (India). Mater. Today Proc. 2023, 81, 212–220. [Google Scholar] [CrossRef]
- Pany, R.; Rath, A.; Swain, P.C. Water quality assessment for River Mahanadi of Odisha, India using statistical techniques and Artificial Neural Networks. J. Clean. Prod. 2023, 417, 137713. [Google Scholar] [CrossRef]
- Gazzaz, N.M.; Yusoff, M.K.; Aris, A.Z.; Juahir, H.; Ramli, M.F. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Mar. Pollut. Bull. 2012, 64, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- García-Alba, J.; Bárcena, J.F.; Ugarteburu, C.; García, A. Artificial neural networks as emulators of process-based models to analyse bathing water quality in estuaries. Water Res. 2019, 150, 283–295. [Google Scholar] [CrossRef]
- Kulisz, M.; Kujawska, J. Application of artificial neural network (ANN) for water quality index (WQI) prediction for the river Warta, Poland. J. Phys. Conf. Ser. 2021, 2130, 012028. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, A.; Malik, A.; Jain, G. Artificial neural network modeling of the river water quality—A case study. Ecol. Model. 2009, 220, 888–895. [Google Scholar] [CrossRef]
- Khalil, B.; Ouarda, T.; St-Hilaire, A. Estimation of water quality characteristics at ungauged sites using artificial neural networks and canonical correlation analysis. J. Hydrol. 2011, 405, 277–287. [Google Scholar] [CrossRef]
- Kim, S.E.; Seo, I.W. Artificial neural network ensemble modeling with conjunctive data clustering for water quality prediction in rivers. J. Hydro-Environ. Res. 2015, 9, 325–339. [Google Scholar] [CrossRef]
- Sarkar, A.; Pandey, P. River water quality modelling using artificial neural network technique. Aquat. Procedia 2015, 4, 1070–1077. [Google Scholar] [CrossRef]
- Salari, M.; Salami Shahid, E.; Afzali, S.H.; Ehteshami, M.; Conti, G.O.; Derakhshan, Z.; Sheibani, S.N. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water. Food Chem. Toxicol. 2018, 118, 212–219. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Singh, A. Machine learning theory and practice. In Machine Learning Using R: With Time Series and Industry-Based Use Cases in R; Ramasubramanian, K., Singh, A., Eds.; Apress: Berkeley, CA, USA, 2019; pp. 253–481. [Google Scholar] [CrossRef]
- De Sousa, W.G.; de Melo, E.R.P.; Bermejo, P.H.D.S.; Farias, R.A.S.; Gomes, A.O. How and where is artificial intelligence in the public sector going? A literature review and research agenda. Gov. Inf. Q. 2019, 36, 101392. [Google Scholar] [CrossRef]
- Li, D.; Liu, S. Chapter 4—Water quality evaluation. In Water Quality Monitoring and Management; Li, D., Liu, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 113–159. [Google Scholar] [CrossRef]
- Ibrahim, A.; Ismail, A.; Juahir, H.; Iliyasu, A.B.; Wailare, B.T.; Mukhtar, M.; Aminu, H. Water quality modelling using principal component analysis and artificial neural network. Mar. Pollut. Bull. 2023, 187, 114493. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; He, Z.; Su, J.; Xi, B.; Zhu, C. Using artificial neural Network models for eutrophication prediction. Procedia Environ. Sci. 2013, 18, 310–316. [Google Scholar] [CrossRef]
- Seo, I.w.; Yun, S.H.; Choi, S.Y. Forecasting water quality parameters by ANN model using pre-processing technique at the downstream of Cheongpyeong Dam. Procedia Eng. 2016, 154, 1110–1115. [Google Scholar] [CrossRef]
- Qaderi, F.; Babanezhad, E. Prediction of the groundwater remediation costs for drinking use based on quality of water resource, using artificial neural network. J. Clean. Prod. 2017, 161, 840–849. [Google Scholar] [CrossRef]
- Bansal, S.; Ganesan, G. Advanced evaluation methodology for water quality assessment using artificial neural network approach. Water Resour. Manag. 2019, 33, 3127–3141. [Google Scholar] [CrossRef]
- Kadam, A.K.; Wagh, V.M.; Muley, A.A.; Umrikar, B.N.; Sankhua, R.N. Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. Model. Earth Syst. Environ. 2019, 5, 951–962. [Google Scholar] [CrossRef]
- Isiyaka, H.A.; Mustapha, A.; Juahir, H.; Phil-Eze, P. Water quality modelling using artificial neural network and multivariate statistical techniques. Model. Earth Syst. Environ. 2019, 5, 583–593. [Google Scholar] [CrossRef]
