Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = feed extrusion technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2328 KiB  
Article
Vertical Hot-Melt Extrusion: The Next Challenge in Innovation
by Maël Gallas, Ghouti Medjahdi, Pascal Boulet and Victoire de Margerie
Pharmaceutics 2025, 17(7), 939; https://doi.org/10.3390/pharmaceutics17070939 - 21 Jul 2025
Viewed by 377
Abstract
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has become a key technology in pharmaceutical formulation, particularly for enhancing the solubility of poorly soluble Active Pharmaceutical Ingredients (APIs). While horizontal HME is widely adopted, vertical HME remains underexplored despite its potential benefits in footprint reduction, feeding efficiency, temperature control, and integration into continuous manufacturing. This study investigates vertical HME as an innovative approach in order to optimize drug polymer interactions and generate stable amorphous dispersions with controlled release behavior. Methods: Extrusion trials were conducted using a vertical hot-melt extruder developed by Rondol Industrie (Nancy, France). Acetylsalicylic acid (ASA) supplied by Seqens (Écully, France) was used as a model API and processed with Soluplus® and Kollidon® 12 PF (BASF, Ludwigshafen, Germany). Various process parameters (temperature, screw speed, screw profile) were explored. The extrudates were characterized by powder X-ray diffraction (PXRD) and small-angle X-ray scattering (SAXS) to evaluate crystallinity and microstructure. In vitro dissolution tests were performed under sink conditions using USP Apparatus II to assess drug release profiles. Results: Vertical HME enabled the formation of homogeneous amorphous solid dispersions. PXRD confirmed the absence of residual crystallinity, and SAXS revealed nanostructural changes in the polymer matrix influenced by drug loading and thermal input. In vitro dissolution demonstrated enhanced drug release rates compared to crystalline ASA, with good reproducibility. Conclusions: Vertical HME provides a compact, cleanable, and modular platform that supports the development of stable amorphous dispersions with controlled release. It represents a robust and versatile solution for pharmaceutical innovation, with strong potential for cost-efficient continuous manufacturing and industrial-scale adoption. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

19 pages, 12002 KiB  
Article
Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours
by Simone de Souza Fernandes, Jhony Willian Vargas-Solórzano, Carlos Wanderlei Piler Carvalho and José Luis Ramírez Ascheri
Foods 2025, 14(14), 2524; https://doi.org/10.3390/foods14142524 - 18 Jul 2025
Viewed by 363
Abstract
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed [...] Read more.
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed to develop a gluten-free fusilli noodle using extruded flours based on mixtures of Japanese rice (JR) and chickpea (CP) particles. Methods: A 23 factorial design with augmented central points was applied to evaluate the effects of flour ratio (X1, CP/JR, 20–40%), feed moisture (X2, 24–30%), and extrusion temperature (X3, 80–120 °C) on responses from process properties (PPs), extruded flours (EFs), and noodle properties (NPs). Results: Interaction effects of X3 with X1 or X2 were observed on responses. On PP, X1 at 120 °C reduced the mechanical energy input (181.0 to 136.2 kJ/kg) and increased moisture retention (12.0 to 19.8%). On EF, X1 increased water-soluble solids (2.3 to 4.2 g/100 g, db) and decreased water absorption (8.6 to 5.7 g/g insoluble solids). On NP, X1 also affected their cooking properties. The mass increase was greater at 80°C (140 to 174%), and the soluble-solids loss was greater at 120 °C (9.3 to 4.5%). The optimal formulation (X1X2X3: 40–30%–80 °C) yielded noodles with improved elasticity, augmented protein, and enhanced textural integrity. Conclusions: Extruded flours derived from 40% chickpea flour addition and processed under mild conditions proved to be an effective strategy for enhancing both the nutritional and technological properties of rice-based noodles and supporting clean-label alternative products for gluten-intolerant and health-conscious consumers. Full article
Show Figures

