Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = fad-like behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2487 KB  
Article
Avenanthramide-C Mitigates High-Fat Diet-Accelerated Alzheimer’s Pathologies via NOD1-Driven Neuroinflammation in 5×FAD Mice
by Ming Wang, Baoyuan Jin, Jia Xu and Chuang Wang
Nutrients 2025, 17(16), 2679; https://doi.org/10.3390/nu17162679 - 19 Aug 2025
Viewed by 701
Abstract
Background: Obesity is clinically known to be associated with an increased risk and aggravated pathology of Alzheimer’s disease (AD). A high-fat diet (HFD), the major contributor to obesity, induces neuroinflammation and central insulin resistance, both of which are linked to synaptic dysfunction. [...] Read more.
Background: Obesity is clinically known to be associated with an increased risk and aggravated pathology of Alzheimer’s disease (AD). A high-fat diet (HFD), the major contributor to obesity, induces neuroinflammation and central insulin resistance, both of which are linked to synaptic dysfunction. Our previous studies demonstrated that avenanthramide-C (Avn-C), a natural oat-derived phenolic compound, exerts anti-inflammatory effects and alleviates synaptic dysfunction in conventional AD models. The present study aimed to elucidate the underlying mechanisms of Avn-C in obesity-accelerated AD. Methods: Two-month-old male 5×FAD mice were fed an HFD to induce obesity and then treated with Avn-C. Cognitive performance, synaptic function, and structure were assessed via behavioral tests, electrophysiological recordings, and Golgi–Cox staining, respectively. Cytokine levels were quantified using ELISA and Western blotting. To explore the underlying mechanism, the NOD1 agonist C12-iE-DAP was administered to evaluate its effect on Avn-C-mediated neuroprotection. Results: Avn-C reduced Aβ deposition, enhanced the expression of synapse proteins, and restored synaptic plasticity, thereby improving both spatial and recognition memory in obese 5×FAD mice. Furthermore, Avn-C reduced neuroinflammation by inhibiting the NOD1/RIP2/NF-κB signaling pathway. Co-treatment with C12-iE-DAP abolished the beneficial effects of Avn-C on neuroinflammation, Aβ pathology, and cognitive function. Conclusions: These results suggest that Avn-C mitigates obesity-exacerbated AD-like pathological features by suppressing NOD1/RIP2/NF-κB-mediated neuroinflammation and could be a new potential therapeutic strategy for obesity-associated AD. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

19 pages, 4304 KB  
Article
diAcCA, a Pro-Drug for Carnosic Acid That Activates the Nrf2 Transcriptional Pathway, Shows Efficacy in the 5xFAD Transgenic Mouse Model of Alzheimer’s Disease
by Piu Banerjee, Yubo Wang, Lauren N. Carnevale, Parth Patel, Charlene K Raspur, Nancy Tran, Xu Zhang, Ravi Natarajan, Amanda J. Roberts, Phil S. Baran and Stuart A. Lipton
Antioxidants 2025, 14(3), 293; https://doi.org/10.3390/antiox14030293 - 28 Feb 2025
Cited by 1 | Viewed by 32243
Abstract
The antioxidant/anti-inflammatory compound carnosic acid (CA) is a phenolic diterpene found in the herbs rosemary and sage. Upon activation, CA manifests electrophilic properties to stimulate the Nrf2 transcriptional pathway via reaction with Keap1. However, purified CA is readily oxidized and thus highly unstable. [...] Read more.
The antioxidant/anti-inflammatory compound carnosic acid (CA) is a phenolic diterpene found in the herbs rosemary and sage. Upon activation, CA manifests electrophilic properties to stimulate the Nrf2 transcriptional pathway via reaction with Keap1. However, purified CA is readily oxidized and thus highly unstable. To develop CA as an Alzheimer’s disease (AD) therapeutic, we synthesized pro-drug derivatives, among which the di-acetylated form (diAcCA) showed excellent drug-like properties. diAcCA converted to CA in the stomach prior to absorption into the bloodstream, and exhibited improved stability and bioavailability as well as comparable pharmacokinetics (PK) and efficacy to CA. To test the efficacy of diAcCA in AD transgenic mice, 5xFAD mice (or littermate controls) received the drug for 3 months, followed by behavioral and immunohistochemical studies. Notably, in addition to amyloid plaques and tau tangles, a hallmark of human AD is synapse loss, a major correlate to cognitive decline. The 5xFAD animals receiving diAcCA displayed synaptic rescue on immunohistochemical analysis accompanied by improved learning and memory in the water maze test. Treatment with diAcCA reduced astrocytic and microglial inflammation, amyloid plaque formation, and phospho-tau neuritic aggregates. In toxicity studies, diAcCA was as safe or safer than CA, which is listed by the FDA as “generally regarded as safe”, indicating diAcCA is suitable for human clinical trials in AD. Full article
(This article belongs to the Special Issue Role of Nrf2 in Neurodegenerative Diseases)
Show Figures