- Soro, M.-P.; Yao, K.M.; Kouassi, N.G.L.B.; Ouattara, A.A.; Diaco, T. Modeling the spatio-temporal evolution of chlorophyll-a in three tropical rivers Comoé, Bandama, and Bia Rivers (Côte d’Ivoire) by artificial neural network. Wetlands 2020, 40, 939–956. [Google Scholar] [CrossRef]
- Fartas, F.; Remini, B.; Sekiou, F.; Marouf, N. The use of PCA and ANN to improve evaluation of the WQIclassic, development of a new index, and prediction of WQI, Coastel Constantinois, northern coast of eastern Algeria. Water Supply 2022, 22, 8727–8749. [Google Scholar] [CrossRef]
- Elkiran, G.; Nourani, V.; Abba, S.I. Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 2019, 577, 123962. [Google Scholar] [CrossRef]
- Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J. Hydrol. 2020, 585, 124670. [Google Scholar] [CrossRef]
- Banda, T.D.; Kumarasamy, M. Application of multivariate statistical analysis in the development of a surrogate water quality index (WQI) for South African watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Banda, T.D. Development of a Universal Water Quality Index and Water Quality Variability Model for South African River Catchments. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2020. [Google Scholar]
- Banda, T.D.; Kumarasamy, M. Development of a universal water quality index (UWQI) for South African river catchments. Water 2020, 12, 1534. [Google Scholar] [CrossRef]
- Horton, R.K. An index-number system for rating water quality. J. Water Pollut. Control. Fed. 1965, 37, 300–306. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index—Do we dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley Reading: Boston, MA, USA, 1975; Volume 29. [Google Scholar]
- Woudenberg, F. An evaluation of Delphi. Technol. Forecast. Soc. Chang. 1991, 40, 131–150. [Google Scholar] [CrossRef]
- Nagels, J.; Davies-Colley, R.; Smith, D. A water quality index for contact recreation in New Zealand. Water Sci. Technol. 2001, 43, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Linstone, H.A.; Turoff, M. The Delphi Method: Techniques and Applications; Addison-Wesley Publishing Co.: Newark, NJ, USA, 2002; Volume 18. [Google Scholar]
- Kumar, D.; Alappat, B.J. NSF-Water quality index: Does it represent the experts’ opinion? Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2009, 13, 75–79. [Google Scholar] [CrossRef]
- Almeida, C.; González, S.O.; Mallea, M.; González, P. A recreational water quality index using chemical, physical and microbiological parameters. Environ. Sci. Pollut. Res. 2012, 19, 3400–3411. [Google Scholar] [CrossRef]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth Parts A/B/C 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Shoko, C. The Effect of Spatial Resolution in Remote Sensing Estimates of Total Evaporation in the uMgeni Catchment. Master’s Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2014. [Google Scholar]
- Hughes, C.; de Winnaar, G.; Schulze, R.; Mander, M.; Jewitt, G. Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment–Part 1: Context and modelling approach. Water SA 2018, 44, 577–589. [Google Scholar] [PubMed]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 2: Mgeni System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 185. [Google Scholar]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 3: uMkhomazi System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 35. [Google Scholar]
- Department of Water and Environmental Affairs (Ed.) Proposed new nine (9) water management areas of South Africa. In Government Gazette No. 35517, Notice No. 547; Department of Water and Environmental Affairs: Pretoria, South Africa, 2012; Volume 565, p. 72. [Google Scholar]
- Chiluwe, Q.W. Assessing the Role of Property Rights in Managing Water Demand: The Case of uMgeni River Catchment. Master’s Thesis, Monash South Africa, Roodepoort, South Africa, 2014. [Google Scholar]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P.W. Hydrological impacts of land use change in three diverse South African catchments. J. Hydrol. 2012, 414–415, 118–135. [Google Scholar] [CrossRef]
