Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = fatigue crack paths

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9519 KiB  
Article
Effect of Post-Weld Heat Treatment on Residual Stress and Fatigue Crack Propagation Behavior in Linear Friction Welded Ti-6Al-4V Alloy
by Sungkyoung Lee, Hyunsung Choi, Yunji Cho, Min Jae Baek, Hyeonil Park, Moo-Young Seok, Yong Nam Kwon, Namhyun Kang and Dong Jun Lee
Materials 2025, 18(14), 3285; https://doi.org/10.3390/ma18143285 - 11 Jul 2025
Viewed by 319
Abstract
In this study, the effects of post-weld heat treatment (PWHT) on residual stress distribution and fatigue crack propagation (FCP) behavior in linear friction welded (LFW) Ti-6Al-4V joints were investigated. Microstructural evolution in the weld center zone (WCZ), thermomechanically affected zone (TMAZ), heat-affected zone [...] Read more.
In this study, the effects of post-weld heat treatment (PWHT) on residual stress distribution and fatigue crack propagation (FCP) behavior in linear friction welded (LFW) Ti-6Al-4V joints were investigated. Microstructural evolution in the weld center zone (WCZ), thermomechanically affected zone (TMAZ), heat-affected zone (HAZ), and base metal (BM) was characterized using scanning electron microscropy (SEM) and electron backscatter diffraction (EBSD). Mechanical properties were evaluated via Vickers hardness testing and digital image correlation (DIC)-based tensile testing. Residual stresses before and after PWHT were measured using the contour method. The LFW process introduced significant residual stresses, with tensile stresses up to 709.2 MPa in the WCZ, resulting in non-uniform fatigue crack growth behavior. PWHT at 650 °C and 750 °C effectively reduced these stresses. After PWHT, fatigue cracks propagated uniformly across the weld region, enabling reliable determination of crack growth rates. The average crack growth rates of the heat-treated specimens were comparable to those of the base metal, confirming that PWHT, particularly at 750 °C, stabilizes the fatigue crack path and relieves internal stress. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 4357 KiB  
Article
Rotational Bending Fatigue Crack Initiation and Early Extension Behavior of Runner Blade Steels in Air and Water Environments
by Bing Xue, Yongbo Li, Wanshuang Yi, Wen Li and Jiangfeng Dong
Metals 2025, 15(7), 783; https://doi.org/10.3390/met15070783 - 11 Jul 2025
Viewed by 301
Abstract
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter [...] Read more.
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter model was identified as the most accurate descriptor of fatigue life data in both environments. Key findings reveal that, in air, cracks predominantly propagate along the densest crystallographic planes, whereas, in water, corrosive media significantly accelerate crack initiation and propagation, reducing fatigue resistance, creating more tortuous crack paths, and inducing microvoids and secondary cracks at the crack tip. These corrosive effects adversely alter the material’s microstructure, profoundly impacting fatigue life and crack propagation rates. The insights gained from this research are crucial for understanding the performance of super martensitic stainless steel in aqueous environments, offering a reliable basis for its engineering applications and contributing to the development of more effective design and maintenance strategies. Full article
(This article belongs to the Special Issue Microstructure, Deformation and Fatigue Behavior in Metals and Alloys)
Show Figures

