Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,024)

Search Parameters:
Keywords = facts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1304 KiB  
Review
Calcific Aortic Valve Stenosis: A Focal Disease in Older and Complex Patients—What Could Be the Best Time for an Appropriate Interventional Treatment?
by Annamaria Mazzone, Augusto Esposito, Ilenia Foffa and Sergio Berti
J. Clin. Med. 2025, 14(15), 5560; https://doi.org/10.3390/jcm14155560 - 7 Aug 2025
Abstract
Calcific aortic stenosis (CAS) is a newly emerging pandemic in elderly individuals due to the aging of the population in the world. Surgical Aortic Valve Replacement (SAVR) and Transcatheter Aortic Valve Replacement (TAVR) are the cornerstone of the management of severe aortic stenosis [...] Read more.
Calcific aortic stenosis (CAS) is a newly emerging pandemic in elderly individuals due to the aging of the population in the world. Surgical Aortic Valve Replacement (SAVR) and Transcatheter Aortic Valve Replacement (TAVR) are the cornerstone of the management of severe aortic stenosis accompanied by one or more symptoms. Moreover, an appropriate interventional treatment of CAS, in elderly patients, is a very complex decision for heart teams, to avoid bad outcomes such as operative mortality, cardiovascular and all-cause death, hospitalization for heart failure, worsening of quality of life. In fact, CAS in the elderly is not only a focal valve disease, but a very complex clinical picture with different risk factors and etiologies, differing underlying pathophysiology, large phenotypic heterogeneity in a context of subjective biological, phenotypic and functional aging until frailty and disability. In this review, we analyzed separately and in a more integrated manner, the natural and prognostic histories of the progression of aortic stenosis, the phenotypes of myocardial damage and heart failure, within the metrics and aging trajectory. The aim is to suggest, during the clinical timing of valve disease, the best interval time for an appropriate and effective interventional treatment in each older patient, beyond subjective symptoms by integration of clinical, geriatric, chemical, and advanced imaging biomarkers. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

39 pages, 5251 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 (registering DOI) - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
15 pages, 284 KiB  
Article
Co-Use of Alcohol and Cannabis During COVID-19: Associations Between Sociodemographic Factors and Self-Reported Mental Health Symptoms and Heavy Episodic Drinking in Canadian Adults
by Nibene H. Somé, Sameer Imtiaz, Yeshambel T. Nigatu, Samantha Wells, Claire de Oliveira, Shehzad Ali, Tara Elton-Marshall, Jürgen Rehm, Kevin D. Shield and Hayley A. Hamilton
Psychoactives 2025, 4(3), 27; https://doi.org/10.3390/psychoactives4030027 - 6 Aug 2025
Abstract
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. [...] Read more.
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. Nine successive cross-sectional surveys, held from May 2020 to January 2022, of adults (aged ≥18 years) living in Canada were pooled for 9011 participants. The prevalence of co-use was calculated across sociodemographic groups. Logistic regressions were used to assess associations. Alcohol–cannabis co-use was associated with a greater likelihood of engaging in HED and experiencing symptoms of anxiety, depression, and loneliness. The prevalence of co-use of alcohol was different across sociodemographic groups. The highest prevalence was among TGD people (35.5%), followed by individuals aged 18–39 years (14.5%). Additionally, being TGD (aOR = 3.61, 95% CI 2.09–6.25), separated/divorced/widowed (aOR = 1.60, 95% CI 1.23–2.07), living in an urban area (aOR = 1.26, 95% CI 1.07–1.56), and having a high household income (aOR = 1.41, 95% CI 1.09–1.82) increased the likelihood of reporting alcohol–cannabis co-use. These findings underscore the fact that developing public health and clinical interventions for preventing and treating excessive alcohol or cannabis use must consider both alcohol and cannabis use patterns and should be tailored to the highest-risk TGD and young adults. Full article
24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 (registering DOI) - 6 Aug 2025
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