Figure 1

19 pages, 1209 KiB  
Review
The Impact of Extrusion Cooking on the Physical Properties, Functional Components, and Pharmacological Activities of Natural Medicinal and Edible Plants: A Review
by Yao Xu, Fan Jia, Yuhang Wu, Jiani Jiang, Tao Zheng, Hui Zheng and Yong Yang
Foods 2025, 14(11), 1869; https://doi.org/10.3390/foods14111869 - 24 May 2025
Viewed by 885
Abstract
Extrusion cooking is an innovative, advanced processing technology widely used in the food and feed industries. With growing concerns over the health attributes of food, the effects of extrusion cooking on the functional characteristics of natural medicinal and edible plants (NMEPs) have attracted [...] Read more.
Extrusion cooking is an innovative, advanced processing technology widely used in the food and feed industries. With growing concerns over the health attributes of food, the effects of extrusion cooking on the functional characteristics of natural medicinal and edible plants (NMEPs) have attracted increasing attention from researchers. This review, based on recent literature on extrusion cooking, systematically summarizes its impact on the physical properties; functional components, such as total polyphenols, total flavonoids, total polysaccharides, and total saponins; and pharmacological activities, including antioxidant, hypoglycemic, hypolipidemic, and anti-inflammatory effects, of NMEPs. The aim is to provide a scientific basis for the application of extrusion cooking technology in the advanced processing of these resources. Full article
Show Figures

Graphical abstract

26 pages, 109771 KiB  
Article
Simulation and Structural Optimization of an Eccentric Rotor Extruder Feeding Section
by Jinhui Jiang, Yanhong Feng, Shuo Gao, Wenqiang Yan, Xiaochun Yin and Guizhen Zhang
Materials 2025, 18(9), 1939; https://doi.org/10.3390/ma18091939 - 24 Apr 2025
Viewed by 420
Abstract
The eccentric rotor extruder (ERE) is polymer processing equipment that exhibits excellent processing capabilities for materials with extremely high viscosity, which are difficult to plastically deform and transport efficiently. However, the mass transfer mechanism in the solid conveying section of this new device [...] Read more.
The eccentric rotor extruder (ERE) is polymer processing equipment that exhibits excellent processing capabilities for materials with extremely high viscosity, which are difficult to plastically deform and transport efficiently. However, the mass transfer mechanism in the solid conveying section of this new device is fundamentally different from that of traditional extruders, and no related research has been reported. This study uses discrete element method (DEM) simulation technology to model the solid conveying process of the ERE. By visualizing the positive displacement conveying process, and with an analysis of the output parameters, the study clarifies the mass transfer principles and quantifies the conveying capacity, providing guidance for optimizing the extruder design. The simulation results show that the ERE exhibits positive displacement conveying characteristics, with the conveying process achieved by the forward movement of the cavities (closed cavities between the rotor and stator) in a helical manner. However, differences in the dual-cavity (two types of cavities) feeding process and low fill level can lead to significant fluctuations in extrusion output and reduced conveying capacity. To address these issues, an improvement scheme for the dual-cavity feed opening is proposed, with feed openings designed with different opening lengths. Then, by analyzing the particle coordinate data from the simulation output, the conveying capacities of different feed opening structures are quantified and optimized. Finally, experimental and simulation verification results indicate that the optimized structure significantly improves the issues of uneven filling and low fill level, with good correspondence between the simulation and experimental results. Simulation results show that, compared with the original structure, the optimized dual-feed opening structure increases the feed capacity from 3953 particles per cavity to 5132 particles per cavity, an improvement of 29.8%, and it achieves balanced filling between the two cavities. Experimental validation indicates that the UPE4040 output can be increased from 165.3 g/min with structure op-00 to 231.7 g/min with the optimized structure op-05. Full article
Show Figures

