Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = fast recovery diodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5521 KiB  
Article
Design and TCAD Simulation of GaN P-i-N Diode with Multi-Drift-Layer and Field-Plate Termination Structures
by Zhibo Yang, Guanyu Wang, Yifei Wang, Pandi Mao and Bo Ye
Micromachines 2025, 16(8), 839; https://doi.org/10.3390/mi16080839 - 22 Jul 2025
Viewed by 309
Abstract
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work [...] Read more.
Vertical GaN P-i-N diodes exhibit excellent high-voltage performance, fast switching speed, and low conduction losses, making them highly attractive for power applications. However, their breakdown voltage is severely constrained by electric field crowding at device edges. Using silvaco tcad (2019) tools, this work systematically evaluates multiple edge termination techniques, including deep-etched mesa, beveled mesa, and field-plate configurations with both vertical and inclined mesa structures. We present an optimized multi-drift-layer GaN P-i-N diode incorporating field-plate termination and analyze its electrical performance in detail. This study covers forward conduction characteristics including on-state voltage, on-resistance, and their temperature dependence, reverse breakdown behavior examining voltage capability and electric field distribution under different temperatures, and switching performance addressing both forward recovery phenomena, i.e., voltage overshoot and carrier injection dynamics, and reverse recovery characteristics including peak current and recovery time. The comprehensive analysis offers practical design guidelines for developing high-performance GaN power devices. Full article
Show Figures

Figure 1

23 pages, 6855 KiB  
Article
Investigation of a Physical Model for the Reverse Recovery Characteristics of PT-PIN FRD with a Buffer Layer
by Yameng Sun, Kun Ma, Xiong Yuan, Anning Chen, Xun Liu, Yifan Song, Xuehan Li, Tongtong Zi, Yang Zhou and Sheng Liu
Electronics 2025, 14(3), 570; https://doi.org/10.3390/electronics14030570 - 31 Jan 2025
Viewed by 643
Abstract
As application conditions become increasingly demanding and usage becomes more aggressive, the performance of traditional insulated gate bipolar transistor (IGBT) and fast recovery diode (FRD) systems can no longer meet the required specifications. In these systems, FRDs are required to carry load current [...] Read more.
As application conditions become increasingly demanding and usage becomes more aggressive, the performance of traditional insulated gate bipolar transistor (IGBT) and fast recovery diode (FRD) systems can no longer meet the required specifications. In these systems, FRDs are required to carry load current and allow current to return from the load to the IGBTs. Consequently, the reverse recovery performance of the FRDs significantly restricts the overall efficiency of the system. Therefore, how to predict the reverse recovery characteristics of the FRDs with greater precision has attracted considerable attention. In this context, this paper presents an in-depth investigation of the high-level injection carrier distribution and reverse recovery characteristics of punchthrough P-I-N (PT-PIN) FRD with a buffer layer. Specifically, the research explores the physical properties of the materials, doping concentrations, and the geometric structure of the devices. Furthermore, it takes into account the complex interactions among carrier recombination, diffusion, and drift, leading to the development of a model that delineates the spatial distribution of carriers and their influence on current conduction. Building upon the traditional step-wise analysis method, subsequently, the temporal aspects of the FRDs reverse recovery process were further segmented. Utilizing the derived carrier distribution model, a reverse recovery analytical model was constructed. The model was validated using a 1200 V, 100 A IGBT with 1200 V, 60 A FRD configured in a reverse parallel arrangement, which demonstrated a 5% improvement in prediction accuracy of VR compared with previous models that employed the lumped charge method. Finally, a range of experiments with varying RG, VCC and IF confirmed the broad applicability of this analytical model. Full article
Show Figures