Figure 1

17 pages, 5076 KiB  
Article
Enhancing Fatigue Life Prediction Accuracy: A Parametric Study of Stress Ratios and Hole Position Using SMART Crack Growth Technology
by Yahya Ali Fageehi and Abdulnaser M. Alshoaibi
Crystals 2025, 15(7), 596; https://doi.org/10.3390/cryst15070596 - 24 Jun 2025
Viewed by 535
Abstract
This study presents a unique and comprehensive application of ANSYS Mechanical R19.2’s SMART crack growth feature, leveraging its capabilities to conduct an unprecedented parametric investigation into fatigue crack propagation behavior under a wide range of positive and negative stress ratios, and to provide [...] Read more.
This study presents a unique and comprehensive application of ANSYS Mechanical R19.2’s SMART crack growth feature, leveraging its capabilities to conduct an unprecedented parametric investigation into fatigue crack propagation behavior under a wide range of positive and negative stress ratios, and to provide detailed insights into the influence of hole positioning on crack trajectory. By uniquely employing an unstructured mesh method that significantly reduces computational overhead and automates mesh updates, this research overcomes traditional fracture simulation limitations. The investigation breaks new ground by comprehensively examining an unprecedented range of both positive (R = 0.1 to 0.5) and negative (R = −0.1 to −0.5) stress ratios, revealing previously unexplored relationships in fracture mechanics. Through rigorous and extensive numerical simulations on two distinct specimen configurations, i.e., a notched plate with a strategically positioned hole under fatigue loading and a cracked rectangular plate with dual holes under static loading, this work establishes groundbreaking correlations between stress parameters and fatigue behavior. The research reveals a novel inverse relationship between the equivalent stress intensity factor and stress ratio, alongside a previously uncharacterized inverse correlation between stress ratio and von Mises stress. Notably, a direct, accelerating relationship between stress ratio and fatigue life is demonstrated, where higher R-values non-linearly increase fatigue resistance by mitigating stress concentration, challenging conventional linear approximations. This investigation makes a substantial contribution to fracture mechanics by elucidating the fundamental role of hole positioning in controlling crack propagation paths. The research uniquely demonstrates that depending on precise hole location, cracks will either deviate toward the hole or maintain their original trajectory, a phenomenon attributed to the asymmetric stress distribution at the crack tip induced by the hole’s presence. These novel findings, validated against existing literature, represent a significant advancement in predictive modeling for fatigue life assessment, offering critical new insights for engineering design and maintenance strategies in high-stakes industries. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

33 pages, 31118 KiB  
Article
Crack Propagation of Ceramsite Lightweight Concrete Under Four-Point Bending Fatigue Conditions
by Kangqing Yang, Shenghan Zhuang, Yongjun Wang, Jiashu Li, Shuo Zhou and Jiaolong Ren
Materials 2025, 18(13), 2957; https://doi.org/10.3390/ma18132957 - 22 Jun 2025
Viewed by 395
Abstract
The examination of crack propagation in concrete under fatigue conditions is crucial for comprehending the mechanisms of concrete fatigue failure. Variations in aggregate types result in notable differences in the fatigue crack propagation characteristics of lightweight concrete compared to ordinary concrete. Consequently, this [...] Read more.
The examination of crack propagation in concrete under fatigue conditions is crucial for comprehending the mechanisms of concrete fatigue failure. Variations in aggregate types result in notable differences in the fatigue crack propagation characteristics of lightweight concrete compared to ordinary concrete. Consequently, this research focused on analyzing the locations and angles of cracks in ceramsite lightweight concrete subjected to four-point bending fatigue conditions, while accounting for different levels of fatigue loading (i.e., stress levels). Furthermore, the study aimed to clarify the influence of ceramsite size and content on the fatigue crack propagation behavior in ceramsite lightweight concrete. The results indicated that an increase in the replacement rate of 5–10 mm and 10–20 mm ceramsite led to the highest probability of fatigue cracks occurring within the range of 15–45 mm from the specimen center, reaching 41.2% and 44.7%, respectively. The crack angle exhibited an increase corresponding to an increase in the content of 5–10 mm ceramsite, with the maximum average crack angle attaining a value of 86.5°. Conversely, a decrease in the content of 10–20 mm ceramsite resulted in a reduction in the crack angle. However, 20–30 mm ceramsite did not have a significant effect on the characteristics of fatigue cracks. The level of stress predominantly influenced the path of crack propagation. At stress levels of 0.55, 0.65, and 0.75, the highest proportions of crack angles fell within the range of 75° to 80°, with values of 47.1%, 43.8%, and 53.3%, respectively. Furthermore, an increase in stress levels did not affect the location of the cracks. Full article
Show Figures

