Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = feed rate variation strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 170
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

12 pages, 1641 KiB  
Article
Intraspecific Variations in Ecomorphological Functional Traits of Montane Stream-Dwelling Frogs Were Driven by Their Microhabitat Conditions
by Xiwen Peng, Da Kang, Guangfeng Chen, Suwen Hu, Zijian Sun and Tian Zhao
Animals 2025, 15(15), 2243; https://doi.org/10.3390/ani15152243 - 30 Jul 2025
Viewed by 217
Abstract
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across [...] Read more.
Understanding how habitat conditions drive morphological adaptations in animals is critical in ecology, yet amphibian studies remain limited. This study investigated intraspecific variation in ecomorphological traits of three montane stream-dwelling frogs (Quasipaa boulengeri, Amolops sinensis, and Odorrana margaratae) across elevation gradients in Tianping Mountain, China. Using morphological measurements and environmental variables collected from ten transects, we analyzed functional traits related to feeding and locomotion and assessed their associations with microhabitat variables. Significant trait differences between low- and high-elevation groups were detected only in Q. boulengeri, with high-elevation individuals exhibiting greater body mass and shorter hindlimbs. Redundancy analysis demonstrated that microhabitat variables, particularly air humidity, flow rate, and rock coverage, were linked to trait variations. For example, air humidity and flow rate significantly influenced Q. boulengeri’s body and limb proportions, while flow rate affected A. sinensis’s snout and limb morphology. In addition, sex and seasonal effects were also associated with trait variations. These results underscore amphibians’ phenotypic plasticity in response to the environment and highlight the role of microhabitat complexity in shaping traits. By linking habitat heterogeneity to eco-morphology, this study advocates for conservation strategies that preserve varied stream environments to support amphibian resilience amid environmental changes. Full article
Show Figures

Figure 1

23 pages, 6546 KiB  
Article
Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy
by Xiaorong Zhou, Lin He, Sen Yuan, Hongwan Jiang, Jing Deng, Feilong Du, Jingdou Yang and Zebin Su
Lubricants 2025, 13(6), 274; https://doi.org/10.3390/lubricants13060274 - 19 Jun 2025
Viewed by 759
Abstract
In the context of sustainable manufacturing practices, minimum quantity lubrication (MQL) has been extensively employed in machining operations involving hard-to-cut materials. While substantial experimental and numerical investigations on MQL-assisted machining have been conducted, existing simulation approaches remain inadequate for modeling the dynamic flow [...] Read more.
In the context of sustainable manufacturing practices, minimum quantity lubrication (MQL) has been extensively employed in machining operations involving hard-to-cut materials. While substantial experimental and numerical investigations on MQL-assisted machining have been conducted, existing simulation approaches remain inadequate for modeling the dynamic flow field variations inherent to MQL processes, significantly compromising the predictive reliability of current models. This study introduced an innovative bidirectional iterative coupling framework integrating finite element (FE) analysis and computational fluid dynamics (CFD) to enhance simulation accuracy. Since fluid flow characteristics critically influence tribological and thermal management at the tool–workpiece interface during machining, CFD simulations were initially performed to evaluate how MQL parameters govern fluid flow behavior. Subsequently, an integrated FE-CFD modeling approach was developed to simulate Ti-6Al-4V alloy turning under MQL conditions with varying feed rates. The novel methodology involved transferring thermal flux data from FE simulations to CFD’s heat source domain, followed by incorporating CFD-derived convective heat transfer coefficients back into FE computations. This repetitive feedback process continued until the thermal exchange parameters reached convergence. Validation experiments demonstrated that the proposed method achieved improved alignment between the simulated and experimental results for both cutting temperature profiles and principal force components across different feed conditions, confirming the enhanced predictive capability of this coupled simulation strategy. Full article
Show Figures