Figure 1

15 pages, 1392 KB  
Review
Unraveling the Role of Fusobacterium nucleatum in Colorectal Cancer: Molecular Mechanisms and Pathogenic Insights
by Linda Galasso, Fabrizio Termite, Irene Mignini, Giorgio Esposto, Raffaele Borriello, Federica Vitale, Alberto Nicoletti, Mattia Paratore, Maria Elena Ainora, Antonio Gasbarrini and Maria Assunta Zocco
Cancers 2025, 17(3), 368; https://doi.org/10.3390/cancers17030368 - 23 Jan 2025
Cited by 15 | Viewed by 5408
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an [...] Read more.
Fusobacterium nucleatum, a gram-negative anaerobic bacterium, has emerged as a significant player in colorectal cancer (CRC) pathogenesis. The bacterium causes a persistent inflammatory reaction in the colorectal mucosa by stimulating the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, creating an environment conducive to cancer progression. F. nucleatum binds to and penetrates epithelial cells through adhesins such as FadA, impairing cell junctions and encouraging epithelial-to-mesenchymal transition (EMT), which is associated with cancer advancement. Additionally, the bacterium modulates the host immune system, suppressing immune cell activity and creating conditions favorable for tumor growth. Its interactions with the gut microbiome contribute to dysbiosis, further influencing carcinogenic pathways. Evidence indicates that F. nucleatum can inflict DNA damage either directly via reactive oxygen species or indirectly by creating a pro-inflammatory environment. Additionally, it triggers oncogenic pathways, especially the Wnt/β-catenin signaling pathway, which promotes tumor cell growth and longevity. Moreover, F. nucleatum alters the tumor microenvironment, impacting cancer cell behavior, metastasis, and therapeutic responses. The purpose of this review is to elucidate the molecular mechanisms by which F. nucleatum contributes to CRC. Understanding these mechanisms is crucial for the development of targeted therapies and diagnostic strategies for CRC associated with F. nucleatum. Full article
(This article belongs to the Special Issue Novel Approaches and Advances in Interventional Oncology)
Show Figures

Figure 1

15 pages, 3956 KB  
Article
Withania somnifera (Ashwagandha) Improves Spatial Memory, Anxiety and Depressive-like Behavior in the 5xFAD Mouse Model of Alzheimer’s Disease
by Noah Gladen-Kolarsky, Olivia Monestime, Melissa Bollen, Jaewoo Choi, Liping Yang, Armando Alcazar Magaña, Claudia S. Maier, Amala Soumyanath and Nora E. Gray
Antioxidants 2024, 13(10), 1164; https://doi.org/10.3390/antiox13101164 - 25 Sep 2024
Cited by 7 | Viewed by 5746
Abstract
Withania somnifera (WS), also known as ashwagandha, is a popular botanical supplement used to treat various conditions including memory loss, anxiety and depression. Previous studies from our group showed an aqueous extract of WS root (WSAq) enhances cognition and alleviates markers for depression [...] Read more.
Withania somnifera (WS), also known as ashwagandha, is a popular botanical supplement used to treat various conditions including memory loss, anxiety and depression. Previous studies from our group showed an aqueous extract of WS root (WSAq) enhances cognition and alleviates markers for depression in Drosophila. Here, we sought to confirm these effects in the 5xFAD mouse model of β-amyloid (Aβ) accumulation. Six- to seven-month-old male and female 5xFAD mice were treated with WSAq in their drinking water at 0 mg/mL, 0.5 mg/mL or 2.5 mg/mL for four weeks. In the fourth week of treatment, spatial memory, anxiety and depressive-like symptoms were evaluated. At the conclusion of behavioral testing, brain tissue was harvested, immunohistochemistry was performed, and the cortical expression of antioxidant response genes was evaluated. Both concentrations of WSAq improved spatial memory and reduced depressive and anxiety-related behavior. These improvements were accompanied by a reduction in Aβ plaque burden in the hippocampus and cortex and an attenuation of activation of microglia and astrocytes. Antioxidant response genes were upregulated in the cortex of WSAq-treated mice. Oral WSAq treatment could be beneficial as a therapeutic option in AD for improving disease pathology and behavioral symptoms. Future studies focused on dose optimization of WSAq administration and further assessment of the mechanisms by which WSAq elicits its beneficial effects will help inform the clinical potential of this promising botanical therapy. Full article
(This article belongs to the Special Issue Oxidative-Stress in Human Diseases—3rd Edition)
Show Figures

