Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,084)

Search Parameters:
Keywords = feed grains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 - 5 Aug 2025
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

15 pages, 2391 KiB  
Article
Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth
by Mariana Cruz-Díaz, Humberto Reyes-Prado, Víctor R. Castrejón-Gómez and Paola Rossy García-Sosa
Agriculture 2025, 15(15), 1637; https://doi.org/10.3390/agriculture15151637 - 29 Jul 2025
Viewed by 242
Abstract
In this study, the seeking behaviour and food acceptance of larvae of Plodia interpunctella Hübner (Lepidoptera: Pyralidae) were analysed under laboratory conditions. Larval orientation and feeding preferences were assessed using a selection arena for neonate larvae and a four-way olfactometer for third-instar larvae. [...] Read more.
In this study, the seeking behaviour and food acceptance of larvae of Plodia interpunctella Hübner (Lepidoptera: Pyralidae) were analysed under laboratory conditions. Larval orientation and feeding preferences were assessed using a selection arena for neonate larvae and a four-way olfactometer for third-instar larvae. Stimulants included amaranth bars with additives (honey and chocolate) and natural amaranth (toasted grain only). The results showed that amaranth volatiles influence the orientation and feeding behaviour of this polyphagous insect. A marked preference for sugar-rich foods was observed, with amaranth with honey and amaranth with chocolate being the food sources most frequently chosen by the neonate larvae. These individuals exhibited a gregarious feeding behaviour and did not engage in cannibalism. The third-instar larvae also showed a preference for sweet food but were more attracted to the amaranth–additive combination. In the four-way olfactometer bioassays, chocolate was the most frequently chosen stimulus, while cellophane did not differ significantly from air. An analysis of volatile compounds by gas chromatography mass spectrometry (GC-MS) revealed that amaranth with chocolate releases more volatile compounds (16) compared with honey (12) and natural amaranth (6), suggesting that these volatiles could possibly influence the larvae’s choice of food source. Full article
Show Figures

Figure 1

14 pages, 911 KiB  
Article
Physiological Response of Tribolium castaneum to CO2 Controlled Atmosphere Stress Under Trehalose Feeding
by Yuya Zhang, Shangrong Hu, Min Zhou, Xinyi Zhang, Liwen Guan, Yanfei Zhou, Jun Lv and Bin Tang
Insects 2025, 16(8), 768; https://doi.org/10.3390/insects16080768 - 26 Jul 2025
Viewed by 446
Abstract
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the [...] Read more.
This study investigated the physiological regulatory mechanisms by which exogenous trehalose intake enhances the adaptation of the global stored-grain pest T. castaneum to high-concentration carbon dioxide (CO2) stress. By supplementing exogenous trehalose under high-CO2 controlled atmosphere stress, we measured the activities of key detoxification enzymes (e.g., carboxylesterase and cytochrome P450) and the levels of carbohydrate substances (e.g., glycogen, glucose, and trehalose). The results demonstrated that trehalose feeding significantly alleviated CO2 induced mortality in T. castaneum and prolonged their survival time. In terms of detoxification metabolism, a trehalose-rich diet significantly reduced the activities of cytochrome P450 and carboxylesterase, while the glucose content in the beetles decreased markedly. These findings indicate that trehalose accumulation mitigates physiological damage caused by high-CO2 stress in T. castaneum. Furthermore, exogenous trehalose intake did not disrupt carbohydrate metabolic homeostasis in the beetles, as trehalase activity and the levels of various carbohydrates remained relatively stable. This study elucidates the role of trehalose metabolism in T. castaneum’s adaptation to high-CO2 environments, providing a theoretical foundation for optimizing controlled atmosphere grain storage technology and developing novel pest control strategies. Full article
Show Figures