Figure 1

15 pages, 1633 KiB  
Article
Design of Experiments and Optimization of Monacolin K Green Extraction from Red Yeast Rice by Ultra-High-Performance Liquid Chromatography
by Lara Davani, Cristina Terenzi, Angela De Simone, Vincenzo Tumiatti, Vincenza Andrisano and Serena Montanari
Foods 2024, 13(16), 2509; https://doi.org/10.3390/foods13162509 - 11 Aug 2024
Cited by 2 | Viewed by 1893
Abstract
Monacolin K (MK), in red yeast rice (RYR) in the forms of lactone (LMK) and hydroxy acid (AMK), is known for its anti-hypercholesterolemic activity. Under the rising demand for natural bioactive molecules, we present a green ultrasound-assisted extraction (UAE) optimization study for MK [...] Read more.
Monacolin K (MK), in red yeast rice (RYR) in the forms of lactone (LMK) and hydroxy acid (AMK), is known for its anti-hypercholesterolemic activity. Under the rising demand for natural bioactive molecules, we present a green ultrasound-assisted extraction (UAE) optimization study for MK in RYR. The development and validation of a fast, sensitive, selective, reproducible, and accurate ultra-high-performance liquid chromatography (UHPLC) method coupled to diode array detection for LMK and AMK allowed us to evaluate the MK recovery in different extract media. Firstly, the ethanol comparability to acetonitrile was assessed (recovery of 80.7 ± 0.1% for ethanol and 85.5 ± 0.2% for acetonitrile). Then, water/ethanol mixtures, with decreasing percentages of organic solvent, were tested by modulating temperature and extraction times. Water extractions at 80 °C for 10 min produced MK yield > 85%. Thus, UAE conditions were optimized by a DOE study using a water-based formulation (mouthwash). The optimal total MK extraction yield (86.6 ± 0.4%) was found under the following conditions: 80 °C, 45 min, 5 mg mL−1 (RYR powder/solvent). Therefore, the new single-process green approach allowed the simultaneous direct extraction of MK and mouthwash enrichment (MK concentration = 130.0 ± 0.6 µg mL−1), which might be tested for the prevention and treatment of periodontitis or oral candidiasis. Full article
Show Figures

Graphical abstract

18 pages, 6864 KiB  
Article
A Novel Non-Isolated Bidirectional DC-DC Converter with Improved Current Ripples for Low-Voltage On-Board Charging
by Jamil Muhammad Khan, Ashraf Ali Khan and Mohsin Jamil
Energies 2024, 17(14), 3570; https://doi.org/10.3390/en17143570 - 20 Jul 2024
Cited by 4 | Viewed by 1976
Abstract
This paper presents a novel single-phase non-isolated bidirectional buck converter topology. The proposed converter uses a basic switching cell structure with a coupled inductor and an interleaving switching scheme. This article addresses a crucial challenge in bidirectional DC-DC conversion by prioritizing reducing output [...] Read more.
This paper presents a novel single-phase non-isolated bidirectional buck converter topology. The proposed converter uses a basic switching cell structure with a coupled inductor and an interleaving switching scheme. This article addresses a crucial challenge in bidirectional DC-DC conversion by prioritizing reducing output current ripples and minimizing filter inductor size. The employed method includes using MOSFETs with fast recovery diodes to mitigate reverse recovery and body diode losses. Furthermore, the optimization of the switching frequency of the output inductor to be twice the actual switching frequency contributes to reducing the component size of the converter. The coupled inductor also helps to reduce stress on components by distributing currents among its legs. The experimental result demonstrates the proposed converter has a very low ripple current as compared to the conventional converter. The low current ripples and smaller filter inductor size enabled by high-frequency operation have improved the efficiency and size of the converter. A common ground between input and output terminals ensures robust performance without common mode current concerns. Overall, the proposed converter represents a significant improvement in DC-DC converters, promising enhanced efficiency, reliability, and compactness in bidirectional DC-DC conversion systems. In order to verify the performance of the proposed converter, a 460 W buck converter prototype was built and tested. Full article
Show Figures