Figure 1

15 pages, 4172 KB  
Article
The Effects of Early-Life Stress on Liver Transcriptomics and the Protective Role of EPA in a Mouse Model of Early-Life-Stress-Induced Adolescent Depression
by Jinlan Zhao, Lihong Ye, Zuyi Liu, Jiayi Wu, Di Deng, Lin An, Shasha Bai, Lei Yang, Binjie Liu, Yafei Shi, Zhongqiu Liu and Rong Zhang
Int. J. Mol. Sci. 2023, 24(17), 13131; https://doi.org/10.3390/ijms241713131 - 23 Aug 2023
Cited by 7 | Viewed by 2775
Abstract
Early-life stress (ELS) was found to increase the risk of adolescent depression, and clinical evidence indicated that eicosapentaenoic acid (EPA) was decreased in patients with adolescent depression, but the underlying mechanisms are unclear. Here, we utilized an ELS model of maternal separation with [...] Read more.
Early-life stress (ELS) was found to increase the risk of adolescent depression, and clinical evidence indicated that eicosapentaenoic acid (EPA) was decreased in patients with adolescent depression, but the underlying mechanisms are unclear. Here, we utilized an ELS model of maternal separation with early weaning to explore the protective role of EPA in adolescent depression. We found that that ELS induced depression-like behavior rather than anxiety-like behavior in adolescent mice. RNA-sequencing results showed that ELS changed the transcription pattern in the liver, including 863 upregulated genes and 971 downregulated genes, especially those related to the biosynthesis of unsaturated fatty acids metabolism in the liver. Moreover, ELS decreased the expression of the rate-limiting enzymes, fatty acid desaturases 1/2 (FADS1/2), involved in the biosynthesis of EPA in the liver. Additionally, ELS reduced the levels of EPA in the liver, serum, and hippocampus, and EPA administration improved depression-like behavior-induced by ELS. Our results provide transcriptomic evidence that ELS increases the risk of adolescent depression by reducing the synthesis of unsaturated fatty acids in the liver, especially EPA, and suggest that supplementation with EPA should be investigated as a potential treatment for adolescent depression. Full article
Show Figures