Figure 1

15 pages, 3195 KiB  
Article
Fatigue Life Analysis of Cruciform Specimens Under Biaxial Loading Using the Paris Equation
by Ahmed Al-Mukhtar and Carsten Koenke
Metals 2025, 15(6), 579; https://doi.org/10.3390/met15060579 - 23 May 2025
Viewed by 624
Abstract
The presence of mixed-mode stresses, combining both opening and shearing components, complicates fatigue life estimation when applying the Paris law. To address this, the crack path, along with Mode-I (opening) and Mode-II (shear) components, was numerically analyzed using Fracture Analysis Code (Franc2D) based [...] Read more.
The presence of mixed-mode stresses, combining both opening and shearing components, complicates fatigue life estimation when applying the Paris law. To address this, the crack path, along with Mode-I (opening) and Mode-II (shear) components, was numerically analyzed using Fracture Analysis Code (Franc2D) based on the linear elastic fracture mechanics (LEFM) approach. Accordingly, fatigue life and stress intensity factors (SIFs) under various biaxial loading ratios (λ) were calculated using the Paris law and compared with available data in the literature. The results show that crack growth is primarily driven by the Mode-I component, which exhibits the largest magnitude. Thus, the Mode-I stress intensity factor (KI) was adopted for the numerical integration of the fatigue life equation. Furthermore, the influence of normal and transverse loads (σy and σx, respectively) on the crack path plane and SIF was examined for λ. The analysis revealed that lower λ values led to faster crack propagation, while higher λ values resulted in extended fatigue life due to an increased number of cycles to failure. The comparison demonstrated good agreement with reference data, confirming the reliability of the proposed modeling approach over a wide range of biaxial loading conditions. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Graphical abstract

22 pages, 9262 KiB  
Article
Fatigue Damage Evolution Mechanism of Asphalt Binder Under Variable Stress Repeated Loading
by Weijie Li, Jintao Lin, Weidi Lin and Huayang Yu
Polymers 2025, 17(4), 507; https://doi.org/10.3390/polym17040507 - 15 Feb 2025
Cited by 1 | Viewed by 597
Abstract
Continuous loading on asphalt pavements induces fatigue damage at the interface between the asphalt binder and aggregate or within the binder itself. The understanding of asphalt’s fatigue response is considered crucial for the prolongation of pavement service life. Variable stress fatigue tests were [...] Read more.
Continuous loading on asphalt pavements induces fatigue damage at the interface between the asphalt binder and aggregate or within the binder itself. The understanding of asphalt’s fatigue response is considered crucial for the prolongation of pavement service life. Variable stress fatigue tests were conducted on asphalt binders, with conditions such as stress amplitude being altered to analyze fatigue performance and life. This study refines asphalt fatigue evaluation systems, introducing a variable stress time sweep test. Modulus recovery after stress changes was revealed through rheological analysis, indicating damage recovery. Fracture surface analysis showed that increased high–stress loadings resulted in reduced edge flow zone width and a flatter surface. Statistical analysis indicated an “exercise effect”, enhancing fatigue life in the second stage. Stress transitions altered fatigue crack paths, surpassing Miner’s linear criterion prediction. The fatigue life curve was accurately fitted using the two–stage life model, affirming its applicability in evaluating variable stress fatigue tests. Full article
(This article belongs to the Special Issue Polymer Modified Asphalt for Sustainable Pavements)
Show Figures

Figure 1

18 pages, 10071 KiB  
Article
Crack Propagation in Axial-Flow Fan Blades Under Complex Loading Conditions: A FRANC3D and ABAQUS Co-Simulation Approach
by Mariem Ben Hassen, Slim Ben-Elechi and Hatem Mrad
Appl. Sci. 2025, 15(3), 1597; https://doi.org/10.3390/app15031597 - 5 Feb 2025
Cited by 2 | Viewed by 1100
Abstract
Since fan blades are exposed to fatigue, and in some cases harsh loading conditions, they may exhibit fracture failures due to crack propagation, resulting in significant losses. Previous studies of crack propagation in blades are mainly confined to either simplified blade geometry or [...] Read more.
Since fan blades are exposed to fatigue, and in some cases harsh loading conditions, they may exhibit fracture failures due to crack propagation, resulting in significant losses. Previous studies of crack propagation in blades are mainly confined to either simplified blade geometry or loads, resulting in a significant discrepancy between the simulated crack propagation and the real blade propagation behavior, while it is lacking for challenging shapes and loads. A co-simulation approach of FRANC3D and ABAQUS was developed to study the crack propagation of an axial-flow fan blade subjected to centrifugal, aerodynamic, and combined loads. The projected approach is validated with results obtained from analytical calculations and experiments. Meanwhile, making use of benchmarks, the Stress Intensity Factor (SIF) and the prediction of mixed-mode crack growth path are validated. Considering various loads, the crack propagation path response for the fan blade is computed for different growth steps. The results pinpoint that the crack propagation length of the crack tip center is maximum under centrifugal loading. However, the aerodynamic load led to a maximum propagation length of the crack tip endpoints. In addition, the combined force of centrifugal and aerodynamic loads limits the crack from growing. Full article
Show Figures