Figure 1

14 pages, 1531 KiB  
Article
Infectivity and Dissemination of Dengue Virus-1 in Different Aedes aegypti Populations Throughout Brazil
by Amanda Cupertino de Freitas, Ellen Santos, Lívia Baldon, Silvana de Mendonça, Fernanda Oliveira Rezende, Rafaela Moreira, Viviane Sousa, Mariana Lima, Emanuele Silva, Flávia Ferreira, João Paulo Pereira de Almeida, Siad Amadou, Bruno Marçal, Sara Comini, Marcele Rocha, Yaovi Todjro, Thiago Jiran Leite, Viviane Santos, Isaque João da Silva de Faria, Marta Giovanetti, Luiz Carlos Junior Alcantara, Luciano A. Moreira and Alvaro Ferreiraadd Show full author list remove Hide full author list
Trop. Med. Infect. Dis. 2025, 10(4), 112; https://doi.org/10.3390/tropicalmed10040112 - 19 Apr 2025
Viewed by 966
Abstract
Dengue virus, one of the most prevalent mosquito-borne flaviviruses affecting humans globally, is primarily transmitted by the Aedes aegypti mosquito, which thrives in densely populated urban environments. Dengue incidence has surged in recent decades, becoming a major public health concern in many regions, [...] Read more.
Dengue virus, one of the most prevalent mosquito-borne flaviviruses affecting humans globally, is primarily transmitted by the Aedes aegypti mosquito, which thrives in densely populated urban environments. Dengue incidence has surged in recent decades, becoming a major public health concern in many regions, particularly in Brazil, which has experienced recurrent outbreaks and reported over 6.6 million probable cases in the year of 2024. While the link between the mosquito vector and dengue transmission is well understood, the effects of different DENV types and their interactions with the vector capacity of natural mosquito populations are crucial for understanding disease dynamics. Here we report findings from experiments designed to analyze and compare the infectivity and dissemination of the DENV-1 strain among five Ae. aegypti populations collected from different regions of Brazil. When exposed to DENV-infected AG129 mice for blood feeding, these populations exhibited variations in infection rates and dissemination efficiency. Eight days post-infection, all populations demonstrated high infection rates, underscoring the substantial capacity of Brazilian Ae. aegypti populations to support the locally circulating DENV-1 strain. Our results demonstrate variation in Ae. aegypti vector competence across Brazil, revealing distinct patterns of DENV transmission efficiency. These findings highlight the necessity for geographically tailored control strategies, particularly in high-risk urban areas where outbreak potential is greatest. Full article
Show Figures

Figure 1

25 pages, 18044 KiB  
Article
Atmospheric Energetics of Three Contrasting West African Monsoon Seasons as Simulated by a Regional Climate Model
by Yves Ngueto, René Laprise and Oumarou Nikiéma
Atmosphere 2025, 16(4), 405; https://doi.org/10.3390/atmos16040405 - 31 Mar 2025
Viewed by 411
Abstract
The West African atmospheric energy budget is assessed for the first time across three contrasting monsoon seasons (dry, wet, and moderate) using the latest version of the Canadian Regional Climate Model (CRCM6/GEM5). The model is driven by ERA5 reanalysis from the European Centre [...] Read more.
The West African atmospheric energy budget is assessed for the first time across three contrasting monsoon seasons (dry, wet, and moderate) using the latest version of the Canadian Regional Climate Model (CRCM6/GEM5). The model is driven by ERA5 reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). A formalism appropriate for regional climate energetics is employed to quantify the primary physical processes occurring during the West African Monsoon, with the aim of highlighting those that exhibit significant inter-seasonal variability. The atmospheric energy path shows that the time-mean available enthalpy (AM) reservoir, reflecting high surface temperatures and a lapse rate characteristic of a dry atmosphere, dominates other energy reservoirs. AM is converted into the time-mean kinetic energy (KM) and the time-variability available enthalpy (AE) reservoirs, which are converted into a time-variability kinetic energy reservoir (KE) through barotropic and baroclinic processes. AE is the lowest energy reservoir, confirming smaller temperature variations in the tropics compared to higher latitudes. Kinetic energy reservoirs KM and KE have the same order of magnitude, suggesting that mean flow is as important as eddy activities during the season. The atmospheric energy cycle computed for three contrasting rainy seasons shows that time-variability energy reservoirs (AE and KE) and main terms acting upon them, are proportional to the rainfall activity, being higher (lower) during rainy (dry) years. It also reveals that, while CA (conversion from AM to AE) and the generation term GE feed wave’s development, the frictional term DE counteracts the generation of KE to dampen the creation of transient eddies. These findings suggest that the atmospheric energetic formalism could be applied on West African seasonal forecasts and future climate simulations to implement adaptation strategies. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 2045 KiB  
Article
Oxidative Stress in an African Ground Squirrel, a Case of Healthy Aging and Reproduction
by Paul Juan Jacobs, Sjoerd Vos, Chelsea E. Bishop, Daniel William Hart, Nigel Charles Bennett and Jane M. Waterman
Antioxidants 2024, 13(11), 1401; https://doi.org/10.3390/antiox13111401 - 15 Nov 2024
Viewed by 995
Abstract
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African [...] Read more.
Oxidative stress plays a crucial role in mediating life-history processes, where it can compromise survival and reproduction through harmful alterations to DNA, lipids, and proteins. In this study, we investigated oxidative stress in Cape ground squirrels (Xerus inauris), a longer-lived African ground squirrel species with a high reproductive skew and unique life history strategies. We measured oxidative stress as total antioxidant capacity (TAC), total oxidant status (TOS), and an oxidative stress index (OSI) in blood plasma from individuals of approximately known ages. Our results reveal a distinct pattern of decreasing oxidative stress with age, consistent across both sexes. Females exhibited lower OSI and TOS levels than males. Males employing different life-history strategies, namely natal (staying at home), had significantly lower oxidative stress compared to the band (roaming male groups), likely due to variations in metabolic rate, activity, and feeding rates. However, both strategies exhibited reduced oxidative stress with age, though the underlying mechanisms require further investigation. We propose that selection pressures favoring survival contributed to the observed reduction in oxidative stress with age, potentially maximizing lifetime reproductive success in this species. Full article
(This article belongs to the Special Issue Oxidative Stress in Reproduction of Mammals)
Show Figures