Figure 1

17 pages, 1927 KiB  
Article
ConvTransNet-S: A CNN-Transformer Hybrid Disease Recognition Model for Complex Field Environments
by Shangyun Jia, Guanping Wang, Hongling Li, Yan Liu, Linrong Shi and Sen Yang
Plants 2025, 14(15), 2252; https://doi.org/10.3390/plants14152252 - 22 Jul 2025
Viewed by 355
Abstract
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification [...] Read more.
To address the challenges of low recognition accuracy and substantial model complexity in crop disease identification models operating in complex field environments, this study proposed a novel hybrid model named ConvTransNet-S, which integrates Convolutional Neural Networks (CNNs) and transformers for crop disease identification tasks. Unlike existing hybrid approaches, ConvTransNet-S uniquely introduces three key innovations: First, a Local Perception Unit (LPU) and Lightweight Multi-Head Self-Attention (LMHSA) modules were introduced to synergistically enhance the extraction of fine-grained plant disease details and model global dependency relationships, respectively. Second, an Inverted Residual Feed-Forward Network (IRFFN) was employed to optimize the feature propagation path, thereby enhancing the model’s robustness against interferences such as lighting variations and leaf occlusions. This novel combination of a LPU, LMHSA, and an IRFFN achieves a dynamic equilibrium between local texture perception and global context modeling—effectively resolving the trade-offs inherent in standalone CNNs or transformers. Finally, through a phased architecture design, efficient fusion of multi-scale disease features is achieved, which enhances feature discriminability while reducing model complexity. The experimental results indicated that ConvTransNet-S achieved a recognition accuracy of 98.85% on the PlantVillage public dataset. This model operates with only 25.14 million parameters, a computational load of 3.762 GFLOPs, and an inference time of 7.56 ms. Testing on a self-built in-field complex scene dataset comprising 10,441 images revealed that ConvTransNet-S achieved an accuracy of 88.53%, which represents improvements of 14.22%, 2.75%, and 0.34% over EfficientNetV2, Vision Transformer, and Swin Transformer, respectively. Furthermore, the ConvTransNet-S model achieved up to 14.22% higher disease recognition accuracy under complex background conditions while reducing the parameter count by 46.8%. This confirms that its unique multi-scale feature mechanism can effectively distinguish disease from background features, providing a novel technical approach for disease diagnosis in complex agricultural scenarios and demonstrating significant application value for intelligent agricultural management. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

21 pages, 830 KiB  
Review
A Review of Chemical and Physical Analysis, Processing, and Repurposing of Brewers’ Spent Grain
by Joshua M. Henkin, Kalidas Mainali, Brajendra K. Sharma, Madhav P. Yadav, Helen Ngo and Majher I. Sarker
Biomass 2025, 5(3), 42; https://doi.org/10.3390/biomass5030042 - 16 Jul 2025
Viewed by 923
Abstract
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While [...] Read more.
Beer production produces significant amounts of brewers’ spent grain (BSG), a lignocellulosic by-product with important environmental and economic impacts. Despite its high moisture content and rapid microbial breakdown, BSG has a stable, nutrient-rich composition, especially high in protein, fiber, and polyphenolic compounds. While its perishability limits direct use in food systems, BSG is often repurposed as livestock feed. Recent advances in bioprocessing and extraction technologies have expanded their use across different sectors. This review explores the composition of crude BSG and evaluates innovative valorization methods, including recovering bioactive compounds with pharmaceutical and nutraceutical value, and converting them into biofuels such as biogas, biodiesel, and bioethanol. Special focus is given to methods involving enzymatic hydrolysis, fermentation, and chemical extraction to isolate proteins, peptides, amino acids, sugars, and polyphenols. By analyzing emerging applications and industrial scalability challenges, this review highlights BSG’s growing role within circular economy models and its potential to promote sustainable innovations in both the brewing industry and the wider bioeconomy. Full article
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 438
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