- Rangeti, I. Determinants of Key Drivers for Potable Water Treatment Cost in uMngeni Basin. Master’s Thesis, Durban University of Technology, Durban, South Africa, 2015. [Google Scholar]
- Olaniran, A.O.; Naicker, K.; Pillay, B. Assessment of physico-chemical qualities and heavy metal concentrations of Umgeni and Umdloti Rivers in Durban, South Africa. Environ. Monit. Assess. 2014, 186, 2629–2639. [Google Scholar] [CrossRef] [PubMed]
- Gakuba, E.; Moodley, B.; Ndungu, P.; Birungi, G. Occurrence and significance of polychlorinated biphenyls in water, sediment pore water and surface sediments of Umgeni River, KwaZulu-Natal, South Africa. Environ. Monit. Assess. 2015, 187, 568. [Google Scholar] [CrossRef] [PubMed]
- Namugize, J.N.; Jewitt, G.P.W. Sensitivity analysis for water quality monitoring frequency in the application of a water quality index for the uMngeni River and its tributaries, KwaZulu-Natal, South Africa. Water SA 2018, 44, 516–527. [Google Scholar] [CrossRef]
- Umgeni Water. Infrastructure Paster Plan 2019/2020-2049/2050, Volume 5: North Coast System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 116. [Google Scholar]
- Govender, S. An Investigation of the Natural and Human Induced Impacts on the Umdloti Catchment. Master’s Thesis, University of KwaZulu-Natal, Durban, South Africa, 2009. [Google Scholar]
- Umgeni Water. Infrastructure Master Plan 2019/2020-2049/2050, Volume 4: South Coast System; Umgeni Water: Pietermaritzburg, South Africa, 2019; p. 116. [Google Scholar]
- Mwelase, L.T. Non-Revenue Water: Most Suitable Business Model for Water Services Authorities in South Africa: Ugu District Municipality. Master’s Thesis, Durban University of Technology, Durban, South Africa, 2016. [Google Scholar]
- Luzati, S.; Jaupaj, O. Assessment of water quality index of Durresi-Kavaja Basin, Albania. J. Int. Environ. Appl. Sci. 2016, 11, 277–284. [Google Scholar]
- Wanda, E.M.; Mamba, B.B.; Msagati, T.A. Determination of the water quality index ratings of water in the Mpumalanga and North West provinces, South Africa. Phys. Chem. Earth 2016, 92, 70–78. [Google Scholar] [CrossRef]
- Guettaf, M.; Maoui, A.; Ihdene, Z. Assessment of water quality: A case study of the Seybouse River (North East of Algeria). Appl. Water Sci. 2017, 7, 295–307. [Google Scholar] [CrossRef]
- Paun, I.; Cruceru, L.V.; Chiriac, L.F.; Niculescu, M.; Vasile, G.G.; Marin, N.M. Water Quality Indices-methods for evaluating the quality of drinking water. In Proceedings of the 19th INCD ECOIND International Symposium-SIMI 2016, “The Environment and the Industry”, Bucharest, Romania, 13–14 October 2016; pp. 395–402. [Google Scholar]
- Banda, T.D. Developing an Equitable Raw Water Pricing Model: The Vaal Case Study. Master’s Thesis, Tshwane University of Technology, Pretoria, South Africa, 2015. [Google Scholar]
- Banda, T.D.; Kumarasamy, M.V. Development of water quality indices (WQIs): A review. Pol. J. Environ. Stud. 2020, 29, 2011–2021. [Google Scholar] [CrossRef]
- DWAF. South African Water Quality Guidelines: Volume 1: Domestic Water Use; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996; p. 190. [Google Scholar]
- DWAF. South African Water Quality Guidelines: Volume 3: Industrial Use; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- DWAF. South African Water Quality Guidelines: Volume 7: Aquatic Ecosystems; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996. [Google Scholar]
- TIBCO Software Inc. TIBCO Statistica Automated Neural Networks (SANN) Software, 13.6.0; TIBCO Software Inc.: Palo Alto, CA, USA; Arlington, TX, USA, 2020.
- Kim, H.G.; Hong, S.; Jeong, K.-S.; Kim, D.-K.; Joo, G.-J. Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River. Ecol. Model. 2019, 398, 67–76. [Google Scholar] [CrossRef]
- Fletcher, D.; Goss, E. Forecasting with neural networks: An application using bankruptcy data. Inf. Manag. 1993, 24, 159–167. [Google Scholar] [CrossRef]
- Alyuda Research Inc. NeuroIntelligence Software, 2.1; Alyuda Research Inc.: Los Altos, CA, USA, 2003.