Figure 1

16 pages, 3363 KiB  
Article
Evaluating the Influence of Nutrient-Rich Substrates on the Growth and Waste Reduction Efficiency of Black Soldier Fly Larvae
by Abeer Albalawneh, Heba Hasan, Sami Faisal Alarsan, Mai Diab, Saja Abu Znaimah, Amer Sweity, Majdy Mohmad Aladwan, Bilal Sharman, Ahmad Mohammed Alalwan, Yazan AlBalawnah, Musa Abu Dayyeh and Ehab Alnaimat
Sustainability 2024, 16(22), 9730; https://doi.org/10.3390/su16229730 - 8 Nov 2024
Cited by 4 | Viewed by 3899
Abstract
Background: The black soldier fly (Hermetia illucens) has emerged as a promising tool in sustainable waste management, owing to its larvae’s ability to efficiently convert organic waste into valuable biomass. Objective: This study investigates the impact of various substrate compositions on [...] Read more.
Background: The black soldier fly (Hermetia illucens) has emerged as a promising tool in sustainable waste management, owing to its larvae’s ability to efficiently convert organic waste into valuable biomass. Objective: This study investigates the impact of various substrate compositions on the growth, waste reduction efficiency, and bioconversion rate of black soldier fly (BSF) larvae (Hermetia illucens). The aim is to optimize feeding strategies to enhance the effectiveness of BSF larvae in sustainable waste management and protein production. Methods: A controlled experiment was conducted over a 20-day period, using four different substrate types: 100% sludge, 75% sludge + 25% chicken feed, 25% sludge + 75% chicken feed, and 100% chicken feed. Each treatment had three replicates with 100 larvae each. Larval growth metrics, including weight and width, were recorded bi-daily. The waste reduction efficiency and bioconversion rate were calculated based on the remaining substrate weight and larval biomass, respectively. Elemental analysis was performed to determine the impact of substrate type on the accumulation of various elements in the larvae. Results: Significant differences were observed in larval growth, waste reduction efficiency, and bioconversion rates across the different substrates. The 100% chicken feed substrate led to the highest larval growth (M = 0.0881 g/day, SD = 0.0042) and bioconversion rate (M = 7.52%, SD = 0.34), while the 100% sludge substrate achieved the highest waste reduction rate (M = 86.2%, SD = 2.15). ANOVA tests indicated that substrate composition significantly affected these outcomes (p < 0.05). Elemental analysis showed substantial variations in the concentrations of calcium, cadmium, and nickel among the substrates, with the 100% sludge substrate having the highest nickel accumulation (M = 0.2763 ppm, SD = 0.023), significantly different from the other treatments (p < 0.001). Conclusions: The results demonstrate that substrate composition is crucial for optimizing BSF larvae growth and waste reduction efficiency. Nutrient-rich substrates, such as chicken feed, significantly enhance bioconversion rates and larval biomass production, although careful consideration of elemental accumulation, especially heavy metals, is essential for safe application in animal feed. Full article
Show Figures