Figure 1

23 pages, 1901 KiB  
Article
Simultaneous Determination of 17 Phenolic Compounds in Surface Water and Wastewater Matrices Using an HPLC-DAD Method
by Iuliana Paun, Luoana Florentina Pascu, Vasile Ion Iancu, Florinela Pirvu, Toma Galaon and Florentina Laura Chiriac
Environments 2024, 11(6), 117; https://doi.org/10.3390/environments11060117 - 1 Jun 2024
Cited by 2 | Viewed by 2776
Abstract
A high-performance liquid chromatography with diode array detector (HPLC-DAD) analytical method was developed for the simultaneous detection of 17 phenolic compounds, including phenols, chlorophenols, alkylphenols, and nitrophenols, in two types of water matrices: wastewater and surface water. Prior to HPLC-DAD determination, a solid-phase [...] Read more.
A high-performance liquid chromatography with diode array detector (HPLC-DAD) analytical method was developed for the simultaneous detection of 17 phenolic compounds, including phenols, chlorophenols, alkylphenols, and nitrophenols, in two types of water matrices: wastewater and surface water. Prior to HPLC-DAD determination, a solid-phase extraction (SPE) procedure was optimized. The proposed method uses multiwavelength analysis, with the optimum detection wavelengths selected as 268 nm, 280 nm, 386 nm, 304 nm, and 316 nm. The highest resolution was achieved using a chromatographic column, Eclipse XDB-C18 (150 × 4.6 mm, 5 μm), which was kept at 20 °C. The mobile phase consisted of a gradient elution program, with mobile phase A being a 0.1% H3PO4 aqueous solution and mobile phase B being acetonitrile. The flow rate was set at 0.6 mL/min. The 17 target phenolic compounds were fully separated in less than 27 min. All compounds showed good linear regression, with correlation coefficients higher than 0.999. The method’s quantitation limits ranged from 4.38 to 89.7 ng/L for surface water and 7.83 to 167 ng/L for wastewater. The recovery rates were in the range of 86.2–95.1% for surface water and 79.1–86.3% for wastewater. The SPE-HPLC-DAD method was proven to be fast, sensitive, accurate, and reproducible. The developed method was successfully applied for the analysis of the 17 phenolic compounds in real surface water and wastewater samples, with phenol, 2,4-DNP, and 2,4-DNP being determined at levels greater than the method’s limits of quantitation (LOQs). The proposed analytical method represents an original technical resource for the simultaneous determination of 17 phenolic compounds in environmental water matrices. Full article
Show Figures

Figure 1

16 pages, 6556 KiB  
Article
Analysis of the Operation Mechanism of Superjunction in RC-IGBT and a Novel Snapback-Free Partial Schottky Collector Superjunction RC-IGBT
by Song Yuan, Yichong Li, Min Hou, Xi Jiang, Xiaowu Gong and Yue Hao
Micromachines 2024, 15(1), 73; https://doi.org/10.3390/mi15010073 - 29 Dec 2023
Cited by 3 | Viewed by 2158
Abstract
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed [...] Read more.
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed to address these issues. The new structure eliminates the snapback phenomenon. Furthermore, by leveraging the unipolar conduction of the Schottky diode and its fast turn-off characteristics, the proposed device significantly reduces the turn-off power consumption and reverse recovery charge. With medium pillar doping concentration, the turn-off loss of the PSC-SJ-RC-IGBT decreases by 54.1% compared to conventional superjunction RC-IGBT, while the reverse recovery charge is reduced by 52.6%. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 2510 KiB  
Article
A Solid-State Marx Generator with Prevention of through Current for Rectangular Pulses
by Fukun Shi, Ping Chen, Song Jiang, Jie Zhuang and Junfeng Rao
Electronics 2024, 13(1), 101; https://doi.org/10.3390/electronics13010101 - 25 Dec 2023
Cited by 1 | Viewed by 3885
Abstract
In solid-state high-voltage pulse generators, switches may be triggered on by fault due to electromagnetic interference, resulting in high through current and breakdown of switches. To generate rectangular high-voltage pulses, this paper proposes a solid-state Marx generator (SSMG) with fast recovery diodes to [...] Read more.
In solid-state high-voltage pulse generators, switches may be triggered on by fault due to electromagnetic interference, resulting in high through current and breakdown of switches. To generate rectangular high-voltage pulses, this paper proposes a solid-state Marx generator (SSMG) with fast recovery diodes to prevent through current. Only charging currents with the same direction flow through these fast recovery diodes breaks the short-circuit loops in and between stages. A 52-stage SSMG prototype based on the proposed circuit was developed. PSpice simulations and experiments were performed for comparison. It was found that the through current can rise to 250 A without any protection. With 10-μH protection inductors in each state, the through current amplitude drops to 50 A. Under the same condition, there is no continuous through current with the proposed fast recovery diodes. Furthermore, 22-kV repetitive rectangular pulses were also obtained in experiments. This proved that the proposed Marx generator can prevent the through current in power cells. Full article
(This article belongs to the Special Issue Advances in Pulsed-Power and High-Power Electronics)
Show Figures