Figure 1

23 pages, 6036 KiB  
Article
Fatigue Assessment of Rib–Deck Welded Joints in Orthotropic Steel Bridge Decks Under Traffic Loading
by Bruno Villoria, Sudath C. Siriwardane and Jasna Bogunovic Jakobsen
CivilEng 2025, 6(1), 7; https://doi.org/10.3390/civileng6010007 - 2 Feb 2025
Viewed by 1469
Abstract
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD [...] Read more.
Rib–deck (RD) welded joints in orthotropic steel bridge decks are prone to different fatigue crack mechanisms. Standard fatigue design methods are inadequate for some of these mechanisms under multiaxial non-proportional loading conditions. This study presents a framework to assess fatigue damage at RD welded joints, considering the different crack mechanisms based on the equivalent structural stress method and its extension to multiaxial non-proportional fatigue, which is the path-dependent maximum stress range (PDMR) cycle counting algorithm. The method is validated for uniaxial loading by using experimental data from the literature. Additionally, non-proportional fatigue damage at RD welded joints of a suspension bridge girder is investigated under simulated random traffic loading. The analyses reveal the limitations of the nominal stress approach to account for complex stress field variations. The PDMR method, more suited to capture the stress path dependency of non-proportional fatigue damage than the hot spot and critical plane-based methods, predicts higher fatigue damage. A comprehensive fatigue test campaign of full-scale RD welded joints is necessary to better understand their fatigue behaviour under multiaxial loading. Until more experimental data are available, the PDMR method is recommended for fatigue verifications of welded RD joints as it yields safer predictions. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

18 pages, 18138 KiB  
Article
Residual Stress Distribution and Its Effect on Fatigue Crack Path of Laser Powder Bed Fusion Ti6Al4V Alloy
by Wenbo Sun, Yu’e Ma, Peiyao Li and Weihong Zhang
Aerospace 2025, 12(2), 103; https://doi.org/10.3390/aerospace12020103 - 30 Jan 2025
Cited by 2 | Viewed by 1666
Abstract
Residual stress (RS) in laser powder bed fusion (LPBF) additive manufactured structures can significantly affect mechanical performance, potentially leading to premature failure. The complex distribution of residual stresses, combined with the limitations of full-field measurement techniques, presents a substantial challenge in conducting damage [...] Read more.
Residual stress (RS) in laser powder bed fusion (LPBF) additive manufactured structures can significantly affect mechanical performance, potentially leading to premature failure. The complex distribution of residual stresses, combined with the limitations of full-field measurement techniques, presents a substantial challenge in conducting damage tolerance analyses of aircraft structures. To address these challenges, this study developed a comprehensive simulation framework to analyze the 3D distribution of residual stresses and fatigue crack growth in LPBF parts. The 3D residual stress profiles of as-built samples in 15° and 75° build directions were computed and compared to experimental data. The fatigue crack propagation behavior of the 75° sample, considering 3D residual stress, was predicted, and the effects of residual stress redistribution under cyclic loading were discussed. It shows that the anisotropy of residual stress, influenced by the build direction, can lead to mixed-mode fracture and subsequent crack deflection. Tensile residual stress in the near-surface region and compressive stress in the inner region can cause an inverted elliptical crack front and accelerate fatigue crack growth. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