Figure 1

17 pages, 1246 KiB  
Article
Centralized Finite State Machine Control to Increase the Production Rate in a Crusher Circuit
by Moisés T. da Silva, Santino M. Bitarães, Andre S. Yamashita, Marcos P. Torre, Vincius da S. Moreira and Thiago A. M. Euzébio
Energies 2024, 17(14), 3374; https://doi.org/10.3390/en17143374 - 9 Jul 2024
Viewed by 1505
Abstract
Crushing is a critical operation in mineral processing, and its efficient performance is vital for minimizing energy consumption, maximizing productivity, and maintaining product quality. However, due to variations in feed material characteristics and safety constraints, achieving the intended circuit performance can be challenging. [...] Read more.
Crushing is a critical operation in mineral processing, and its efficient performance is vital for minimizing energy consumption, maximizing productivity, and maintaining product quality. However, due to variations in feed material characteristics and safety constraints, achieving the intended circuit performance can be challenging. In this study, a centralized control strategy based on a finite state machine (FSM) is developed to improve the operations of an iron ore crushing circuit. The aim is to increase productivity by manipulating the closed-side-setting (CSS) of cone crushers and the speed of an apron feeder while considering intermediate storage silo levels and cone crusher power limits, as well as product quality. A dynamic simulation was conducted to compare the proposed control strategy with the usual practice of setting CSS to a constant value. Four scenarios were analyzed based on variations in bond work index (BWI) and particle size distribution. The simulation results demonstrate that the proposed control strategy increased average productivity by 6.88% and 48.77% when compared to the operation with a constant CSS of 38 mm and 41 mm, respectively. The proposed strategy resulted in smoother oscillation without interlocking, and it maintained constant flow rates. This ultimately improved circuit reliability and predictability, leading to reduced maintenance costs. Full article
(This article belongs to the Topic Industrial Control Systems)
Show Figures

Figure 1

14 pages, 3912 KiB  
Article
Investigation of the Seroprevalence of Brucella Antibodies and Characterization of Field Strains in Immunized Dairy Cows by B. abortus A19
by Yong Shi, Yimeng Cui, Gaowa Wudong, Shengnan Li, Ye Yuan, Danyu Zhao, Shurong Yin, Ziyang Diao, Bin Li, Dong Zhou, Xuejun Li, Zhanlin Wang, Fengxia Zhang, Min Xie, Zehui Zhao, Aihua Wang and Yaping Jin
Vet. Sci. 2024, 11(7), 288; https://doi.org/10.3390/vetsci11070288 - 28 Jun 2024
Viewed by 2153
Abstract
(1) Background: One method of eradicating brucellosis is to cull cattle that test positive for antibodies 12 months after being vaccinated with the 19-strain vaccine. Variations in immunization regimens and feeding practices may contribute to differences in the rate of persistent antibodies. We [...] Read more.
(1) Background: One method of eradicating brucellosis is to cull cattle that test positive for antibodies 12 months after being vaccinated with the 19-strain vaccine. Variations in immunization regimens and feeding practices may contribute to differences in the rate of persistent antibodies. We conducted this study to investigate the real positive rate of Brucella antibody in field strains of Brucella spp. after immunization over 12 months in dairy cows. This research aims to provide data to support the development of strategies for preventing, controlling, and eradicating brucellosis. (2) Method: We employed the baseline sampling method to collect samples from cows immunized with the A19 vaccine for over 12 months in Lingwu City from 2021 to 2023. Serological detection was conducted using the RBPT method. An established PCR method that could distinguish between 19 and non-19 strains of Brucella was utilized to investigate the field strains of Brucella on 10 dairy farms based on six samples mixed into one using the Mathematical Expectation strategy. (3) Results: We analyzed the rates of individual seropositivity and herd seropositive rates in dairy cattle in Lingwu City from 2021 to 2023 and revealed that antibodies induced by the Brucella abortus strain A19 vaccine persist in dairy herds for more than 12 months. We established a PCR method for identifying both Brucella A19 and non-A19 strains, resulting in the detection of 10 field strains of Brucella abortus from 1537 dairy cows. By employing a Mathematical Expectation strategy, we completed testing of 1537 samples after conducting only 306 tests, thereby reducing the workload by 80.1%. (4) Conclusions: There was a certain proportion of cows with a persistent antibody titer, but there was no evidence that all of these cattle were naturally infected with Brucella. The established PCR method for distinguishing between Brucella abortus strain 19 and non-19 strains can be specifically utilized for detecting natural Brucella infection in immunized cattle. We propose that relying solely on the detection of antibodies in cattle immunized with the A19 vaccine more than 12 months previously should not be solely relied upon as a diagnostic basis for brucellosis, and it is essential to complement this approach with PCR analysis to specifically identify field Brucella spp. Brucella abortus was the predominant strain identified in the field during this study. Detection based on the Mathematical Expectation strategy can significantly enhance detection efficiency. Full article
Show Figures