Graphical abstract

19 pages, 941 KiB  
Article
Fungal Protein from Non-Food Bioresources in Diets for Rainbow Trout (Oncorhynchus mykiss)
by Ashwath Gaudhaman, Sajjad Karimi, Torbjörn Lundh, Margareth Øverland, Mohammad J. Taherzadeh, Markus Langeland, Kartik Baruah and Aleksandar Vidakovic
Fishes 2025, 10(4), 149; https://doi.org/10.3390/fishes10040149 - 27 Mar 2025
Viewed by 1211
Abstract
The growing aquaculture industry has an increasing demand for novel, sustainably produced protein sources for aquafeed. This study aimed to determine the apparent digestibility (AD%), pellet quality, and protein score of four novel fungal proteins in rainbow trout (Oncorhynchus mykiss), namely, [...] Read more.
The growing aquaculture industry has an increasing demand for novel, sustainably produced protein sources for aquafeed. This study aimed to determine the apparent digestibility (AD%), pellet quality, and protein score of four novel fungal proteins in rainbow trout (Oncorhynchus mykiss), namely, PEKILO® (PEK) derived from Paecilomyces variotii, Aspergillus oryzae (AO), Rhizopus oligosporus (RO), and Rhizopus delemar (RD). All fungi were grown on various side-streams, such as beet vinasse, thin stillage, and whole stillage. The diets were produced by extrusion technology and consisted of control and test diets with a 30:70 test ingredient/control ratio. Feeding lasted for 39 days. Each tank had 20 fish, with three replicates per dietary treatment. One-way ANOVA was performed to compare the means of the groups with each other. The dry matter (DM) digestibility of PEK was significantly higher than that of AO, RD, and RO, all with similar digestibility. The crude protein AD% for PEK was 86.5%, which is significantly higher than that of the other fungal sources. AO, PEK, RD, and RO had similar crude fat AD% compared to each other, at 83.8%, 87.4%, 90.5%, and 88.5%, respectively. The pellet quality was found to deteriorate with addition of fungal proteins. PEK had high AD% for most of the macronutrients tested and better pellet quality. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

26 pages, 3792 KiB  
Article
The Effects of Malting and Extrusion on the Functional and Physical Properties of Extrudates from Malted Brown Rice and Pigeon Pea Flour Blends
by Chinenye Azuka, Amarachi Onwuchekwa, Adaora Nwosu, Mel Holmes, Christine Boesch and Gabriel Okafor
Foods 2025, 14(3), 422; https://doi.org/10.3390/foods14030422 - 28 Jan 2025
Viewed by 904
Abstract
Malted grains subjected to extrusion technology could have better quality indices than non-malted grains. The effects of malting and extrusion on the functional and physical qualities of foods extruded from malted brown rice and pigeon pea flour blends were investigated. Malted pigeon pea [...] Read more.
Malted grains subjected to extrusion technology could have better quality indices than non-malted grains. The effects of malting and extrusion on the functional and physical qualities of foods extruded from malted brown rice and pigeon pea flour blends were investigated. Malted pigeon pea and brown rice flours were processed into blends, extruded under various conditions of feed moisture levels (15–20), feed compositions (8–30%), and barrel temperatures (100–130 °C), and analyzed using Response Surface Methodology with a Box–Behnken design. The impacts of malting and extrusion were assessed on the following functional qualities: bulk density, rheology, swelling capacity, water absorption capacity, and solubility. The physical quality assessment included a 2-D photographic representation of the extrudates, a microscopic assessment of their internal structure, expansion index, color parameters (L*, a*, b*), and alterations in the color index. Increased feed moisture, malted pigeon pea, and decreased barrel temperature resulted in a higher bulk density (0.72 to 0.84 g/cm3) of the extrudates. There was a decrease in water absorption capacity (6.82–4.49%) with an increase in barrel temperature above 100 °C. All the samples showed a decrease in viscosity with increasing shear rate. At low barrel temperatures, feed compositions, and feed moistures, extrusion led to increases in the expansion index (3.5 to 12.94) and the color lightness (66.83–81.71) of the extrudates. Samples with a higher proportion of malted brown rice showed a higher expansion index, lower bulk density, and lighter color of the extrudates. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 14884 KiB  
Article
Study on the Effect of Laser Power on the Microstructure and Properties of Cladding Stellite 12 Coatings on H13 Steel
by Qianjie Wang, Xuedao Shu, Haijie Xu, Sheng Xu and Song Zhang
Materials 2024, 17(24), 6098; https://doi.org/10.3390/ma17246098 - 13 Dec 2024
Cited by 1 | Viewed by 1009
Abstract
To address the issue of cracking in aluminum extrusion dies during operation, this study employs laser cladding technology to modify the surface of these dies. This modification aims to enhance their hardness and friction resistance. Laser cladding technology was utilized to coat the [...] Read more.
To address the issue of cracking in aluminum extrusion dies during operation, this study employs laser cladding technology to modify the surface of these dies. This modification aims to enhance their hardness and friction resistance. Laser cladding technology was utilized to coat the surface of H13 steel with Stellite 12, a cobalt-based alloy, at varying laser power levels. The surface formation quality, microstructural organization, phase composition, microhardness, and wear resistance of the coatings were investigated using optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction (XRD), microhardness testing, and confocal microscopy. The results indicated that as the laser power increased, the surface formation quality of the coating gradually improved, while the dilution rate of the coating increased. Changes in the phase composition and microstructure were not significant, and both microhardness and wear resistance initially increased before decreasing. Optimal process parameters for achieving good surface formation quality, high microhardness, and strong wear resistance were found to be a laser output power of 2200 W, scanning speed of 10 mm/s, feeding rate of 1.2 r/min, and overlap rate of 40%. The results indicate that the coating applied to the surface of H13 steel using Stellite 12 enhances the performance of aluminum extrusion dies. Full article
Show Figures