17 pages, 4253 KiB  
Article
Numerical Analysis of Crack Path Effects on the Vibration Behaviour of Aluminium Alloy Beams and Its Identification via Artificial Neural Networks
by Hilal Doğanay Katı, Jamilu Buhari, Arturo Francese, Feiyang He and Muhammad Khan
Sensors 2025, 25(3), 838; https://doi.org/10.3390/s25030838 - 30 Jan 2025
Viewed by 1241
Abstract
Understanding and predicting the behaviour of fatigue cracks are essential for ensuring safety, optimising maintenance strategies, and extending the lifespan of critical components in industries such as aerospace, automotive, civil engineering and energy. Traditional methods using vibration-based dynamic responses have provided effective tools [...] Read more.
Understanding and predicting the behaviour of fatigue cracks are essential for ensuring safety, optimising maintenance strategies, and extending the lifespan of critical components in industries such as aerospace, automotive, civil engineering and energy. Traditional methods using vibration-based dynamic responses have provided effective tools for crack detection but often fail to predict crack propagation paths accurately. This study focuses on identifying crack propagation paths in an aluminium alloy 2024-T42 cantilever beam using dynamic response through numerical simulations and artificial neural networks (ANNs). A unified damping ratio of the specimens was measured using an ICP® accelerometer vibration sensor for the numerical simulation. Through systematic investigation of 46 crack paths of varying depths and orientations, it was observed that the crack propagation path significantly influenced the beam’s natural frequencies and resonance amplitudes. The results indicated a decreasing frequency trend and an increasing amplitude trend as the propagation angle changed from vertical to inclined. A similar trend was observed when the crack path changed from a predominantly vertical orientation to a more complex path with varying angles. Using ANNs, a model was developed to predict natural frequencies and amplitudes from the given crack paths, achieving a high accuracy with a mean absolute percentage error of 1.564%. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 5567 KiB  
Article
Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy
by Hui Jiang, Junjun Jin, Yu Fang, Guoqing Gou, Wei Lu, Zhiyi Zhang, Hongmei Zhou, Hairong Sun, Jikui Feng, Jia Chen and Zhenghong Fu
Materials 2025, 18(2), 365; https://doi.org/10.3390/ma18020365 - 15 Jan 2025
Viewed by 987
Abstract
This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a [...] Read more.
This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.5% NaCl solution at room temperature, and crack propagation morphology was characterized using electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that tensile strength increased by 2.63% and 10.00% for 5% and 10% pre-deformation, respectively. The crack propagation threshold values were L2 (6.36 MPa·m1/2) > L0 (6.05 MPa·m1/2) > L1 (5.13 MPa·m1/2), attributed to increased dislocation density and material strength. At 5% pre-deformation, dislocation pile-ups created stress concentrations that facilitated crack propagation. In contrast, the non-uniform dislocation distribution at 10% pre-deformation enhanced both material strength and resistance to crack growth. Full article
Show Figures

Figure 1

18 pages, 5935 KiB  
Article
Numerical Simulations of Stress Intensity Factors and Fatigue Life in L-Shaped Sheet Profiles
by Ferdinand Dömling, Florian Paysan and Eric Breitbarth
Metals 2024, 14(12), 1463; https://doi.org/10.3390/met14121463 - 21 Dec 2024
Cited by 1 | Viewed by 1321
Abstract
The assessment of fatigue cracks is an elementary part of the design process of lightweight structures subject to operational loads. Although angled sheets are standard components in forming technology, fatigue crack growth in geometries like C- and L-sections has been little-studied and is [...] Read more.
The assessment of fatigue cracks is an elementary part of the design process of lightweight structures subject to operational loads. Although angled sheets are standard components in forming technology, fatigue crack growth in geometries like C- and L-sections has been little-studied and is mostly limited to crack growth before the transition through the corner. In this study, fatigue crack propagation is simulated to explore the influence of sheet thickness, corner angle and corner radius on the fatigue life in an L-section. The stress intensity factor (SIF) is derived as the driving force of crack growth over the full crack path. Special attention is paid to the evolution of the SIF in the radius sub-section and its implications on the fatigue life. The results show that the SIF in an angled sheet for given loading conditions and crack lengths cannot be readily approximated by the SIF in an equivalent straightened sheet. The bending angle and radius lead to crack growth retardation or acceleration effects. These findings are important for the design and optimization of forming geometries with regard to fatigue crack growth. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Figure 1