Figure 1

17 pages, 13649 KB  
Article
Alleviation of Cognitive Impairment-like Behaviors, Neuroinflammation, Colitis, and Gut Dysbiosis in 5xFAD Transgenic and Aged Mice by Lactobacillus mucosae and Bifidobacterium longum
by Xiaoyang Ma, Jeon-Kyung Kim, Yoon-Jung Shin, Young-Hoo Son, Dong-Yun Lee, Hee-Seo Park and Dong-Hyun Kim
Nutrients 2023, 15(15), 3381; https://doi.org/10.3390/nu15153381 - 29 Jul 2023
Cited by 20 | Viewed by 3431
Abstract
Neuropsychiatric disorders including Alzheimer’s disease (AD) may cause gut inflammation and dysbiosis. Gut inflammation-suppressing probiotics alleviate neuropsychiatric disorders. Herein, to understand whether anti-inflammatory probiotics Lactobacillus mucosae NK41 and Bifidobacterium longum NK46, which suppressed tumor necrosis factor (TNF)-α expression in lipopolysaccharide (LPS)-stimulated macrophages, could [...] Read more.
Neuropsychiatric disorders including Alzheimer’s disease (AD) may cause gut inflammation and dysbiosis. Gut inflammation-suppressing probiotics alleviate neuropsychiatric disorders. Herein, to understand whether anti-inflammatory probiotics Lactobacillus mucosae NK41 and Bifidobacterium longum NK46, which suppressed tumor necrosis factor (TNF)-α expression in lipopolysaccharide (LPS)-stimulated macrophages, could alleviate cognitive impairment, we first examined their effects on cognitive function, gut inflammation, and gut microbiota composition in 5xFAD-transgenic mice. Oral administration of NK41 or NK46 decreased cognitive impairment-like behaviors, hippocampal amyloid-β (Aβ), TNF-α and interleukin (IL)-1β expression, hippocampal NF-κB+Iba1+ cell population, and Aβ accumulation, while hippocampal brain-derived neurotropic factor (BDNF) and IL-10 expression and BDNF+NeuN+ cell population increased. They also decreased TNF-α and IL-1β expression and NF-κB+CD11c+ cell population in the colon. They also reduced fecal and blood LPS levels and gut Proteobacteria and Verrucomicrobia populations (including Akkkermansiaceae), which are positively associated with hippocampal TNF-α and fecal LPS levels and negatively correlated with hippocampal BDNF level. However, they increased Odoribactericeae, which positively correlated with BDNF expression level and TNF-α to IL-10 expression ratio. The combination of NK41 and NK46 (4:1, NKc), which potently inhibited TNF-α expression in LPS-stimulated macrophages, additively alleviated cognitive impairment-like behaviors in 5xFAD-transgenic or aged mice. NKc increased hippocampal BDNF+NeuN+ cell population and BDNF expression in 5xFAD-transgenic or aged mice, while hippocampal TNF-α and IL-1β expression decreased. NKc also decreased TNF-α and IL-1β expression in the colon and LPS levels in the blood and feces. These findings suggest that gut bacteria and its product LPS may be closely connected with occurrence of cognitive impairment and neuroinflammation and the combination of NK41 and NK46 can additively alleviate cognitive impairment and neuroinflammation by inducing NF-κB-suppressed BDNF expression and suppressing LPS-producing gut bacteria. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

18 pages, 4123 KB  
Article
Oleocanthal Ameliorates Metabolic and Behavioral Phenotypes in a Mouse Model of Alzheimer’s Disease
by Euitaek Yang, Junwei Wang, Lauren N. Woodie, Michael W. Greene and Amal Kaddoumi
Molecules 2023, 28(14), 5592; https://doi.org/10.3390/molecules28145592 - 23 Jul 2023
Cited by 8 | Viewed by 2859
Abstract
Aging is a major risk factor for Alzheimer’s disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes [...] Read more.
Aging is a major risk factor for Alzheimer’s disease (AD). AD mouse models are frequently used to assess pathology, behavior, and memory in AD research. While the pathological characteristics of AD are well established, our understanding of the changes in the metabolic phenotypes with age and pathology is limited. In this work, we used the Promethion cage systems® to monitor changes in physiological metabolic and behavioral parameters with age and pathology in wild-type and 5xFAD mouse models. Then, we assessed whether these parameters could be altered by treatment with oleocanthal, a phenolic compound with neuroprotective properties. Findings demonstrated metabolic parameters such as body weight, food and water intake, energy expenditure, dehydration, and respiratory exchange rate, and the behavioral parameters of sleep patterns and anxiety-like behavior are altered by age and pathology. However, the effect of pathology on these parameters was significantly greater than normal aging, which could be linked to amyloid-β deposition and blood–brain barrier (BBB) disruption. In addition, and for the first time, our findings suggest an inverse correlation between sleep hours and BBB breakdown. Treatment with oleocanthal improved the assessed parameters and reduced anxiety-like behavior symptoms and sleep disturbances. In conclusion, aging and AD are associated with metabolism and behavior changes, with the changes being greater with the latter, which were rectified by oleocanthal. In addition, our findings suggest that monitoring changes in metabolic and behavioral phenotypes could provide a valuable tool to assess disease severity and treatment efficacy in AD mouse models. Full article
Show Figures