Figure 1

18 pages, 7532 KiB  
Article
Enhancing of Surface Quality of FDM Moulded Materials through Hybrid Techniques
by Monika Jabłońska and Olga Łastowska
Materials 2024, 17(17), 4250; https://doi.org/10.3390/ma17174250 - 28 Aug 2024
Cited by 6 | Viewed by 1300
Abstract
With the rapid advancement of 3D-printing technology, additive manufacturing using FDM extrusion has emerged as a prominent method in manufacturing. However, it encounters certain limitations, notably in surface quality and dimensional accuracy. Addressing issues related to stability and surface roughness necessitates the integration [...] Read more.
With the rapid advancement of 3D-printing technology, additive manufacturing using FDM extrusion has emerged as a prominent method in manufacturing. However, it encounters certain limitations, notably in surface quality and dimensional accuracy. Addressing issues related to stability and surface roughness necessitates the integration of 3D-printing technology with traditional machining, a strategy known as the hybrid technique. This paper presents a study of the surface geometric parameters and microstructure of plastic parts produced by FDM. Sleeve-shaped samples were 3D-printed from polyethylene terephthalate glycol material using variable layer heights of 0.1 mm and 0.2 mm and then subjected to the turning process with PVD-coated DCMT11T304 turning inserts using variable cutting parameters. The cutting depth was constant at 0.82 mm. Surface roughness values were correlated with the cutting tool feed rate and the printing layer height applied. The selected specimen’s microstructure was studied with a Zeiss EVO MA 15 scanning electron microscope. The roundness was measured with a Keyence VR-6200 3D optical profilometer. The research results confirmed that the additional application of turning, combined with a reduction in the feed rate (0.0506 mm/rev) and the height of the printed layer (0.1 mm), reduced the surface roughness of the sleeve (Ra = 1.94 μm) and increased its geometric accuracy. Full article
Show Figures

Figure 1

16 pages, 6135 KiB  
Article
Efficiency and Microstructural Forecasts in Friction Stir Extrusion Compared to Traditional Hot Extrusion of AA6061
by Sara Bocchi, Marco Zambelli, Gianluca D’Urso and Claudio Giardini
J. Manuf. Mater. Process. 2024, 8(4), 172; https://doi.org/10.3390/jmmp8040172 - 9 Aug 2024
Viewed by 1586
Abstract
Conventional aluminum recycling consumes a substantial amount of energy and has a negative impact on secondary alloys. To address this challenging topic, Friction Stir Extrusion has been patented, which represents an innovative solid-state recycling technique that enables the direct extrusion of components from [...] Read more.
Conventional aluminum recycling consumes a substantial amount of energy and has a negative impact on secondary alloys. To address this challenging topic, Friction Stir Extrusion has been patented, which represents an innovative solid-state recycling technique that enables the direct extrusion of components from recyclable materials. In recent years, developing simulation models for Friction Stir Extrusion has become essential for gaining a deeper understanding of its underlying physics. Simultaneously, control of the microstructure evolution of extruded profiles is required, as it has a considerable influence on mechanical properties. This research involves a single Lagrangian model, adapted for both the FSE and the traditional hot extrusion processes. The simulations explored various rotational speeds and feed rates, revealing significant effects on grain size and bonding quality. To this model were applied different sub-routines, to investigate the impact of the FSE process with respect to the traditional hot extrusion process in terms of energy demands, quality and microstructure of the extruded pieces. The findings demonstrated that optimal grain refinement occurs at intermediate rotational speeds (600–800 rpm) combined with lower feed rates (1 mm/s). The energy analyses indicated that FSE requires lower total energy compared to traditional hot extrusion, primarily due to the reduced axial thrust and more efficient thermal management. As a result, it was possible to ensure the ability of the developed simulative model to be fully adapted for both processes and to forecast the microstructural changes directly during the process and not only at the end of the extrusion. The study concludes that FSE is a highly efficient method for producing high-quality extruded rods, with the developed simulation model providing valuable insights for process optimization. The model’s adaptability to various starting materials and conditions highlights its potential for broader applications in extrusion technology. Full article
Show Figures