- Palani, S.; Liong, S.-Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Mitrović, T.; Antanasijević, D.; Lazović, S.; Perić-Grujić, A.; Ristić, M. Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: A case study of Danube River (Serbia). Sci. Total Environ. 2019, 654, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Lucio, P.S.; Conde, F.C.; Cavalcanti, I.F.A.; Serrano, A.I.; Ramos, A.M.; Cardoso, A.O. Spatiotemporal monthly rainfall reconstruction via artificial neural network? Case study: South of Brazil. Adv. Geosci. 2007, 10, 67–76. [Google Scholar] [CrossRef]
- Shanthi, D.; Sahoo, G.; Saravanan, N. Comparison of neural network training algorithms for the prediction of the patient’s post-operative recovery area. J. Converg. Inf. Technol. 2009, 4, 24–32. [Google Scholar] [CrossRef]
- Banerjee, P.; Singh, V.S.; Chatttopadhyay, K.; Chandra, P.C.; Singh, B. Artificial neural network model as a potential alternative for groundwater salinity forecasting. J. Hydrol. 2011, 398, 212–220. [Google Scholar] [CrossRef]
- Safavi, H.R.; Malek Ahmadi, K. Prediction and assessment of drought effects on surface water quality using artificial neural networks: Case study of Zayandehrud River, Iran. J. Environ. Health Sci. Eng. 2015, 13, 68. [Google Scholar] [CrossRef]
- Gebler, D.; Wiegleb, G.; Szoszkiewicz, K. Integrating river hydromorphology and water quality into ecological status modelling by artificial neural networks. Water Res. 2018, 139, 395–405. [Google Scholar] [CrossRef]
- Ahamad, K.U.; Raj, P.; Barbhuiya, N.H.; Deep, A. Surface water quality modeling by regression analysis and artificial neural network. In Advances in Waste Management; Springer: Singapore, 2019; pp. 215–230. [Google Scholar] [CrossRef]
- Charulatha, G.; Srinivasalu, S.; Uma Maheswari, O.; Venugopal, T.; Giridharan, L. Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arab. J. Geosci. 2017, 10, 128. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [Google Scholar] [CrossRef] [PubMed]
- Aalipour, M.; Šťastný, B.; Horký, F.; Jabbarian Amiri, B. Scaling an artificial neural network-based water quality index model from small to large catchments. Water 2022, 14, 920. [Google Scholar] [CrossRef]
- Yilma, M.; Kiflie, Z.; Windsperger, A.; Gessese, N. Application of artificial neural network in water quality index prediction: A case study in Little Akaki River, Addis Ababa, Ethiopia. Model. Earth Syst. Environ. 2018, 4, 175–187. [Google Scholar] [CrossRef]
- Azimi, S.; Azhdary Moghaddam, M.; Hashemi Monfared, S.A. Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. J. Contam. Hydrol. 2019, 220, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Zhang, H.; Liu, W. Development and application of a GIS-based artificial neural network system for water quality prediction: A case study at the Lake Champlain area. J. Oceanol. Limnol. 2019, 38, 1835–1845. [Google Scholar] [CrossRef]
- Vijay, S.; Kamaraj, K. Prediction of water quality index in drinking water distribution system using activation functions based ANN. Water Resour. Manag. 2021, 35, 535–553. [Google Scholar] [CrossRef]
- Cordoba, G.A.C.; Tuhovčák, L.; Tauš, M. Using artificial neural network models to assess water quality in water distribution networks. Procedia Eng. 2014, 70, 399–408. [Google Scholar] [CrossRef]