22 pages, 6319 KiB  
Article
Third Demographic Transition, Religion, Migrations and Economy: A Bibliometric Analysis of the Semantic Context
by Jarosław Kozak, Jakub Isański, Błażej Dyczewski, Adelaide di Maggio and Malika Ouacha
Religions 2025, 16(8), 1015; https://doi.org/10.3390/rel16081015 - 6 Aug 2025
Abstract
This article aims to analyze the role of migration in the process of the third demographic transition (TDT) in the context of key mediating determinants, such as migrants’ religiosity and economic conditions in the countries of origin and settlement. TDT refers to population [...] Read more.
This article aims to analyze the role of migration in the process of the third demographic transition (TDT) in the context of key mediating determinants, such as migrants’ religiosity and economic conditions in the countries of origin and settlement. TDT refers to population changes resulting from migration as a demographic compensatory mechanism in countries with a low total fertility rate (TFR). The study is based on a network analysis of keywords in the scientific literature using the Scopus database and VOSviewer. The results point to three main research approaches to TDT—investigating quantitative population changes, the sociodemographic consequences of migration, and its effect on urbanization—and to the fact that economic and axionormative determinants are under-researched. This article contributes to TDT theory, pointing to the need for that theory to include cultural, economic, and axiological factors as key determinants influencing the permanence of TDT. Full article
Show Figures

Figure 1

493 KiB  
Proceeding Paper
Natural Hazards and Spatial Data Infrastructures (SDIs) for Disaster Risk Reduction
by Michail-Christos Tsoutsos and Vassilios Vescoukis
Eng. Proc. 2025, 87(1), 101; https://doi.org/10.3390/engproc2025087101 - 5 Aug 2025
Abstract
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This [...] Read more.
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This research points out the usefulness of Spatial Data Infrastructures (SDIs) for disaster risk reduction through a literature review, focusing on the necessity of data unification and disposal. Initially, the principles of SDIs are presented, given the fact that this framework contributes significantly to the fulfilment of specific targets and priorities of the Sendai Framework for Disaster Risk Reduction 2015–2030. Thereafter, the challenges of SDIs are investigated in order to underline the main drawbacks stakeholders in emergency management have to come up against, namely the semantic misalignment that impedes efficient data retrieval, malfunctions in the interoperability of datasets and web services, the non-availability of the data in spite of their existence, and a lack of quality data, while also highlighting the obstacles of real case studies on national NSDIs. Thus, diachronic observations on disasters will not be made, despite these comprising a meaningful dataset in disaster mitigation. Consequently, the harmonization of national SDIs with international schemes, such as the Group on Earth Observations (GEO) and European Union’s space program Copernicus, and the usefulness of Artificial Intelligence (AI) and Machine Learning (ML) for disaster mitigation through the prediction of natural hazards are demonstrated. In this paper, for the purpose of disaster preparedness, real-world implementation barriers that preclude SDIs to be completed or deter their functionality are presented, culminating in the proposed future research directions and topics for the SDIs that need further investigation. SDIs constitute an ongoing collaborative effort intending to offer valuable operational tools for decision-making under the threat of a devastating event. Despite the operational potential of SDIs, the complexity of data standardization and coordination remains a core challenge. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

41 pages, 3471 KiB  
Review
State of Art and Perspective of Calcium Phosphate-Based Coatings Coupled with Bioactive Compounds for Orthopedic Applications
by Matteo Montesissa, Viviana Tommasini, Katia Rubini, Marco Boi, Nicola Baldini and Elisa Boanini
Nanomaterials 2025, 15(15), 1199; https://doi.org/10.3390/nano15151199 - 5 Aug 2025
Abstract
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of [...] Read more.
The aim of this review is to investigate the possibility of fabricating coatings functionalized with bioactive molecules. These coatings are interesting when applied to biomedical devices, particularly in the orthopedic field. In fact, the application of calcium phosphate-based coatings on the surface of implanted devices is an effective strategy to increase their osteoinductive and osseointegrative properties. Several coating fabrication technologies are presented, including chemical deposition and physical methods. The application of bioactive molecules in combination with calcium phosphate coatings may improve their osteointegrative, antibacterial, and antitumor properties, therefore increasing the performance of implantable devices. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