20 pages, 11772 KiB  
Article
Modeling and Simulation of Fatigue Crack Initiation Process Based on Field Theory of Multiscale Plasticity (FTMP): Part II: Modeling Vacancy Formation and Coupling with Diffusion Analysis
by Xinping You and Tadashi Hasebe
Metals 2024, 14(12), 1406; https://doi.org/10.3390/met14121406 - 9 Dec 2024
Cited by 1 | Viewed by 1251
Abstract
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting [...] Read more.
Cyclic straining simulations using incompatibility-incorporated crystal plasticity-FEM, which exhibit PSB ladder structure evolutions as detailed in Part I, are coupled with diffusion analyses of produced vacancies. A new vacancy source model is introduced based on the Field Theory of Multiscale Plasticity (FTMP), interpreting the relationship between the incompatibility rate and the flux of dislocation density as edge dipole annihilation processes. Both direct and indirect coupling diffusion analyses, with and without cyclic straining, demonstrate that varying incompatibility rates tend to further promote vacancy diffusion, leading to surface grooving, enhanced extension rates, and eventual transition to cracks. The findings reveal that (i) the evolved PSB ladder structure serves as a site for vacancy formation, (ii) it provides a diffusion path toward the specimen surface, and (iii) it significantly enhances groove extension rates. These factors effectively facilitate the transition from a “groove” to a “crack”, evidenced by the abrupt acceleration of the extension rate, mirroring systematic experimental observations. These achievements validate the FTMP’s capability to simulate complex phenomena and significantly deepen our understanding of slip band–fatigue crack transition mechanisms. Full article
Show Figures

Figure 1

13 pages, 16022 KiB  
Article
Effects of Anisotropic Microstructure and Load Ratio on Fatigue Crack Propagation Rate in Additively Manufactured Ti-6Al-4V Alloy
by Elad Chakotay, Roni Z. Shneck, Oz Golan, Rami Carmi, Mor Mega, Igal Alon, Raziel Yakov and Arie Busiba
Metals 2024, 14(12), 1405; https://doi.org/10.3390/met14121405 - 9 Dec 2024
Viewed by 976
Abstract
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during [...] Read more.
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during the AM process, which severely affect fatigue behavior. In the current research, the effects of the anisotropic microstructure in the in-plane and out-of-plane orientations and defects on the fatigue crack propagation rate (FCPR) and crack path were studied. A resonance machine was used to determine the fatigue crack propagation rate (da/dN vs. ΔK) from the near-threshold up to the final fracture, accompanied by in situ Acoustic Emission (AE) monitoring. Micro-Computerized Tomography (µCT) enabled us to characterize surface and microstructural defects. Metallography was used to determine the microstructure vs. orientations and fractography to classify the fatigue fracture propagation modes. Calculations of the local stress distribution were performed to determine the interactions of the cracks with the defects. In the out-of-plane direction, the material exhibited high fatigue fracture toughness accompanied by a slightly lower fatigue crack propagation rate as compared to in-plane orientations. The near-threshold stress intensity factor was slightly higher in the out-of-plane orientation as compared to that in the in-plane one, accompanied by a lower exponent of the Paris law regime. The threshold decreased with an increasing load ratio as expected for both orientations. The crack propagation direction that crosses the elongated grains plays an important role in increasing fatigue resistance in the out-of-plane direction. In the in-plane directions, the crack propagates parallel to the grain boundary, interacts with more defects and exhibits more brittle striations on the fracture surface, resulting in lower fatigue resistance. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metallic Materials)
Show Figures

Figure 1

16 pages, 17582 KiB  
Article
An In Situ Study of Short Crack Initiation and Propagation During Fatigue Testing of a Hot Isostatically Pressed Al-7%Si-0.5%Mg (A357-T6) Alloy Specimen
by Toni Bogdanoff and Murat Tiryakioğlu
Materials 2024, 17(23), 5928; https://doi.org/10.3390/ma17235928 - 4 Dec 2024
Viewed by 1137
Abstract
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks [...] Read more.
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks have competed to form a propagating crack, forming multiple crack paths initially. Once the propagating crack has been established, it has chosen paths from multiple cracks that have opened around the tip to grow further. All small cracks observed to open have been attributed to bifilms, i.e., liquid metal damage. It is imperative to develop processes that minimize liquid metal damage to enhance the fatigue performance of aluminum alloy castings. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (Volume II))
Show Figures

Figure 1

Back to TopTop