- Haldorai, A.; Ramu, A.; Murugan, S. Artificial intelligence and machine learning for future urban development. In Computing and Communication Systems in Urban Development: A Detailed Perspective; Haldorai, A., Ramu, A., Murugan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–113. [Google Scholar] [CrossRef]
- Lischeid, G. Investigating short-term dynamics and long-term trends of SO4 in the runoff of a forested catchment using artificial neural networks. J. Hydrol. 2001, 243, 31–42. [Google Scholar] [CrossRef]
- Mas, D.M.L.; Ahlfeld, D.P. Comparing artificial neural networks and regression models for predicting faecal coliform concentrations. Hydrol. Sci. J. 2007, 52, 713–731. [Google Scholar] [CrossRef]
- Olszewski, T.; Ryniecki, A.; Boniecki, P. Neural network development for automatic identification of the endpoint of drying barley in bulk. J. Res. Appl. Agric. Eng. 2008, 53, 26–31. [Google Scholar]
- May, D.B.; Sivakumar, M. Prediction of urban stormwater quality using artificial neural networks. Environ. Model. Softw. 2009, 24, 296–302. [Google Scholar] [CrossRef]
- Amiri, B.; Nakane, K. Comparative prediction of stream water total nitrogen from land cover using artificial neural network and multiple linear regression. Pol. J. Environ. Stud. 2009, 18, 151–160. [Google Scholar]
- Oliveira Souza da Costa, A.; Ferreira Silva, P.; Godoy Sabará, M.; Ferreira da Costa, E. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream. Environ. Monit. Assess. 2009, 155, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Kulisz, M.; Kujawska, J.; Przysucha, B.; Cel, W. Forecasting water quality index in groundwater using artificial neural network. Energies 2021, 14, 5875. [Google Scholar] [CrossRef]
- Guo, Z.; Ward, M.; Rundensteiner, E.; Ruiz, C. Pointwise local pattern exploration for sensitivity analysis. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), Providence, RI, USA, 23–28 October 2011; pp. 131–140. [Google Scholar]
- Zhou, X.; Lin, H.; Lin, H. Global sensitivity analysis. In Encyclopedia of GIS; Shekhar, S., Xiong, H., Eds.; Springer: Boston, MA, USA, 2008; pp. 408–409. [Google Scholar] [CrossRef]
- Abrahão, R.; Carvalho, M.; da Silva, W., Jr.; Machado, T.; Gadelha, C.; Hernandez, M. Use of index analysis to evaluate the water quality of a stream receiving industrial effluents. Water SA 2007, 33, 459–466. [Google Scholar] [CrossRef]
- Rubio-Arias, H.; Contreras-Caraveo, M.; Quintana, R.M.; Saucedo-Teran, R.A.; Pinales-Munguia, A. An overall water quality index (WQI) for a man-made aquatic reservoir in Mexico. Int. J. Environ. Res. Public Health 2012, 9, 1687–1698. [Google Scholar] [CrossRef]
- Rabee, A.M.; Al-Fatlawy, Y.F.; Nameer, M. Using pollution load index (PLI) and geoaccumulation index (I-Geo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad Region. Al-Nahrain J. Sci. 2011, 14, 108–114. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of a water quality index for rivers in West Java Province, Indonesia. Ecol. Indic. 2018, 85, 966–982. [Google Scholar] [CrossRef]
Variables a | Statistical Summary of Water Quality Data | ||||
---|---|---|---|---|---|
Minimum | Maximum | Average | Standard Deviation | ||
1 | NH3 | 0.040 | 0.990 | 0.107 | 0.091 |
2 | Ca | 1.000 | 30.500 | 9.457 | 6.078 |
3 | Cl | 1.820 | 79.000 | 26.843 | 13.765 |
4 | Chl-a | 0.140 | 92.220 | 4.999 | 9.374 |
5 | EC | 6.840 | 48.000 | 20.708 | 9.840 |