Figure 1

16 pages, 2684 KiB  
Article
Machine-Learning Analysis of the Canadian Royalties Grinding Circuit
by Antonio Di Feo, Nasseh Khodaie, Matthieu Girard and Simon Michaud
Minerals 2024, 14(4), 356; https://doi.org/10.3390/min14040356 - 28 Mar 2024
Viewed by 1453
Abstract
This work aimed to understand the relationships between grinding variables and the P80 (80% passing size) of a grinding circuit (feed to flotation). Canadian Royalties want to obtain and reduce variations in the P80, which is currently 65 micrometres. Thus, principal component analysis [...] Read more.
This work aimed to understand the relationships between grinding variables and the P80 (80% passing size) of a grinding circuit (feed to flotation). Canadian Royalties want to obtain and reduce variations in the P80, which is currently 65 micrometres. Thus, principal component analysis (PCA), part of machine learning, was utilized to better understand the factors that significantly influence the P80. PCA is meant to be used as a guideline for plant metallurgists to determine how the grinding circuit factors influence P80; thus, the variables can be manipulated to lower P80 fluctuations. PCA revealed that the head grade of the ore (pentlandite (Pn), chalcopyrite (Cp), pyrrhotite (Po) and non-sulphide gangue (NSG)) and the primary ball mill power were weakly correlated with P80. However, the ore level in the silo, flowrate to cyclones, cyclone pressure, percent solids and the feed tonnage rate to the primary ball mill were strongly correlated with P80. This information can be used to develop a strategy to control the P80 of the grinding circuit and provide a more consistent grind size to the flotation circuit, which can positively impact metallurgical performance. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 7203 KiB  
Article
Transient Behavior and Control of Polyethylene Production in a Fluidized Bed Reactor Utilizing Population Balance Model
by Nayef Ghasem
Int. J. Mol. Sci. 2024, 25(5), 2602; https://doi.org/10.3390/ijms25052602 - 23 Feb 2024
Viewed by 2796
Abstract
In this study, a fluidized bed reactor for polyethylene production was employed using a dry mode approach, where the recycle stream may contain components of a nature that cannot be condensed through standard cooling. To analyze the behavior of the fluidized bed reactors [...] Read more.
In this study, a fluidized bed reactor for polyethylene production was employed using a dry mode approach, where the recycle stream may contain components of a nature that cannot be condensed through standard cooling. To analyze the behavior of the fluidized bed reactors during the copolymerization of ethylene with butene, a dynamic population balance model was employed. The study includes sensitivity analyses through computer simulations to examine the variations in reactor temperature, molecular weights, catalyst feed rate, and monomer/comonomer concentrations in the fluidized bed reactor. It is noteworthy that the reactor exhibits instability under normal operational conditions and is sensitive to changes in the catalyst feed rate and coolant temperature of the heat exchanger. The findings also highlight challenges such as temperature fluctuations above the polymer melting point. This underscores the importance of implementing a temperature control system to prevent issues like reactor shutdown due to elevated temperatures. Dynamic instabilities were observed under specific circumstances and were successfully controlled using Proportional Integral Derivative (PID) control strategies. The population balance model is essential for understanding the complexity of transient polymerization reactions. It enables researchers to simulate and optimize polymerization processes by utilizing the detailed kinetics of the reaction. Full article
(This article belongs to the Special Issue Synthesis of Advanced Polymer Materials 2.0)
Show Figures