34 pages, 7266 KiB  
Article
Relationship Between Aggregation Index and Change in the Values of Some Landscape Metrics as a Function of Cell Neighborhood Choice
by Paolo Zatelli, Clara Tattoni and Marco Ciolli
ISPRS Int. J. Geo-Inf. 2025, 14(8), 304; https://doi.org/10.3390/ijgi14080304 - 5 Aug 2025
Viewed by 30
Abstract
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes [...] Read more.
Landscape metrics are one of the main tools for studying changes in the landscape and the ecological structure of the territory. However, the calculation of some metrics yields significantly different values depending on the configuration of the “Cell neighborhood” (CN) used. This makes the comparison of different analysis results often impossible. In fact, although the metrics are defined in the same way for all software, the choice of a CN with four cells, which includes only the elements on the same row or column, or eight cells, which also includes the cells on the diagonal, changes their value. QGIS’ LecoS plugin uses the value eight while GRASS’ r.li module uses the value four and these values are not modifiable by users. A previous study has shown how the value of the CN used for the calculation of landscape metrics is rarely explicit in scientific publications and its value cannot always be deduced from the indication of the software used. The difference in value for the same metric depends on the CN configuration and on the compactness of the patches, which can be expressed through the Aggregation Index (AI), of the investigated landscape. The scope of this paper is to explore the possibility of deriving an analytical relationship between the Aggregation Index and the variation in the values of some landscape metrics as the CN varies. The numerical experiments carried out in this research demonstrate that it is possible to estimate the differences in landscape metrics evaluated with a four and eight CN configuration using polynomials only for few metrics and only for some intervals of AI values. This analysis combines different Free and Open Source Software (FOSS) systems: GRASS GIS for the creation of test maps and R landscapemetrics package for the calculation of landscape metrics and the successive statistical analysis. Full article
Show Figures

Figure 1

13 pages, 2022 KiB  
Article
A Practical Method for Ecological Flow Calculation to Support Integrated Ecological Functions of the Lower Yellow River, China
by Xinyuan Chen, Lixin Zhang and Lei Tang
Water 2025, 17(15), 2326; https://doi.org/10.3390/w17152326 - 5 Aug 2025
Viewed by 27
Abstract
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the [...] Read more.
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the Yellow River. In this paper, we selected the Huayuankou hydrological station in the lower Yellow River as our study site and assessed the ecological flow using several methodologies including the monthly frequency calculation method, the sediment transportation method, the habitat simulation method, and the improved annual distribution method. Based on the seasonal applicability of the four methods across months of the year, we established an ecological flow calculation method that considers the integrated ecological functions of the lower Yellow River. In this method, ecological flow in the lower Yellow River during the dry season (November to March) can be determined by using the improved annual distribution method, ecological flow in the fish spawning period (April to June) can be calculated using the habitat simulation method, and the ecological flow during the flood season (July to October) can be calculated using the sediment transportation method. The optimal ecological flow regime for the Huayuankou section was determined using the established method. The ecological flow regimes derived in our study ranged from 310 m3/s to 1532 m3/s. However, we also observed that the ecological flow has a relatively low assurance rate during the flood season in the lower Yellow River, with the assurance rate not exceeding 63%. This highlights the fact that more attention should be given in reservoir regulations to facilitating sediment transport downstream. Full article
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Viewed by 26
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

9 pages, 262 KiB  
Article
The Hyperbolically Symmetric Black Hole
by Luis Herrera and Louis Witten
Entropy 2025, 27(8), 831; https://doi.org/10.3390/e27080831 - 5 Aug 2025
Viewed by 124
Abstract
We describe some properties of the hyperbolically symmetric black hole (hereafter referred to as the HSBH) proposed a few years ago. We start by explaining the main motivation behind such an idea, and we determine the main differences between [...] Read more.
We describe some properties of the hyperbolically symmetric black hole (hereafter referred to as the HSBH) proposed a few years ago. We start by explaining the main motivation behind such an idea, and we determine the main differences between this scenario and the classical black hole (hereafter referred to as the CBH) scenario. Particularly important are the facts that, in the HSBH scenario, (i) test particles in the region inside the horizon experience a repulsive force that prevents them from reaching the center, (ii) test particles may cross the horizon outward only along the symmetry axis, and (iii) the spacetime within the horizon is static but not spherically symmetric. Next, we examine the differences between the two models of black holes in light of the Landauer principle and the Hawking results on the eventual evaporation of the black hole and the paradox resulting thereof. Finally, we explore what observational signature could be invoked to confirm or dismiss the model. Full article
Back to TopTop