6 | F | 0.100 | 0.540 | 0.140 | 0.048 |
7 | CaCO3 | 6.620 | 128.460 | 47.752 | 9.499 |
8 | Mg | 1.000 | 14.600 | 5.857 | 2.535 |
9 | Mn | 0.010 | 1.210 | 0.051 | 0.172 |
10 | NO3 | 0.050 | 9.580 | 0.590 | 0.984 |
11 | pH | 0.000 | 9.100 | 7.766 | 0.529 |
12 | SO4 | 0.160 | 24.200 | 8.696 | 5.980 |
13 | Turb | 0.600 | 367.000 | 14.157 | 29.638 |
Sampling Station | Location Coordinates in Degrees, Minutes, and Seconds (DMS) * | ||
---|---|---|---|
Latitude | Longitude | ||
1 | Henley Dam | S 29°37′25.734″ | E 30°14′49.754″ |
2 | Hazelmere Dam | S 29°35′53.722″ | E 31°02′32.121″ |
3 | Inanda Dam 0.3 km | S 29°42′27.403″ | E 30°52′03.352″ |
4 | Midmar Dam | S 29°29′47.332″ | E 30°12′05.655″ |
5 | Umzinto Dam | S 30°18′40.676″ | E 30°35′34.580″ |
6 | Nungwane Dam | S 30°00′24.473″ | E 30°44′36.150″ |
Water Quality Variable | Units | Weighting Coefficients | ||
---|---|---|---|---|
Impact (bi) | Weight (wi) | |||
1 | Ammonia | mg/ℓ | 3.9358 | 0.1035 |
2 | Calcium | mg/ℓ | 2.7612 | 0.0726 |
3 | Chloride | mg/ℓ | 2.8196 | 0.0742 |
4 | Chlorophyll-a | µg/ℓ | 1.3611 | 0.0358 |
5 | Electrical Conductivity | µS/m | 2.6305 | 0.0692 |
6 | Fluoride | mg/ℓ | 3.6059 | 0.0949 |
7 | Hardness | mg/ℓ | 2.2329 | 0.0587 |
8 | Magnesium | mg/ℓ | 2.7000 | 0.0710 |
9 | Manganese | mg/ℓ | 3.4609 | 0.0910 |
10 | Nitrate | mg/ℓ | 3.4560 | 0.0909 |
11 | pondus Hydrogenium | Unitless | 3.4641 | 0.0911 |
12 | Sulphate | mg/ℓ | 2.9439 | 0.0774 |
13 | Turbidity | NTU | 2.6446 | 0.0696 |
Totals | 38.0167 | 1.0000 |
Variable | Sub-Index Functions | Variable | Sub-Index Functions | ||||||
---|---|---|---|---|---|---|---|---|---|
Range | Sub-Index Equation | Rule Set | Range | Sub-Index Equation | Rule Set | ||||
1 | NH3 | f(1) | Otherwise | f(32) | |||||
f(2) | 8 | Mg | f(33) | ||||||
f(3) | f(34) | ||||||||
Otherwise | f(4) | f(35) | |||||||
2 | Ca | f(5) | f(36) | ||||||
f(6) | Otherwise | f(37) | |||||||
f(7) | 9 | Mn | f(38) | ||||||
Otherwise | f(8) | f(39) | |||||||
3 | Cl | f(9) | f(40) | ||||||
f(10) | f(41) | ||||||||
f(11) | Otherwise | f(42) | |||||||
f(12) | 10 | NO3 | f(43) | ||||||
Otherwise | f(13) | f(44) | |||||||
4 | Chl-a | f(14) | f(45) | ||||||
f(15) | f(46) | ||||||||
f(16) | Otherwise | f(47) | |||||||
f(17) | 11 | pH | f(48) | ||||||
Otherwise | f(18) | f(49) | |||||||
5 | EC | f(19) | f(50) | ||||||
f(20) | f(51) | ||||||||
f(21) | Otherwise | f(52) | |||||||
Otherwise | f(22) | 12 | SO4 | f(53) | |||||
6 | F | f(23) | f(54) | ||||||
f(24) | f(55) | ||||||||
f(25) | f(56) | ||||||||
f(26) | Otherwise | f(57) | |||||||
Otherwise | f(27) | 13 | Turb | f(58) | |||||
7 | CaCO3 | f(28) | f(59) | ||||||
f(29) | f(60) | ||||||||
f(30) | f(61) | ||||||||
f(31) | Otherwise | f(62) |
Item | Description | Summary of the Artificial Neural Networks (ANNs) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Network architecture | MLP 13-16-1 | MLP 13-5-1 | MLP 13-12-1 | MLP 13-28-1 | MLP 13-8-1 |
2 | Training R-value | 0.974 | 0.987 | 0.980 | 0.962 | 0.981 |
3 | Test R-value | 0.970 | 0.992 | 0.967 | 0.905 | 0.978 |
4 | Validation R-value | 0.949 | 0.977 | 0.961 | 0.938 | 0.959 |
5 | Overall R-value | 0.964 | 0.985 | 0.969 | 0.935 | 0.973 |
6 | Training error | 0.491 | 0.238 | 0.375 | 0.708 | 0.350 |
7 | Test error | 0.601 | 0.174 | 0.658 | 1.815 | 0.435 |
8 | Validation error | 0.812 | 0.315 | 0.630 | 0.850 | 0.729 |