16 pages, 1124 KiB  
Article
Development and Population Growth Rates of Sitophilus zeamais (Coleoptera: Curculionidae) Exposed to a Sublethal Concentration of Essential Oil of Piper hispidinervum
by Lucas Martins Lopes, Lêda Rita D’Antonino Faroni, Gutierres Nelson Silva, Douglas Rafael e Silva Barbosa, Marcela Silva Carvalho, Herus Pablo Firmino Martins, Thaís Rodrigues dos Santos, Igor da Silva Dias and Adalberto Hipólito de Sousa
Insects 2025, 16(7), 697; https://doi.org/10.3390/insects16070697 - 6 Jul 2025
Viewed by 650
Abstract
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil [...] Read more.
Essential oils have emerged as promising alternatives for pest insect control. However, sublethal effects on insect reproduction and development are rarely explored, despite their relevance to integrated pest management (IPM). This study evaluated the sublethal effects of Piper hispidivervum C. DC. essential oil (EOPH) on the development and population growth of four populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), as well as the persistence of safrole residue in treated corn grains. Population development rates were determined using emergence curves and total emerged adults, while population growth was assessed by counting live insects in the feeding substrate at different storage intervals. Safrole residue persistence was analyzed using solid-phase microextraction in headspace mode (SPME-HS). Sublethal exposure to EOPH significantly reduced the development rate, total emergence, and growth in three of the four populations. The population from Crixás, GO, showed no significant reduction, with a population curve overlapping the control. The lethal dose was reduced by 98.20%, indicating low persistence and potential food safety. The EOPH exhibited sublethal effects on S. zeamais populations, reducing both development rates and population growth. This reduction varied among the populations studied. Further research is encouraged to explore its effects on different insect populations and under broader environmental conditions. Full article
(This article belongs to the Special Issue Integrated Pest Management in Stored Products)
Show Figures

Figure 1

18 pages, 1707 KiB  
Article
Effects of Low-Protein Diet Supplemented with Fermented Feed on Meat Quality, Fatty Acid Composition, and Gut Microbiota in Growing–Fattening Pigs
by Qidong Zhu, Xiaorong Zhou, Dingbiao Long, Laifu Leng, Rong Xiao, Renli Qi, Jing Wang, Xiaoyu Qiu and Qi Wang
Agriculture 2025, 15(13), 1457; https://doi.org/10.3390/agriculture15131457 - 6 Jul 2025
Viewed by 443
Abstract
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly [...] Read more.
Fermented feed has considerable potential as a high-quality protein source in animal production. This research aimed to examine the effects of a low-protein (LP) diet, supplemented with fermented feed, on the meat quality and intestinal health of growing–fattening pigs. The pigs were randomly divided into three groups, and a total of 72 growing–fattening pigs were subjected to the experiment. They were fed the control (CON) diet, LP diet, and LP diet supplemented with fermented rapeseed meals and fermented distiller’s grains (FLP), respectively. The results indicated that the FLP diet altered the structure of the intestinal microbiota and regulated the composition of unsaturated fatty acids in the longissimus dorsi. Furthermore, the FLP diet upregulated the expression of genes associated with myosin heavy chain isoforms (p < 0.05) and modified the content of short-chain fatty acids in the intestines (p < 0.05). In summary, the addition of fermented distiller’s grains (FDGs) and fermented rapeseed meals (FRMs) to the LP diet enhanced fatty acid metabolism and intestinal barrier function in growing–fattening pigs. Full article
(This article belongs to the Special Issue Assessment of Nutritional Value of Animal Feed Resources)
Show Figures