Graphical abstract

25 pages, 5793 KB  
Article
Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females
by Allen L. Pan, Mickael Audrain, Emmy Sakakibara, Rajeev Joshi, Xiaodong Zhu, Qian Wang, Minghui Wang, Noam D. Beckmann, Eric E. Schadt, Sam Gandy, Bin Zhang, Michelle E. Ehrlich and Stephen R. Salton
Cells 2022, 11(23), 3880; https://doi.org/10.3390/cells11233880 - 1 Dec 2022
Cited by 10 | Viewed by 4068
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer’s disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known [...] Read more.
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer’s disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer’s disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12–18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity. Full article
(This article belongs to the Special Issue Mechanisms of Neurodevelopment and Neurodegeneration)
Show Figures

Figure 1

19 pages, 9809 KB  
Article
FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer’s Disease: Evidence from Single-Cell Transcriptomic Analysis
by Yini Dang, Qing He, Siyu Yang, Huaiqing Sun, Yin Liu, Wanting Li, Yi Tang, Yu Zheng and Ting Wu
Pharmaceuticals 2022, 15(10), 1177; https://doi.org/10.3390/ph15101177 - 22 Sep 2022
Cited by 52 | Viewed by 8151
Abstract
Objectives: Despite significant advances in neuroscience, the mechanisms of AD are not fully understood. Single-cell RNA sequencing (scRNA-seq) techniques provide potential solutions to analyze cellular composition of complex brain tissue and explore cellular and molecular biological mechanisms of AD. Methods: We investigated cellular [...] Read more.
Objectives: Despite significant advances in neuroscience, the mechanisms of AD are not fully understood. Single-cell RNA sequencing (scRNA-seq) techniques provide potential solutions to analyze cellular composition of complex brain tissue and explore cellular and molecular biological mechanisms of AD. Methods: We investigated cellular heterogeneity in AD via utilization of bioinformatic analysis of scRNA-seq in AD patients and healthy controls from the Gene Expression Omnibus (GEO) database. The “GOplot” package was applied to explore possible biological processes in oligodendrocytes, astrocytes, and oligodendrocyte progenitor cells (OPCs). Expression patterns and biological functions of differentially expressed genes (DEGs) from scRNA-seq data were validated in RNA sequencing data. DEGs in astrocytes interacted with ferroptosis-related genes in FerrDb. CCK-8 and EdU assays were performed to measure cell proliferation ability. ROS, Fe2+ level, mitochondrial membrane potentials, iron concentrations, and total iron binding capacity (TIBC) in serum were evaluated. Y-maze and elevated maze were used to measure anxiety-like behavior. Autonomous and exploration behaviors or learning and memory ability in mice were analyzed using open field test and novel object recognition test. Results: Multiple clusters were identified, including oligodendrocytes, astrocytes, OPCs, neurons, microglia, doublets, and endothelial cells. Astrocytes were significantly decreased in AD, while oligodendrocytes and OPCs increased. Cell-to-cell ligand–receptor interaction analysis revealed that astrocytes, neurons, and OPCs mainly established contacts with other cells via the NRG3–ERBB4 ligand–receptor pair. GO and KEGG analyses found that astrocytes were enriched in the ferroptosis pathway. FTH1 and SAT1 in astrocytes were identified as hub mRNAs associated with ferroptosis. Serum iron concentration of 5xFAD mice was higher than that of WT, and emotional and cognitive function were significantly impaired as compared to WT. Serum iron concentration was negatively correlated with number of astrocytes and percentage of time spent entering the novelty arm in the Y-maze test, while it was positively correlated with percentage of time spent in the central area. Meanwhile, number of astrocytes was negatively correlated with percentage of time spent in the central area, while it was positively correlated with percentage of time spent entering the novelty arm. Conclusions: Through scRNA-seq analysis, we found that ferroptosis was activated in astrocytes and may contribute to the pathophysiological process in the entorhinal cortex. FTH1 and SAT1 were identified to impact astrocyte ferroptosis. Emotional and cognitive impairment in AD was associated with astrocyte ferroptosis. Our findings provide clues to reveal the pathophysiological processes following AD at the cellular level and highlight potential drug targets for the treatment of AD. Full article
(This article belongs to the Special Issue Astrocytes: Emerging Therapeutic Targets in Neurological Disorders)
Show Figures