9 | Overall error | 0.634 | 0.242 | 0.554 | 1.124 | 0.505 |
10 | Training algorithm | BFGS 58 | BFGS 284 | BFGS 105 | BFGS 53 | BFGS 97 |
11 | Error function | SOS | SOS | SOS | SOS | SOS |
12 | Hidden activation | Tanh | Logistic | Logistic | Tanh | Logistic |
13 | Output activation | Exponential | Logistic | Logistic | Identity | Logistic |
Code | ANN Model Weighting Coefficients | Code | ANN Model Weighting Coefficients | ||||
---|---|---|---|---|---|---|---|
Connection Link | Label | Weight Coefficient | Connection Link | Label | Weight Coefficient | ||
1 | NH3: Na1 − Nb1 | wa1b1 | −1.736786530 | 36 | Mg: Na8 − Nb1 | wa8b1 | −3.214513360 |
2 | NH3: Na1 − Nb2 | wa1b2 | 5.504801020 | 37 | Mg: Na8 − Nb2 | wa8b2 | 1.744056070 |
3 | NH3: Na1 − Nb3 | wa1b3 | 1.188667880 | 38 | Mg: Na8 − Nb3 | wa8b3 | −4.429080920 |
4 | NH3: Na1 − Nb4 | wa1b4 | −1.692600720 | 39 | Mg: Na8 − Nb4 | wa8b4 | 0.279010779 |
5 | NH3: Na1 − Nb5 | wa1b5 | −0.001097337 | 40 | Mg: Na8 − Nb5 | wa8b5 | 1.944367870 |
6 | Ca: Na2 − Nb1 | wa2b1 | 3.468498700 | 41 | Mn: Na9 − Nb1 | wa9b1 | −7.983204720 |
7 | Ca: Na2 − Nb2 | wa2b2 | 2.115498110 | 42 | Mn: Na9 − Nb2 | wa9b2 | 6.424075980 |
8 | Ca: Na2 − Nb3 | wa2b3 | 1.106155870 | 43 | Mn: Na9 − Nb3 | wa9b3 | −5.471109360 |
9 | Ca: Na2 − Nb4 | wa2b4 | 0.220184803 | 44 | Mn: Na9 − Nb4 | wa9b4 | −0.342984811 |
10 | Ca: Na2 − Nb5 | wa2b5 | −1.346809220 | 45 | Mn: Na9 − Nb5 | wa9b5 | −0.484033518 |
11 | Cl: Na3 − Nb1 | wa3b1 | −3.556672070 | 46 | NO3: Na10 − Nb1 | wa10b1 | −16.055562000 |
12 | Cl: Na3 − Nb2 | wa3b2 | 0.457859806 | 47 | NO3: Na10 − Nb2 | wa10b2 | −23.849728600 |
13 | Cl: Na3 − Nb3 | wa3b3 | −1.580443590 | 48 | NO3: Na10 − Nb3 | wa10b3 | 6.729460660 |
14 | Cl: Na3 − Nb4 | wa3b4 | 0.374732288 | 49 | NO3: Na10 − Nb4 | wa10b4 | −8.960558770 |
15 | Cl: Na3 − Nb5 | wa3b5 | −0.404491562 | 50 | NO3: Na10 − Nb5 | wa10b5 | −0.338867006 |
16 | Chl-a: Na4 − Nb1 | wa4b1 | 1.377875680 | 51 | pH: Na11 − Nb1 | wa11b1 | −15.304164100 |
17 | Chl-a: Na4 − Nb2 | wa4b2 | −3.330413680 | 52 | pH: Na11 − Nb2 | wa11b2 | 3.871621090 |
18 | Chl-a: Na4 − Nb3 | wa4b3 | −7.024329520 | 53 | pH: Na11 − Nb3 | wa11b3 | −8.330721630 |
19 | Chl-a: Na4 − Nb4 | wa4b4 | −0.022392891 | 54 | pH: Na11 − Nb4 | wa11b4 | 0.954005857 |
20 | Chl-a: Na4 − Nb5 | wa4b5 | 0.693426051 | 55 | pH: Na11 − Nb5 | wa11b5 | 1.730045730 |
21 | EC: Na5 − Nb1 | wa5b1 | 1.885810710 | 56 | SO4: Na12 − Nb1 | wa12b1 | 4.874265880 |
22 | EC: Na5 − Nb2 | wa5b2 | 0.005186381 | 57 | SO4: Na12 − Nb2 | wa12b2 | −9.213797070 |
23 | EC: Na5 − Nb3 | wa5b3 | 5.441348760 | 58 | SO4: Na12 − Nb3 | wa12b3 | −0.854192312 |
24 | EC: Na5 − Nb4 | wa5b4 | −1.280430050 | 59 | SO4: Na12 − Nb4 | wa12b4 | 0.483610166 |
25 | EC: Na5 − Nb5 | wa5b5 | −0.245985639 | 60 | SO4: Na12 − Nb5 | wa12b5 | −0.429850947 |
26 | F: Na6 − Nb1 | wa6b1 | −5.420630570 | 61 | Turb: Na13 − Nb1 | wa13b1 | 5.242365120 |
27 | F: Na6 − Nb2 | wa6b2 | 15.774371200 | 62 | Turb: Na13 − Nb2 | wa13b2 | 2.942964090 |
28 | F: Na6 − Nb3 | wa6b3 | 2.011805250 | 63 | Turb: Na13 − Nb3 | wa13b3 | −1.860321380 |
29 | F: Na6 − Nb4 | wa6b4 | −1.672389470 | 64 | Turb: Na13 − Nb4 | wa13b4 | 0.832442164 |
30 | F: Na6 − Nb5 | wa6b5 | −0.553722290 | 65 | Turb: Na13 − Nb5 | wa13b5 | −88.813789900 |
31 | CaCO3: Na7 − Nb1 | wa7b1 | 0.660896767 | 66 | Nb1 − Nc1: UWQI | wb1c1 | −13.400521000 |