Figure 1

20 pages, 2554 KiB  
Review
Triticale: A General Overview of Its Use in Poultry Production
by Olena V. Gaviley, Oleg O. Katerynych, Igor A. Ionov, Olena O. Dekhtiarova, Darren K. Griffin and Michael N. Romanov
Encyclopedia 2024, 4(1), 395-414; https://doi.org/10.3390/encyclopedia4010027 - 19 Feb 2024
Cited by 9 | Viewed by 4133
Abstract
Triticale, a hybrid of wheat and rye, is one of the most promising grain crops. In terms of productivity, the level of metabolizable energy, and the composition of essential amino acids, triticale surpasses rye and is not inferior to wheat. It is resistant [...] Read more.
Triticale, a hybrid of wheat and rye, is one of the most promising grain crops. In terms of productivity, the level of metabolizable energy, and the composition of essential amino acids, triticale surpasses rye and is not inferior to wheat. It is resistant to the most dangerous diseases and pests. In terms of nutritional value, triticale can compete with wheat, corn, sorghum, and barley. The presence, however, of antinutrients in triticale such as non-starch polysaccharides, alkylresorcinols, and trypsin inhibitors significantly reduces the biological value of this crop. In the global practice of compound feed production, there are many methods and technologies for processing grain raw materials to increase their nutritional value. Enzymatic treatment and extrusion technologies are worthy of special attention. The high content of triticale in the compound feed of poultry breeder flocks should be used effectively, taking into account the characteristics of triticale varieties and climatic conditions. An optimal triticale level in feed (15% for layer and broiler chicks) may improve body weight gain and reduce feed costs when raising replacement young stock. Layer breeder flocks fed a 20% triticale-based diet may have increased egg production, high viability, and flock uniformity. Producing triticale–soy and triticale–sunflower extrudates and supplementing the diet of poultry flocks with essential amino acids represent promising avenues for maximizing the benefits of triticale. Innovative methods of achieving this goal should be further developed and put into practice, particularly given the expansion of triticale’s cultivation areas. Full article
(This article belongs to the Section Biology & Life Sciences)
Show Figures

Figure 1

23 pages, 2851 KiB  
Review
Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview
by Domenico Acierno and Antonella Patti
Materials 2023, 16(24), 7664; https://doi.org/10.3390/ma16247664 - 15 Dec 2023
Cited by 46 | Viewed by 5905
Abstract
The fused deposition modeling (FDM) process, an extrusion-based 3D printing technology, enables the manufacture of complex geometrical elements. This technology employs diverse materials, including thermoplastic polymers and composites as well as recycled resins to encourage sustainable growth. FDM is used in a variety [...] Read more.
The fused deposition modeling (FDM) process, an extrusion-based 3D printing technology, enables the manufacture of complex geometrical elements. This technology employs diverse materials, including thermoplastic polymers and composites as well as recycled resins to encourage sustainable growth. FDM is used in a variety of industrial fields, including automotive, biomedical, and textiles, as a rapid prototyping method to reduce costs and shorten production time, or to develop items with detailed designs and high precision. The main phases of this technology include the feeding of solid filament into a molten chamber, capillary flow of a non-Newtonian fluid through a nozzle, layer deposition on the support base, and layer-to-layer adhesion. The viscoelastic properties of processed materials are essential in each of the FDM steps: (i) predicting the printability of the melted material during FDM extrusion and ensuring a continuous flow across the nozzle; (ii) controlling the deposition process of the molten filament on the print bed and avoiding fast material leakage and loss of precision in the molded part; and (iii) ensuring layer adhesion in the subsequent consolidation phase. Regarding this framework, this work aimed to collect knowledge on FDM extrusion and on different types of rheological properties in order to forecast the performance of thermoplastics. Full article
Show Figures