Figure 1

27 pages, 684 KB  
Article
Plant-Based Only: Investigating Consumers’ Sensory Perception, Motivation, and Knowledge of Different Plant-Based Alternative Products on the Market
by Marcel Pointke, Marlene Ohlau, Antje Risius and Elke Pawelzik
Foods 2022, 11(15), 2339; https://doi.org/10.3390/foods11152339 - 5 Aug 2022
Cited by 62 | Viewed by 12432
Abstract
Consumer acceptance and product development of sustainable, healthy, and tasty plant-based alternative products (PBAPs) are closely interlinked. However, information on consumer perceptions of the sensory profile of plant-based meat, cheese, and milk remains scarce. The study aimed to investigate German consumers’ (1) sensory [...] Read more.
Consumer acceptance and product development of sustainable, healthy, and tasty plant-based alternative products (PBAPs) are closely interlinked. However, information on consumer perceptions of the sensory profile of plant-based meat, cheese, and milk remains scarce. The study aimed to investigate German consumers’ (1) sensory evaluation of PBAPs and (2) consumers´ motivations and knowledge underlying the purchase of such products. This was analyzed in relation to different dietary styles of consumers (omnivore, flexitarian, vegetarian, vegan). A sample of 159 adults completed two tasks: first, a sensory test in which participants tasted and rated three different PBAPs in two consecutive sessions, and second, a questionnaire on consumption behavior, motivation, and knowledge. Results show few differences between nutrition styles in sensory evaluation of individual product attributes. However, overall liking was rated significantly higher by vegans than by omnivores. All dietary styles reported animal welfare and environmental aspects as the main motivations for consuming PBAPs. Most participants acknowledged that meat and cheese alternatives are highly processed foods and not a fad but are not automatically healthier or more environmentally friendly than their animal-based counterparts. Future research should focus on emerging product segments such as plant-based cheeses to better understand how consumers evaluate PBAPs. Full article
(This article belongs to the Special Issue Sensory Analysis of Plant-Based Products)
Show Figures

Figure 1

16 pages, 2424 KB  
Article
Evidence for Enhanced Efficacy of Passive Immunotherapy against Beta-Amyloid in CD33-Negative 5xFAD Mice
by Kathrin Gnoth, Stefanie Geissler, Julia Feldhaus, Nadine Taudte, Victoria Ilse, Sebastian Zürner, Sebastian Greiser, Ulf-Dietrich Braumann, Jens-Ulrich Rahfeld, Holger Cynis and Stephan Schilling
Biomolecules 2022, 12(3), 399; https://doi.org/10.3390/biom12030399 - 4 Mar 2022
Cited by 4 | Viewed by 3763
Abstract
Passive immunotherapy is a very promising approach for the treatment of Alzheimer’s disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and [...] Read more.
Passive immunotherapy is a very promising approach for the treatment of Alzheimer’s disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and reduced treatment-related side effects. In that regard, we recently demonstrated that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to the attenuation of AD-like amyloid pathology in 5xFAD mice. In order to assess novel strategies to enhance the efficacy of passive vaccination approaches, we investigated the role of CD33 for Aβ phagocytosis in transgenic mice treated with an isoD7-Aβ antibody. We crossbred 5xFAD transgenic mice with CD33 knock out (CD33KO) mice and compared the amyloid pathology in the different genotypes of the crossbreds. The knockout of CD33 in 5xFAD mice leads to a significant reduction in Aβ plaques and concomitant rescue of behavioral deficits. Passive immunotherapy of 5xFAD/CD33KO showed a significant increase in plaque-surrounding microglia compared to 5xFAD treated with the antibody. Additionally, we observed a stronger lowering of Aβ plaque load after passive immunotherapy in 5xFAD/CD33KO mice. The data suggest an additive effect of passive immunotherapy and CD33KO in terms of lowering Aβ pathology. Hence, a combination of CD33 antagonists and monoclonal antibodies might represent a strategy to enhance efficacy of passive immunotherapy in AD. Full article
Show Figures