Figure 1

13 pages, 274 KiB  
Article
Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle
by Raquel Tenório de Oliveira, Rafael Henrique de Tonissi e Buschinelli de Goes, Jefferson Rodrigues Gandra, Fernanda Naiara Fogaça da Cruz, Nayara Gonçalves da Silva, Lara de Souza Oliveira, Jaqueline Luiza Royer, Lucas Gabriel Batista Domiciano, Tainá Lorraine Pereira Azevedo and Carolina Marques Costa Araújo
Polymers 2025, 17(13), 1860; https://doi.org/10.3390/polym17131860 - 3 Jul 2025
Viewed by 414
Abstract
Chitosan and technical cashew nutshell liquid (CNSLt) have emerged as promising natural compounds due to their antimicrobial, immunomodulatory, and fermentation-modulating properties. This study aimed to evaluate the inclusion of chitosan and CNSLt as potential substitutes for the ionophore monensin on feed intake, ruminal [...] Read more.
Chitosan and technical cashew nutshell liquid (CNSLt) have emerged as promising natural compounds due to their antimicrobial, immunomodulatory, and fermentation-modulating properties. This study aimed to evaluate the inclusion of chitosan and CNSLt as potential substitutes for the ionophore monensin on feed intake, ruminal fermentation, nitrogen balance, and microbial protein synthesis in steers. Five crossbred steers (Bos taurus), 18 months old with an average body weight of approximately 350 kg and fitted with permanent ruminal cannulas, were assigned to a 5 × 5 Latin square design. The experimental diets consisted of: (1) control (CON), (2) monensin (MON; 25 mg/kg of dry matter [DM]), (3) chitosan (CHI; ≥850 g/kg deacetylation degree, 375 mg/kg DM), (4) CNSLt (500 mg/kg DM), and (5) CNSLt + CHI (500 + 375 mg/kg DM). Supplementation with CHI or CNSLt + CHI reduced the intake of dry matter, crude protein, and neutral detergent fiber. Additionally, fecal excretion of whole corn kernels increased in these treatments. Ruminal fermentation parameters were affected, with the CNSLt + CHI treatment promoting higher molar proportions of propionate and acetate, along with reduced estimated methane emissions. However, purine derivatives, microbial protein synthesis, and nitrogen balance were not significantly affected by any of the treatments. These results suggest that CNSLt and CHI, particularly when combined, may serve as effective natural alternatives to monensin in high-grain diets for ruminants. Full article
7 pages, 2358 KiB  
Proceeding Paper
Effect of FSW Parameters on Microstructure and Mechanical Properties of Dissimilar Aluminum Joints
by Jayakumar Krishnamoorthy, Saran Kumar Murugesan, Sanjuvigasini Nagappan and Sanjay Prakash Prithiviraj
Eng. Proc. 2025, 93(1), 12; https://doi.org/10.3390/engproc2025093012 - 2 Jul 2025
Viewed by 238
Abstract
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on [...] Read more.
Friction stir welding (FSW) is a novel welding technique that produces a solid-state weld by generating frictional heat and plastic deformation at the weld spot with a revolving, non-consumable welding tool. Despite processing a wide range of industrial materials, FSW has concentrated on welding aluminum and its alloys because of its high strength-to-weight ratio and uses in the shipbuilding, aerospace, and other fabrication industries. Important FSW process factors that determine the mechanical qualities of the weldment are the tool tilt angle, tool traverse feed, tool pin profile, tool rotational speed (TRS), tool traverse speed (TTS), tool pin profile (TPP), and shoulder plunge depth. Variations in the required process parameters cause defects, which lower the weld quality of FSWed aluminum alloys (AA). Therefore, keeping an eye on and managing the FSW process is crucial to preserving the caliber of the weld joints. The current study aims to investigate the changes in the mechanical characteristics and microstructure of the FSWed AA5052-H111 and AA6061-T6 joints. To perform the FSW experiments, we varied TRS, TTS, and TPP on plates that were 5 mm thick and had a butt joint structure. Following welding, the microstructure of the weld zones was examined to observe how the grains had changed. The joint’s tensile strength reached a maximum of 227 MPa for the square-shaped TPP, and the micro-Vickers hardness test results showed a maximum of 102 HV at the weld nugget zone (WNZ). Full article
Show Figures

Figure 1

14 pages, 1224 KiB  
Article
Biotechnological Valorization of Brewer’s Spent Grain from Old Bread and Barley Malt: Fermentative Potential of Saccharomyces cerevisiae
by Anita Lalić, Jolita Jagelavičiūtė, Zorana Trivunović, Marina Marić, Andrea Karlović and Loreta Bašinskienė
Fermentation 2025, 11(7), 382; https://doi.org/10.3390/fermentation11070382 - 2 Jul 2025
Viewed by 935
Abstract
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old [...] Read more.
Brewer’s spent grain (BSG), the most abundant by-product from breweries, is mainly discarded or used as animal feed. However, to increase the brewing sustainability, biotechnological utilization of BSG is a much preferred solution. This study examined the fermentation of BSG, composed of old wheat bread and barley malt, by metabolic activity of Saccharomyces cerevisiae on both hydrolyzed and non-hydrolyzed media. Enzymatic hydrolysis with Viscozyme® W FG for 6 h was selected as the most effective and was used in the further research step to prepare the hydrolyzed BSG-based medium. Both media supported almost uniform yeast growth (numbers of S. cerevisiae cells was about 8 log10 CFU/g) in an acidic environment (pH value was about 5), but fermentation of hydrolyzed BSG resulted in 20% higher sugar consumption and 10% higher total titratable acidity. These findings underscore the potential of enzymatic pretreatment to improve fermentation performance. The adaptability of S. cerevisiae and the fermentability of both substrates suggest promising potential for scalable BSG valorization strategies in circular food systems. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