Graphical abstract

22 pages, 11175 KiB  
Article
Study on the Residence Time and Texture Prediction of Pea Protein Extrusion Based on Image Analysis
by Qi Wu, Xun Zhang, Fei Gao and Min Wu
Foods 2023, 12(24), 4408; https://doi.org/10.3390/foods12244408 - 7 Dec 2023
Cited by 7 | Viewed by 1872
Abstract
This paper initially involves three main processing parameters: screw speed, feeding speed, and initial material moisture content, exploring the RTD of materials inside the extruder barrel under varying parameters and clarifying the impact of parameter variations on RTD. Finally, machine vision technology was [...] Read more.
This paper initially involves three main processing parameters: screw speed, feeding speed, and initial material moisture content, exploring the RTD of materials inside the extruder barrel under varying parameters and clarifying the impact of parameter variations on RTD. Finally, machine vision technology was utilized to link extruded product images to texture features, and a texture prediction model based on image features was established using a Back Propagation (BP) neural network. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were applied to optimize the BP neural network. The results indicate that the feeding speed has a stronger impact than the screw speed on the extrusion process, and an increase in the initial material moisture content tends to shorten the RTD. Specifically, an increase in screw speed results in a denser product structure, while higher feeding speeds lead to reduced pore size in the microstructure. As the initial material moisture content increased from 55% to 70%, the average residence time MRT decreased from 265.21 s to 166.62 s. Additionally, elevated moisture content causes a more porous microstructure. After optimizing the texture prediction model of extruded products through the application of Particle Swarm Optimization and Genetic Algorithm models, it was discovered that the Genetic Algorithm was more effective in reducing errors (p < 0.05) than the Particle Swarm Optimization algorithm. It was found that the Particle Swarm Optimization model exhibited better prediction performance. The results of the prediction indicated a significant association between the image features of the product and hardness, resilience, and chewiness, as corroborated by correlation coefficients of 0.93913, 0.94040, and 0.94724, respectively. Full article
Show Figures

Figure 1

11 pages, 430 KiB  
Article
Utilization of Brewer’s Spent Grains and Agricultural Residues in Pig Feed Formation
by Tanja Stahn, Regina Storandt, Sandra Grebenteuch, Sascha Rohn, Detlef May, Claudia Dolsdorf and Daniel Pleissner
Sustainability 2023, 15(18), 13774; https://doi.org/10.3390/su151813774 - 15 Sep 2023
Cited by 8 | Viewed by 2377
Abstract
In this study, brewer’s spent grains (BSG)-raw matrix was technologically and functionally improved by adding natural active ingredient carriers (crushed wheat, rapeseed, and pumpkin seed press cake) and using planetary roller extrusion and used as feed additive for pigs. Feeding trials were run [...] Read more.
In this study, brewer’s spent grains (BSG)-raw matrix was technologically and functionally improved by adding natural active ingredient carriers (crushed wheat, rapeseed, and pumpkin seed press cake) and using planetary roller extrusion and used as feed additive for pigs. Feeding trials were run for 189 days using 60 pigs with an age of 28 days. Pigs were grouped in a control group (fed with organic basic feed) and two experimental groups (fed with BSG 1 or BSG 2 in addition to organic basic feed). The 20 animals per group gained similar weight in the control group (306 g day−1 and 725 g day−1) and in the group fed with BSG 1 (282 g day−1 and 627 g day−1) or BSG 2 (250 g day−1 598 g day−1) in addition during rearing and fattening phases, respectively. Carcass evaluation revealed that meat quality did not differ between control and experimental groups. The BSG-based feed formulations tested seem to not result in negative effects on weight gain nor on meat quality. Animals were generally of good health and marketable quality, and thus the outcomes of this study are expected to contribute to an improved utilization strategy of brewer’s spent grains from breweries. Full article
(This article belongs to the Special Issue Techno-Sustainable Biowaste Management Strategy)
Show Figures