32 | CaCO3: Na7 − Nb2 | wa7b2 | 2.067449590 | 67 | Nb2 − Nc1: UWQI | wb2c1 | −0.727690592 |
33 | CaCO3: Na7 − Nb3 | wa7b3 | −1.458696030 | 68 | Nb3 − Nc1: UWQI | wb3c1 | 2.101400190 |
34 | CaCO3: Na7 − Nb4 | wa7b4 | 0.449065536 | 69 | Nb4 − Nc1: UWQI | wb4c1 | 4.811821750 |
35 | CaCO3: Na7 − Nb5 | wa7b5 | −0.678565159 | 70 | Nb5 − Nc1: UWQI | wb5c1 | 11.009186600 |
Code | Bias Constants for the ANN-Based Model | ||
---|---|---|---|
Label | Connection Link | Bias Constant | |
1 | bb1 | Bin − Nb1 | −4.408752310 |
2 | bb2 | Bin − Nb2 | 4.751969010 |
3 | bb3 | Bin − Nb3 | 8.234113700 |
4 | bb4 | Bin − Nb4 | 0.359860840 |
5 | bb5 | Bin − Nb5 | −2.506007710 |
6 | bc1 | Bout − UWQI | −3.452418420 |
Data Splitting Scheme | Data Splitting Ratios in Percentage (%) | Reference | ||
---|---|---|---|---|
Training | Validation | Testing | ||
1 | 80.00 | 10.00 | 10.00 | [3,4,16,65] |
2 | 75.00 | 15.00 | 15.00 | [3] |
3 | 70.00 | 10.00 | 20.00 | [86] |
4 | 70.00 | 15.00 | 15.00 | [4,17,19,66,68,69,70,71,72,73,89] |
5 | 65.00 | 15.00 | 20.00 | [84] |
6 | 60.00 | 20.00 | 20.00 | [4,6,20] |
7 | 60.00 | 15.00 | 25.00 | [87] |
5 | 50.00 | 25.00 | 25.00 | [21,81,83,85,88] |
Item | Performance Statistics | |
---|---|---|
Statistical Attribute or Metrix | Performance Ratings | |
1 | MAE: mean absolute error | 0.521 |
2 | RMSE: root mean squared error | 0.692 |
3 | NSE: Nash–Sutcliffe efficiency | 0.974 |
4 | MAPE: mean absolute percentage error | 0.600% |
5 | R: correlation coefficient | 0.985 |
6 | R2: coefficient of determination | 0.970 |
7 | MSE: mean squared error | 0.479 |
Identity | Index Classification System | |
---|---|---|
Identification of Rank and Class | Index Score | |
1 | Class 1—Good water quality Water quality is protected with a virtual absence of threat or impairment; conditions very close to natural or pristine levels | 95 < Index ≤ 100 |
2 | Class 2—Acceptable water quality Water quality is usually protected with only a minor degree of threat or impairment; conditions rarely depart from natural or desirable levels | 75 < Index ≤ 95 |
3 | Class 3—Regular water quality Water quality is usually protected but occasionally threatened or impaired; conditions sometimes depart from natural or desirable levels | 50 < Index ≤ 75 |
4 | Class 4—Bad water quality Water quality is frequently threatened or impaired; conditions often depart from natural or desirable levels | 25 < Index ≤ 50 |
5 | Class 5—Very bad water quality Water quality is almost always threatened or impaired; conditions usually depart from natural or desirable levels | 0 < Index ≤ 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banda, T.D.; Kumarasamy, M. Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins. Water 2024, 16, 1485. https://doi.org/10.3390/w16111485
Banda TD, Kumarasamy M. Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins. Water. 2024; 16(11):1485. https://doi.org/10.3390/w16111485
Chicago/Turabian StyleBanda, Talent Diotrefe, and Muthukrishnavellaisamy Kumarasamy. 2024. "Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins" Water 16, no. 11: 1485. https://doi.org/10.3390/w16111485
APA StyleBanda, T. D., & Kumarasamy, M. (2024). Artificial Neural Network (ANN)-Based Water Quality Index (WQI) for Assessing Spatiotemporal Trends in Surface Water Quality—A Case Study of South African River Basins. Water, 16(11), 1485. https://doi.org/10.3390/w16111485