18 pages, 1689 KiB  
Article
Evaluation of Blast Resistance in Zinc-Biofortified Rice
by Anita Nunu, Maina Mwangi, Nchore Bonuke, Wagatua Njoroge, Mwongera Thuranira, Emily Gichuhi, Ruth Musila, Rosemary Murori and Samuel K. Mutiga
Plants 2025, 14(13), 2016; https://doi.org/10.3390/plants14132016 - 1 Jul 2025
Viewed by 1743
Abstract
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid [...] Read more.
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid costly fungicides. This study assessed the relationship between rice blast disease and zinc or anthocyanin content in biofortified rice. Susceptibility to foliar and panicle blast was assessed in a rice panel which differed on grain zinc content and pigmentation. A rice panel (n = 23) was challenged with inoculum of two isolates of Magnaporthe oryzae in a screenhouse-based assay. The zinc content with foliar blast severity was analyzed in the leaves and grain of a subset of non-inoculated rice plants. The effect of foliar zinc supplementation on seedlings was assessed by varying levels of zinc fertilizer solution on four blast susceptible cultivars at 14 days after planting (DAP), followed by inoculation with the blast pathogen at 21 DAP. Foliar blast severity was scored on a 0–9 scale at 7 days after inoculation. The rice panel was scored for anthocyanin content, and the data were correlated with foliar blast severity. The panel was grown in the field, and panicle blast, grain yield and yield-related agronomic traits were measured. Significant differences were observed in foliar blast severity among the rice genotypes, with IRBLK-KA and IR96248-16-2-3-3-B having mean scores greater than 4, as well as BASMATI 370 (a popular aromatic variety), while the rest of the genotypes were resistant. Supplementation with foliar zinc led to a significant decrease in susceptibility. A positive correlation was observed between foliar and panicle blast. The Zn in the leaves was negatively correlated with foliar blast severity, and had a marginally positive correlation with panicle blast. There was no relationship between foliar blast severity and anthocyanin content. Grain yield had a negative correlation with panicle blast, but no correlation was observed between Zn in the grain and grain yield. This study shows that Zn biofortification in the grain may not enhance resistance to foliar and panicle blast. Furthermore, the zinc-biofortified genotypes were not agronomically superior to the contemporary rice varieties. There is a need to apply genomic selection to combine promising alleles into adapted rice genetic backgrounds. Full article
(This article belongs to the Special Issue Rice-Pathogen Interaction and Rice Immunity)
Show Figures

Figure 1

16 pages, 35029 KiB  
Article
Effects of Process Parameters on Defect Formation in Laser Additive Manufacturing of a Novel Ni-Based Superalloy
by Wen-Tao Liu, Jing-Cheng Zhou, Jing-Jing Ruan, Hua Zhang, Xin Zhou, Liang Jiang and Li-Long Zhu
Materials 2025, 18(13), 3102; https://doi.org/10.3390/ma18133102 - 1 Jul 2025
Viewed by 382
Abstract
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification [...] Read more.
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification and remelting, thereby affecting defect formation. In this study, laser-directed energy deposition was employed to evaluate the effects of our key process parameters on the formation of voids and cracks in a novel superalloy. The findings reveal that laser power and linear energy density significantly influence the void content and crack density. However, the influence of other process parameters on defect formation is relatively minimal. The optimal parameter space is characterized by a laser power range of 600~700 W, a linear energy density range of 60~90 J/mm and a powder feeding rate of 0.7~0.8 rpm. Moreover, the precipitation of fine MC-type carbides near the dendrites and grain-boundary misorientations within the range of 31~42° are associated with a higher propensity for crack formation. These insights provide a valuable reference for controlling the process parameters and understanding the cracking mechanisms in laser additive manufacturing of superalloys. Full article
(This article belongs to the Special Issue Intelligent Processing Technology of Materials)
Show Figures