Figure 1

35 pages, 4403 KB  
Article
Tau Cleavage Contributes to Cognitive Dysfunction in Strepto-Zotocin-Induced Sporadic Alzheimer’s Disease (sAD) Mouse Model
by Valentina Latina, Giacomo Giacovazzo, Pietro Calissano, Anna Atlante, Federico La Regina, Francesca Malerba, Marco Dell’Aquila, Egidio Stigliano, Bijorn Omar Balzamino, Alessandra Micera, Roberto Coccurello and Giuseppina Amadoro
Int. J. Mol. Sci. 2021, 22(22), 12158; https://doi.org/10.3390/ijms222212158 - 10 Nov 2021
Cited by 28 | Viewed by 5936
Abstract
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less [...] Read more.
Tau cleavage plays a crucial role in the onset and progression of Alzheimer’s Disease (AD), a widespread neurodegenerative disease whose incidence is expected to increase in the next years. While genetic and familial forms of AD (fAD) occurring early in life represent less than 1%, the sporadic and late-onset ones (sAD) are the most common, with ageing being an important risk factor. Intracerebroventricular (ICV) infusion of streptozotocin (STZ)—a compound used in the systemic induction of diabetes due to its ability to damage the pancreatic β cells and to induce insulin resistance—mimics in rodents several behavioral, molecular and histopathological hallmarks of sAD, including memory/learning disturbance, amyloid-β (Aβ) accumulation, tau hyperphosphorylation, oxidative stress and brain glucose hypometabolism. We have demonstrated that pathological truncation of tau at its N-terminal domain occurs into hippocampi from two well-established transgenic lines of fAD animal models, such as Tg2576 and 3xTg mice, and that it’s in vivo neutralization via intravenous (i.v.) administration of the cleavage-specific anti-tau 12A12 monoclonal antibody (mAb) is strongly neuroprotective. Here, we report the therapeutic efficacy of 12A12mAb in STZ-infused mice after 14 days (short-term immunization, STIR) and 21 days (long-term immunization regimen, LTIR) of i.v. delivery. A virtually complete recovery was detected after three weeks of 12A12mAb immunization in both novel object recognition test (NORT) and object place recognition task (OPRT). Consistently, three weeks of this immunization regimen relieved in hippocampi from ICV-STZ mice the AD-like up-regulation of amyloid precursor protein (APP), the tau hyperphosphorylation and neuroinflammation, likely due to modulation of the PI3K/AKT/GSK3-β axis and the AMP-activated protein kinase (AMPK) activities. Cerebral oxidative stress, mitochondrial impairment, synaptic and histological alterations occurring in STZ-infused mice were also strongly attenuated by 12A12mAb delivery. These results further strengthen the causal role of N-terminal tau cleavage in AD pathogenesis and indicate that its specific neutralization by non-invasive administration of 12A12mAb can be a therapeutic option for both fAD and sAD patients, as well as for those showing type 2 diabetes as a comorbidity. Full article
Show Figures

Figure 1

17 pages, 5874 KB  
Article
Tart Cherry Extract and Omega Fatty Acids Reduce Behavioral Deficits and Gliosis in the 5xFAD Mouse Model of Alzheimer’s Disease
by Zackary Bowers, Panchanan Maiti, Ali Bourcier, Jarod Morse, Kenneth Jenrow, Julien Rossignol and Gary L. Dunbar
Brain Sci. 2021, 11(11), 1423; https://doi.org/10.3390/brainsci11111423 - 27 Oct 2021
Cited by 6 | Viewed by 3442 | Correction
Abstract
Combined treatments using polyphenols and omega fatty acids provide several therapeutic benefits for a variety of age-related disorders, including Alzheimer’s disease (AD). Previously, we found a commercial product, Total Body Rhythm (TBR), consisting of tart cherry extract, a potent polyphenol, and omega fatty [...] Read more.
Combined treatments using polyphenols and omega fatty acids provide several therapeutic benefits for a variety of age-related disorders, including Alzheimer’s disease (AD). Previously, we found a commercial product, Total Body Rhythm (TBR), consisting of tart cherry extract, a potent polyphenol, and omega fatty acids, significantly reduced memory, and neuropathological deficits in the 192 IgG-saporin mouse model of AD. The present study assessed the efficacy of TBR for treating behavioral and neuropathological deficits in the 5xFAD model of AD. Both 6- and 12-month-old 5xFAD mice and age-matched wild-type controls received TBR (60 mg/kg) or the equivalent dose of vehicle (0.5% methylcellulose) via oral administration, every other day for two months. All mice were tested in the open field (OF), novel object recognition (NOR), and the Morris water maze (MWM) tasks. In addition, neuronal morphology, neurodegeneration, Aβ plaque load, and glial activation were assessed. TBR treatment reduced memory deficits in the MWM and NOR tests and lessened anxiety levels in the OF task, mostly in the 6-month-old male mice. TBR also protected and reduced activation of astrocytes and microglia, primarily in 6-month-old mice. These results suggest that the combination of tart cherry extract and omega fatty acids in TBR can reduce AD-like deficits in 5xFAD mice. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Graphical abstract