Figure 1

18 pages, 18944 KiB  
Article
Effect of Milling Strategy on the Surface Quality of AISI P20 Mold Steel
by Adel T. Abbas, Elshaimaa Abdelnasser, Noha Naeim, Khalid F. Alqosaibi, Essam A. Al-Bahkali and Ahmed Elkaseer
Metals 2024, 14(1), 48; https://doi.org/10.3390/met14010048 - 29 Dec 2023
Cited by 3 | Viewed by 2077
Abstract
This paper explores the impact of various milling strategies, including up-milling, down-milling, and hybrid approaches, on the surface roughness of AISI P20 mold steel. The study is methodically divided into three stages to comprehensively understand the effects of these strategies. The first stage [...] Read more.
This paper explores the impact of various milling strategies, including up-milling, down-milling, and hybrid approaches, on the surface roughness of AISI P20 mold steel. The study is methodically divided into three stages to comprehensively understand the effects of these strategies. The first stage involves milling single slots with varying cutting parameters to establish baseline effects. The second stage examines the effects of consistent milling strategies (up-up and down-down) on surface quality. The third stage probes into hybrid strategies (up-down and down-up) to assess their effectiveness. Central to this investigation is not only the type of milling strategy but also how cutting speed and feed rate influence the resultant surface roughness. Our findings indicate that up-milling generally leads to a 22% increase in surface roughness compared to down-milling. This trend is visually verified by surface texture analyses. When comparing consistent strategies, up-up milling tends to produce rougher surfaces than down-down milling by approximately 25%, characterized by distinctive scratches and feed mark overlays. Remarkably, while the hybrid milling strategies do not exhibit significant differences in surface roughness, variations in cutting speed and feed rate play a crucial role. Specifically, at lower speeds, hybrid milling achieves smoother surfaces than the identical double milling mode, while at a cutting speed of 100 m/min, the double mode demonstrates a notable decrease in roughness. Additionally, this study introduces a color mapping simulation for machined pockets, validated by experimental results, to predict surface roughness based on the strategic history of milling, thereby offering valuable insights for optimizing milling processes. Full article
Show Figures

Figure 1

19 pages, 17042 KiB  
Article
On the Processability and Microstructural Evolution of CuCrZr in Multilayer Laser-Directed Energy Deposition Additive Manufacturing via Statistical and Experimental Methods
by Ali Zardoshtian, Reza Esmaeilizadeh, Mazyar Ansari, Mohsen K. Keshavarz, Hamid Jahed and Ehsan Toyserkani
J. Manuf. Mater. Process. 2023, 7(4), 151; https://doi.org/10.3390/jmmp7040151 - 18 Aug 2023
Cited by 1 | Viewed by 3430
Abstract
Laser-directed energy deposition (LDED) is a promising technology for coating, repairing, and building near-net-shape 3D structures. However, the processing of copper alloys, specifically, has presented a significant challenge due to their low laser absorptivity at the 1060 nm laser wavelength and high thermal [...] Read more.
Laser-directed energy deposition (LDED) is a promising technology for coating, repairing, and building near-net-shape 3D structures. However, the processing of copper alloys, specifically, has presented a significant challenge due to their low laser absorptivity at the 1060 nm laser wavelength and high thermal conductivity. This study undertook a methodical examination by employing a 2 kW disk laser, operating at a wavelength of 1064 nm, and a coaxial nozzle head to comprehensively examine the processability of the highly conductive CuCrZr alloy for expanding the range of materials that can be successfully processed using LDED. The investigation focuses not only on optimizing the input process parameters that are the laser power, scanning speed, powder feed rate, and overlap ratio, but also on planning the toolpath trajectory, as these factors were found to exert a substantial influence on processability, geometrical accuracy, and the occurrence of defects such as lack of fusion. The optimal toolpath trajectory discovered involved implementing a zigzag strategy combined with a 90° rotation of the scanning direction. Additionally, a start point rotation was considered between each layer to even out the deposition of the layers. Moreover, a contour with a radial path at the corners was introduced to enhance the overall trajectory. Based on the hierarchal experimental study, the appropriate ranges for the key process parameters that leads to 99.99% relative density have been identified. They were found to be from 1100 up to 2000 W for the laser power (P), and from 0.003 up to 0.016 g/mm for the amount of powder that is fed to the melt pool distance (F/V). Regarding the influence of process parameters on the microstructure of the samples with equal deposition height, it was observed that varying combinations of process parameters within the optimal processing window resulted in variations in grain size ranging from 105 to 215 µm. Full article
(This article belongs to the Special Issue Advances in Metal Additive Manufacturing/3D Printing)
Show Figures