Graphical abstract

17 pages, 10204 KiB  
Article
Effect of Nanographene Water-Based Lubricant (NGWL) on Removal Behavior of Pure Copper
by Ziheng Wang, Zhenjing Duan, Shuaishuai Wang, Ji Tan, Peng Bian, Jiyu Liu, Jinlong Song and Xin Liu
Lubricants 2025, 13(7), 286; https://doi.org/10.3390/lubricants13070286 - 26 Jun 2025
Viewed by 434
Abstract
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy [...] Read more.
Pure copper is an important metal material in the fields of integrated circuits, mold manufacturing, and aerospace. Its excellent ductility and plasticity lead to problems such as burrs and tool wear in cutting, which poses great challenges to the improvement of machining accuracy and surface quality. To achieve high-quality and efficient processing of pure copper, this paper proposes to use nanographene water-based lubricant (NGWL) to regulate its removal behavior. A single-grain diamond scribing test and a micro-milling test were carried out to systematically study the action mechanism of NGWL on removal behavior of pure copper. The results showed that, compared with dry scribing at normal forces of 100, 400, 700, and 1000 mN, the material removal efficiency induced by NGWL was increased by 54.1%, 80.7%, 44.8%, and 30.3%, respectively. Compared with dry micro-milling at feed speeds of 200, 600, 1000, and 1400 μm/s, for the 75°XT4E tool, the surface roughness Sa with NGWL-assisted micro-milling was reduced by 75.5%, 73.1%, 61.4%, and 44.2%, respectively. Similarly, for the 65°UDT4E tool, compared to dry micro-milling, the Sa with NGWL lubrication was also reduced by 28.9%, 52.2%, 54.4%, and 36.9%, respectively. The Sa of pure copper induced by NGWL could be as low as about 20 nm without scales. Overall, NGWL can regulate removal behavior of pure copper by alleviating plastic deformation and promoting ductile fracture, thereby providing a new approach to achieving high-quality and efficient processing of pure copper. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

24 pages, 23575 KiB  
Article
Influence of the Drilling Parameters in the Single-Lip Deep-Hole Drilling Process on the Surface Integrity of Nickel-Based Alloy
by Tao Wu, Fangchao Zhang, Haoguang Zhou and Dong Zhang
Machines 2025, 13(7), 554; https://doi.org/10.3390/machines13070554 - 26 Jun 2025
Viewed by 338
Abstract
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties [...] Read more.
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties remains unclear. By adjusting the spindle speed and feed rate, a series of orthogonal experiments were carried out to study the integrity characteristics of the machined surface, including surface morphology, roughness, work hardening, and subsurface microstructure. The results reveal gradient structural features along radial depth: a dynamic recrystallized layer (RL) at the surface and a plastically deformed layer (PDL) containing high-density subgrains/distorted grains in the subsurface. With the increase in the spindle speed, the recrystallization phenomenon is intensified, the RL ratio of the machined-affected zone (MAZ) is increased, and the surface roughness is reduced to ~0.5 μm. However, excessive heat input will reduce the nanohardness. Low feed rates (<0.012 mm/rev) effectively suppress pit defects, whereas high feed rates (≥0.014 mm/rev) trigger pit density resurgence through shear instability. Progressive material removal rate (MRR) elevation drives concurrent PDL thickness reduction and RL proportion growth. Optimal medium MRR range (280–380 mm3/min) achieves synergistic RL/PDL optimization, reducing machining-affected zone thickness (MAZ < 35 μm) while maintaining fatigue resistance. These findings establish theoretical foundations for balancing efficiency and precision in aerospace high-temperature component manufacturing. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

Back to TopTop