17 pages, 596 KB  
Article
A Study on the Sustainable Structural Relations between Social Exchange Relationship Characteristics and Social Contagion Effect in Beauty-Related One-Person Media
by Sungmin Kang and Younkue Na
Sustainability 2021, 13(20), 11140; https://doi.org/10.3390/su132011140 - 9 Oct 2021
Cited by 2 | Viewed by 1733
Abstract
This study examined how members of beauty-related one-person media networks build sustainable ties with other members through various exchange activities and diffuse information based on the social contagion effect. Accordingly, social exchange relationship characteristics of beauty-related one-person media were specified and structural relations [...] Read more.
This study examined how members of beauty-related one-person media networks build sustainable ties with other members through various exchange activities and diffuse information based on the social contagion effect. Accordingly, social exchange relationship characteristics of beauty-related one-person media were specified and structural relations through which these characteristics affect group cohesiveness, conformity-based collective intelligence, and fad-like behavior were identified. A sample of 529 users with experience of consuming information on beauty-related one-person media was selected, and research hypotheses were tested via reliability testing, validity testing, measurement model analysis, and path analysis using SPSS ver. 23.0 and AMOS ver. 23.0. First, the path analysis between social exchange relationship characteristics of beauty-related one-person media and group cohesiveness revealed that relational characteristics significantly affected social cohesion, but situational characteristics and personal characteristics did not. Additionally, situational characteristics and personal characteristics significantly affected task cohesion, but relational characteristics did not. Second, the path analysis between group cohesiveness (social cohesion, task cohesion) and conformity-based collective intelligence in beauty-related one-person media revealed that social cohesion and task cohesion significantly affected conformity-based collective intelligence. Third, the path analysis between conformity-based collective intelligence and fad-like behavior in beauty-related one-person media clarified that conformity-based collective intelligence significantly affected fad-like behavior. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 3326 KB  
Article
Cyclopentanone Derivative Attenuates Memory Impairment by Inhibiting Amyloid Plaques Formation in the 5xFAD Mice
by Rahim Ullah, Gowhar Ali, Ajmal Khan, Sajjad Ahmad and Ahmed Al-Harrasi
Int. J. Mol. Sci. 2021, 22(17), 9559; https://doi.org/10.3390/ijms22179559 - 3 Sep 2021
Cited by 6 | Viewed by 3460
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. This study was designed to investigate the effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) on behavior, amyloid β (Aβ) plaque deposition, and βAPP cleaving enzyme-1 (BACE-1) expression in the 5xFAD mouse brain. In this study, [...] Read more.
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. This study was designed to investigate the effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) on behavior, amyloid β (Aβ) plaque deposition, and βAPP cleaving enzyme-1 (BACE-1) expression in the 5xFAD mouse brain. In this study, computational studies were conducted to predict the binding mode of the 3NCP with target sites of the β-secretase. In vivo studies were performed on the 5xFAD mice model of AD using different behavioral test models like light/dark box, elevated plus maze (EPM), and the Barnes maze tests for the assessment of anxiety, spatial learning and memory. The thioflavin-S staining, immunohistochemistry (IHC), and RT-PCR studies were carried out to find the effect of the 3NCP on the β-amyloid plaques formation and BACE-1 expression. The results of the computational studies showed that the 3NCP has excellent binding affinities for beta-secretase. The light/dark box study depicted that the 3NCP does not cause anxiety. The 3NCP treatment effects in the EPM and Barnes maze tests showed a significant effect on learning and memory. Furthermore, the results of the thioflavin staining and IHC revealed that the 3NCP significantly reduced the formation of the beta-amyloid plaques in brain tissues. Moreover, the RT-PCR study showed that 3NCP significantly reduced the BACE-1 expression in the brain. Conclusively, the results of the current study demonstrate that the 3NCP may be a potential candidate for AD treatment in the future. Full article
(This article belongs to the Special Issue Pharmacology of Neurodegenerative Diseases)
Show Figures

Figure 1

Back to TopTop