Figure 1

20 pages, 3928 KiB  
Article
Design Considerations of Multi-Phase Buck DC-DC Converter
by Nikolay Hinov and Tsvetana Grigorova
Appl. Sci. 2023, 13(19), 11064; https://doi.org/10.3390/app131911064 - 8 Oct 2023
Cited by 10 | Viewed by 5058
Abstract
The main objective of this article is to propose a rational methodology for designing multi-phase step-down DC-DC converters, which can find applications both in engineering practice and in power electronics education. This study discusses the main types of losses in the multi-phase synchronous [...] Read more.
The main objective of this article is to propose a rational methodology for designing multi-phase step-down DC-DC converters, which can find applications both in engineering practice and in power electronics education. This study discusses the main types of losses in the multi-phase synchronous buck converter circuit (transistors’ conduction losses, high-side MOSFET’s switching losses, reverse recovery losses in the body diode, dead time losses, output capacitance losses in the MOSFETs, gate charge losses in MOSFETs, conduction losses in the inductor, and losses in the input and output capacitors) and provides analytical dependencies for their calculation. Based on the control examples for applications characterized by low voltage and high output current, the multi-phase buck converter’s output and input current ripples are analyzed and compared analytically and graphically (3D plots). Furthermore, graphical results of the converter efficiency at different numbers of phases (N = 2, 4, 6, 8, and 12) are presented. An analysis of the impact of various parameters on power losses is conducted. Thus, a discussion on assessing the factors influencing the selection of the number of phases in the multi-phase synchronous buck converter is presented. The proposed systematized approach, which offers a fast and accurate method for calculating power losses and overall converter efficiency, reduces the need for extensive preliminary computational procedures and achieves optimized solutions. Simulation results for investigating power losses in 8-phase multi-phase synchronous buck converters are also presented. The relative error between analytical and simulation results does not exceed 4%. Full article
(This article belongs to the Special Issue Research and Development on DC-DC Power Converters)
Show Figures

Figure 1

18 pages, 6523 KiB  
Article
Research on Triode Based High Re-Frequency Ultrafast Electrical Pulse Generation Technology
by Hantao Xu, Baiyu Liu, Yongsheng Gou, Jinshou Tian, Yang Yang, Penghui Feng, Xu Wang and Shiduo Wei
Electronics 2023, 12(8), 1950; https://doi.org/10.3390/electronics12081950 - 21 Apr 2023
Cited by 1 | Viewed by 3115
Abstract
The high-repeat frequency ultrafast electrical pulse generation technology is mainly based on ultrafast switching devices combined with ultrafast circuits to generate electrical pulses with repetition frequencies of several kilohertz and a rise-time of nanoseconds or even picoseconds. This technology is the basis for [...] Read more.
The high-repeat frequency ultrafast electrical pulse generation technology is mainly based on ultrafast switching devices combined with ultrafast circuits to generate electrical pulses with repetition frequencies of several kilohertz and a rise-time of nanoseconds or even picoseconds. This technology is the basis for several research studies and is one of the key technologies that has received wide attention from various countries. The problems to be solved are high re-frequency ultrafast high-voltage pulse generation and ultra-broadband ultrafast pulse transport and circuit stability applicability, which include circuit conduction mechanism research, pulse generation time improvement and recovery time reduction. By studying the avalanche transistor high-voltage transient conduction characteristics and reducing the loss in the carrier transport process, the influence of each parameter on the output is determined, and the key factors to enhance the circuit performance are identified. This paper designs a new high-repetition frequency ultrafast electric pulse generation (UPG) circuit using pure electronics components, which consists of combining avalanche transistor model 2N2222 with a hybrid Marx structure at the same time in the pulse circuit to add filtering, fast recovery diodes and pulse cutoff and other matching techniques to make its output more stable, which can obtain higher output frequency, faster rise-time and narrower pulse widths. It has been tested that a high re-frequency ultrafast high-voltage electrical pulse signal with a pulse repetition frequency of 200 kHz, a leading edge of 800 ps, a half-high pulse width of 5 ns, an amplitude of 1.2 kV and jitter of less than 5% can be generated at the load with a 50 Ω load at the output. The signal can be applied in the fields of ultrafast diagnosis, information countermeasures and nuclear electromagnetic radiation research. Full article
Show Figures