Figure 1

19 pages, 906 KiB  
Review
Biotechnological Applications of Products Released by Marine Microorganisms for Cold Adaptation Strategies: Polyunsaturated Fatty Acids, Antioxidants, and Antifreeze Proteins
by Chiara Lauritano and Daniela Coppola
J. Mar. Sci. Eng. 2023, 11(7), 1399; https://doi.org/10.3390/jmse11071399 - 11 Jul 2023
Cited by 7 | Viewed by 2925
Abstract
Marine organisms have developed a series of defense and adaptation strategies, permitting them to live and survive in peculiar environments, ranging from temperate to tropical and polar regions, high to low salinity areas and different light conditions, as well as are constantly exposed [...] Read more.
Marine organisms have developed a series of defense and adaptation strategies, permitting them to live and survive in peculiar environments, ranging from temperate to tropical and polar regions, high to low salinity areas and different light conditions, as well as are constantly exposed to variations induced by climate change and human activities. These defense strategies include the production of molecules and enzymes which may have applications for humans as well. In this review, we summarized the studies on bacterial and microalgal polyunsaturated fatty acids, antioxidants, and antifreeze proteins, which can find applications in different market sectors, such as feed and cosmetic fields. For all the aforementioned compounds, the compound annual growth rate is expected to increase by 5.35–36.3% in the near future, as the market interest toward these products is on the rise. Both industries and researchers are focused on developing mechanisms to reduce production time and costs, improve yields, and discover new proteins. Full article
Show Figures

Figure 1

13 pages, 5133 KiB  
Article
Model Predictive Control for Residential Battery Storage System: Profitability Analysis
by Patrick Kobou Ngani and Jean-Régis Hadji-Minaglou
Batteries 2023, 9(6), 316; https://doi.org/10.3390/batteries9060316 - 6 Jun 2023
Cited by 3 | Viewed by 2935
Abstract
For increased penetration of energy production from renewable energy sources at a utility scale, battery storage systems (BSSs) are a must. Their levelized cost of electricity (LCOE) has drastically decreased over the last decade. Residential battery storage, mostly combined with photovoltaic (PV) panels, [...] Read more.
For increased penetration of energy production from renewable energy sources at a utility scale, battery storage systems (BSSs) are a must. Their levelized cost of electricity (LCOE) has drastically decreased over the last decade. Residential battery storage, mostly combined with photovoltaic (PV) panels, also follow this falling prices trend. The combined effect of the COVID-19 pandemic and the war in Ukraine has caused such a dramatic increase in electricity prices that many consumers have adjusted their strategies to become prosumers and self-sufficient as feed-in subsidies continue to drop. In this study, an investigation is conducted to determine how profitable it is to install BSSs in homes with regards to battery health and the levelized cost of total managed energy. This is performed using mixed-integer linear programming (MILP) in MATLAB, along with its embedded solver Intlinprog. The results show that a reasonable optimized yearly cycling rate of the BSS can be reached by simply considering a non-zero cost for energy cycling through the batteries. This cost is simply added to the electricity cost equation of standard optimization problems and ensures a very good usage rate of the batteries. The proposed control does not overreact to small electricity price variations until it is financially worth it. The trio composed of feed-in tariffs (FITs), electricity costs, and the LCOE of BSSs represents the most significant factors. Ancillary grid service provision can represent a substantial source of revenue for BSSs, besides FITs and avoided costs. Full article
(This article belongs to the Special Issue Battery Energy Storage in Advanced Power Systems)
Show Figures

Graphical abstract

Back to TopTop