Figure 1

14 pages, 4394 KiB  
Article
Three-Dimensional Printing of Large Ceramic Products and Process Simulation
by Tao Lin, Zhihao Zhao, Tao Wang and Ye-Tang Pan
Materials 2023, 16(10), 3815; https://doi.org/10.3390/ma16103815 - 18 May 2023
Cited by 5 | Viewed by 3171
Abstract
Ceramic 3D printing is a promising technology that overcomes the limitations of traditional ceramic molding. It offers advantages such as refined models, reduced mold manufacturing costs, simplified processes, and automatic operation, which have attracted a growing number of researchers. However, current research tends [...] Read more.
Ceramic 3D printing is a promising technology that overcomes the limitations of traditional ceramic molding. It offers advantages such as refined models, reduced mold manufacturing costs, simplified processes, and automatic operation, which have attracted a growing number of researchers. However, current research tends to focus more on the molding process and print molding quality rather than exploring printing parameters in detail. In this study, we successfully prepared a large-size ceramic blank using screw extrusion stacking printing technology. Subsequent glazing and sintering processes were used to create complex ceramic handicrafts. Additionally, we used modeling and simulation technology to explore the fluid model printed by the printing nozzle at different flow rates. We adjusted two core parameters that affect the printing speed separately: three feed rates were set to be 0.001 m/s, 0.005 m/s, and 0.010 m/s, and three screw speeds were set to be 0.5 r/s, 1.5 r/s, and 2.5 r/s. Through a comparative analysis, we were able to simulate the printing exit speed, which ranged from 0.0751 m/s to 0.6828 m/s. It is evident that these two parameters have a significant impact on the printing exit speed. Our findings show that the extrusion velocity of clay is approximately 700 times faster than the inlet velocity at an inlet velocity of 0.001–0.010 m/s. Furthermore, the screw speed is influenced by the inlet velocity. Overall, our study sheds light on the importance of exploring printing parameters in ceramic 3D printing. By gaining a deeper understanding of the printing process, we can optimize printing parameters and further improve the quality of ceramic 3D printing. Full article
Show Figures

Figure 1

14 pages, 5922 KiB  
Article
Predicting Residence Time and Melt Temperature in Pharmaceutical Hot Melt Extrusion
by Judith Winck, Tobias Gottschalk and Markus Thommes
Pharmaceutics 2023, 15(5), 1417; https://doi.org/10.3390/pharmaceutics15051417 - 6 May 2023
Cited by 11 | Viewed by 2957
Abstract
Hot-melt extrusion is increasingly applied in the pharmaceutical area as a continuous processing technology, used to design custom products by co-processing drugs together with functional excipients. In this context, the residence time and processing temperature during extrusion are critical process parameters for ensuring [...] Read more.
Hot-melt extrusion is increasingly applied in the pharmaceutical area as a continuous processing technology, used to design custom products by co-processing drugs together with functional excipients. In this context, the residence time and processing temperature during extrusion are critical process parameters for ensuring the highest product qualities, particularly of thermosensitive materials. Within this study, a novel strategy is proposed to predict the residence time distribution and melt temperature during pharmaceutical hot-melt extrusion processes based on experimental data. To do this, an autogenic extrusion mode without external heating and cooling was applied to process three polymers (Plasdone S-630, Soluplus and Eudragit EPO) at different specific feed loads, which were set by the screw speed and the throughput. The residence time distributions were modeled based on a two-compartment approach that couples the behavior of a pipe and a stirred tank. The throughput showed a substantial effect on the residence time, whereas the influence of the screw speed was minor. On the other hand, the melt temperatures during extrusion were mainly affected by the screw speed compared to the influence of the throughput. Finally, the compilation of model parameters for the residence time and the melt temperature within design spaces serve as the basis for an optimized prediction of pharmaceutical hot-melt extrusion processes. Full article
Show Figures

Figure 1

Back to TopTop