Figure 1

11 pages, 1812 KiB  
Article
A Fast Recovery SiC TED MOS MOSFET with Schottky Barrier Diode (SBD)
by Hongyu Cheng, Wenmao Li, Peiran Wang, Jianguo Chen, Qing Wang and Hongyu Yu
Crystals 2023, 13(4), 650; https://doi.org/10.3390/cryst13040650 - 10 Apr 2023
Cited by 2 | Viewed by 3201
Abstract
Achieving low conduction loss and good channel mobility is crucial for SiC MOSFETs. However, basic planar SiC MOSFETs provide challenges due to their high density of interface traps and significant gate-to-drain capacitance. In order to enhance the reverse recovery property of the device, [...] Read more.
Achieving low conduction loss and good channel mobility is crucial for SiC MOSFETs. However, basic planar SiC MOSFETs provide challenges due to their high density of interface traps and significant gate-to-drain capacitance. In order to enhance the reverse recovery property of the device, a Schottky barrier diode (SBD) was added to the source contact area, the top of the current spreading region, of a trench-etched double-diffused SiC MOS (TED MOS). Two types of SBD structures were optimized to improve the electrical properties using 3D simulation software, “TCAD Silvaco”. During reverse recovery simulation, the carriers of the device were withdrawn from the SBD, indicating that the new design was effective. It also showed that the recovery properties of the new design depended on temperature, carrier lifetime, and the work functions of metals. All the new designs were evaluated in various circumstances to determine the trend. Ultimately, in high-speed switching circuits, the SiC TED MOS with SBD structure efficiently boosted switching speed, while reducing switching loss. Full article
(This article belongs to the Special Issue Wide-Bandgap Semiconductor Materials, Devices and Systems)
Show Figures

Figure 1

15 pages, 1386 KiB  
Article
Deep Eutectic Solvent Based Reversed-Phase Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography for the Determination of Free Tryptophan in Cold-Pressed Oils
by Slavica Ražić, Tamara Bakić, Aleksandra Topić, Jelena Lukić and Antonije Onjia
Molecules 2023, 28(5), 2395; https://doi.org/10.3390/molecules28052395 - 5 Mar 2023
Cited by 13 | Viewed by 3614
Abstract
A fast and straightforward reversed-phase dispersive liquid–liquid microextraction (RP-DLLME) using a deep eutectic solvent (DES) procedure to determine free tryptophan in vegetable oils was developed. The influence of eight variables affecting the RP-DLLME efficiency has been studied by a multivariate approach. A Plackett–Burman [...] Read more.
A fast and straightforward reversed-phase dispersive liquid–liquid microextraction (RP-DLLME) using a deep eutectic solvent (DES) procedure to determine free tryptophan in vegetable oils was developed. The influence of eight variables affecting the RP-DLLME efficiency has been studied by a multivariate approach. A Plackett–Burman design for screening the most influential variables followed by a central composite response surface methodology led to an optimum RP-DLLME setup for a 1 g oil sample: 9 mL hexane as the diluting solvent, vortex extraction with 0.45 mL of DES (choline chloride–urea) at 40 °C, without addition of salt, and centrifugation at 6000 rpm for 4.0 min. The reconstituted extract was directly injected into a high-performance liquid chromatography (HPLC) system working in the diode array mode. At the studied concentration levels, the obtained method detection limits (MDL) was 11 mg/kg, linearity in matrix-matched standards was R2 ≥ 0.997, relative standard deviations (RSD) was 7.8%, and average recovery was 93%. The combined use of the recently developed DES -based RP-DLLME and HPLC provides an innovative, efficient, cost-effective, and more sustainable method for the extraction and quantification of free tryptophan in oily food matrices. The method was employed to analyze cold-pressed oils from nine vegetables (Brazil nut, almond, cashew, hazelnut, peanut, pumpkin, sesame, sunflower, and walnut) for the first time. The results showed that free tryptophan was present in the range of 11–38 mg/100 g. This article is important for its contributions to the field of food analysis, and for its development of a new and efficient method for the determination of free tryptophan in complex matrices, which has the potential to be applied to other analytes and sample types. Full article
Show Figures

Figure 1

16 pages, 4422 KiB  
Article
Research on Lightning Overvoltage Characteristics of High-Voltage Diode Rectifier
by Guoping Peng, Chuanming Fu, Ping Yang, Ben Shi, Hongzhan Wang, Jun Zeng and Yangbo Liu
Electronics 2022, 11(23), 3840; https://doi.org/10.3390/electronics11233840 - 22 Nov 2022
Cited by 2 | Viewed by 2026
Abstract
Failure of the high-voltage diode rectifier caused by lightning will cause huge losses. The traditional analysis of overvoltage induced by the high-voltage diode rectifier shell under lightning stroke cannot adapt to the overvoltage process caused by lightning stroke-induced conduction invading the inside of [...] Read more.
Failure of the high-voltage diode rectifier caused by lightning will cause huge losses. The traditional analysis of overvoltage induced by the high-voltage diode rectifier shell under lightning stroke cannot adapt to the overvoltage process caused by lightning stroke-induced conduction invading the inside of the high-voltage diode rectifier. Therefore, this paper proposes to establish a high-frequency equivalent model of the core components of the high-voltage diode rectifier, including diodes, reactors, transformers, and overhead lines. On this basis, a lightning overvoltage model of lightning-induced conduction into the high-voltage diode rectifier is built, and the transient process of diode lightning overvoltage under the constraint of reverse recovery charge is analyzed. Then, we describe the transient distribution of overvoltage in high-voltage diode rectifiers caused by lightning stroke. The transient distribution of overvoltage induced by lightning in series diodes under different diode equivalent models is analyzed by simulation. The simulation results show that the inconsistent parameters of series diodes can easily lead to diode damage due to uneven voltage distribution when lightning strikes. Therefore, this paper puts forward a scheme to reduce lightning damage, including selecting diodes with the same parameters and adding fast-melting fuses at the transformer’s secondary side and in front of the series diode bridge arm. The simulation shows that the scheme proposed in this paper can effectively prevent the high-voltage diode rectifier from being damaged by lightning strikes. Full article
Show Figures

Figure 1

13 pages, 852 KiB  
Article
A Validated HPLC Multichannel DAD Method for the Simultaneous Determination of Amoxicillin and Doxycycline in Pharmaceutical Formulations and Wastewater Samples
by Anca Becze, Maria-Alexandra Resz, Aranka Ilea and Oana Cadar
Appl. Sci. 2022, 12(19), 9789; https://doi.org/10.3390/app12199789 - 28 Sep 2022
Cited by 21 | Viewed by 4371
Abstract
The quality of marketed pharmaceutical formulations must be guaranteed to attain better remedial effects and lower toxicity. The wide exploitation of antibiotics may lead to their presence as residues in body fluids and wastewaters, potentially toxic to human health. Consequently, determining antibiotics in [...] Read more.
The quality of marketed pharmaceutical formulations must be guaranteed to attain better remedial effects and lower toxicity. The wide exploitation of antibiotics may lead to their presence as residues in body fluids and wastewaters, potentially toxic to human health. Consequently, determining antibiotics in pharmaceutical formulations and water samples is of significant importance. This paper aims to explore the possibilities of a high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) method to obtain a simple, fast, and efficient analytical tool for the simultaneous determination of antibiotics in pharmaceutical formulations and environmental samples. The method was completely validated with regard to specificity, linearity, detection and quantification limits, precision, accuracy, and robustness according to the requirements of existing guidelines, and was proven to be reliable and suitable for the envisioned application. The linearity study was conducted for the calibration curves in the range of 10–100 μg/mL. The limits of detection and quantification were found to be 0.2 and 0.7 μg/mL for amoxicillin and 0.3 and 1.0 μg/mL for doxycycline, respectively. The high recovery of drugs from their commercial pharmaceutical formulations (93%) and from wastewater samples (98%) indicated good accuracy and precision. The method is robust for small or deliberate changes to the chromatographic parameters, and it was successfully applied for the quantitative determination of amoxicillin and doxycycline in wastewater and commercial tablets. The obtained results proved that the validated method is appropriate for its intended use in the routine quality control and assay of both antibiotics studied. Full article
(This article belongs to the Special Issue Advances in Agricultural Food and Pharmaceutical Analysis)
Show Figures

Figure 1

7 pages, 905 KiB  
Article
A Fast Recovery Vertical Superjunction MOSFET with n-Si and p-3C-SiC Pillars
by Rongyu Gao, Hongyu Cheng, Wenmao Li, Chenkai Deng, Jianguo Chen, Qing Wang and Hongyu Yu
Crystals 2022, 12(7), 916; https://doi.org/10.3390/cryst12070916 - 28 Jun 2022
Cited by 2 | Viewed by 2650
Abstract
In the traditional SJ MOSFET structure, n/p pillars with the same doping concentrations in the drift region are introduced to decrease the on-resistance. However, SJ MOSFET will turn on the parasitic diodes due to fast reverse recovery, further inducing severe oscillation in the [...] Read more.
In the traditional SJ MOSFET structure, n/p pillars with the same doping concentrations in the drift region are introduced to decrease the on-resistance. However, SJ MOSFET will turn on the parasitic diodes due to fast reverse recovery, further inducing severe oscillation in the reverse recovery of the device and the corresponding adverse effect on the circuit. In this study, a fast recovery vertical superjunction (SJ) MOSFET with n-Si and p-3C-SiC pillars was studied. Unlike other structures, such as the 4H-SiC superjunction UMOSFET with a heterojunction diode or the ultra-low recovery charge cell-distributed Schottky contacts SJ-MOSFET with integrated isolated NMOS, we introduce a Schottky barrier diode (SBD) on the source contact at the top of the n-Si pillar in the SJ-MOSFET to improve the device reverse recovery. The simulation software TCAD Silvaco was utilized to simulate the device properties. Compared with the conventional Si SJ, the proposed Si/SiC SJ with the Schottky barrier diode (SBD) connected demonstrated a lower reverse recovery charge, which was reduced by 90.5%, respectively. The waveform of the reverse recovery current demonstrates that the electrons in the device are withdrawn from SBD during reverse recovery, preventing the opening of the parasitic diode in the SJ MOSFET. Finally, another structure is illustrated to decrease the gate capacitance by introducing a thin p-base layer between the gate metal and N-Si pillar so that it can improve the switching characteristics of devices. The open-loss and off-loss of the improved device were reduced by 33% and 42.3%, respectively. Full article
(This article belongs to the Special Issue Semiconductor Nanocrystals)
Show Figures

Figure 1

11 pages, 1846 KiB  
Article
High-Performance Liquid Chromatography–Diode Array Detection Combined with Chemometrics for Simultaneous Quantitative Analysis of Five Active Constituents in a Chinese Medicine Formula Wen-Qing-Yin
by Jun-Chen Chen, Hai-Long Wu, Tong Wang, Ming-Yue Dong, Yue Chen and Ru-Qin Yu
Chemosensors 2022, 10(7), 238; https://doi.org/10.3390/chemosensors10070238 - 23 Jun 2022
Cited by 4 | Viewed by 3516
Abstract
In this work, a simple analytical strategy combining high-performance liquid chromatography–diode array detection (HPLC-DAD) and the chemometric method was developed for the simultaneous quantification of 5-hydroxymethyl-2-furfural (HMF), paeoniflorin (PAE), ferulic acid (FER), baicalin (BAI), and berberine (BER) in a Chinese medicine formula Wen-Qing-Yin [...] Read more.
In this work, a simple analytical strategy combining high-performance liquid chromatography–diode array detection (HPLC-DAD) and the chemometric method was developed for the simultaneous quantification of 5-hydroxymethyl-2-furfural (HMF), paeoniflorin (PAE), ferulic acid (FER), baicalin (BAI), and berberine (BER) in a Chinese medicine formula Wen-Qing-Yin (WQY). The alternating trilinear decomposition (ATLD) algorithm and alternating trilinear decomposition assisted multivariate curve resolution (ATLD-MCR) algorithm were used to realize the separation and rapid determination of five target analytes under the presence of time shifts, solvent peaks, peak overlaps, and unknown interferences. All analytes were eluted within 10 min and the linear correlation coefficients of calibration sets were between 0.9969 and 0.9996. In addition, the average recoveries of the five active compounds obtained by ATLD and ATLD-MCR analysis were in the range of 91.8–112.5% and 88.6–101.6%, respectively. For investigating the accuracy and reliability of the proposed method, figures of merit including limit of detection (LOD), limit of quantitation (LOQ), sensitivity (SEN), and selectivity (SEL) were calculated. The proposed analytical strategy has the advantages of being fast, simple, and sensitive, and can be used for the qualitative and quantitative analysis of WQY, providing a feasible option for the quality monitoring of the traditional Chinese medicine formula. Full article
(This article belongs to the Special Issue Chemometrics for Analytical Chemistry)
Show Figures

Graphical abstract

Back to TopTop