The Hyperbolically Symmetric Black Hole
Abstract
1. HSBH Versus CBH
1.1. Why the HSBH Model?
1.2. Geodesics in HSBH
- Inside the region , the gravitational force appears to be repulsive.
- As a consequence of the above, test particles never reach the center.
- Unlike the , test particles can cross the horizon outward, but only along the axis.
1.3. Flow of Information and Landauer Principle
2. Observational Evidences
3. Discussion and Conclusions
- The two manifolds describing the inner and outer parts of the horizon do not match smoothly in the Darmois sense [85]. This implies that there is a shell on the horizon, whose physical and mathematical properties are described by the Israel conditions [86]. It would be interesting to delve deeper into this issue and find out how these properties affect the scenario.
- It would be interesting to find out whether a “thermodynamic” approach a la Bekenstein may also be applied to the .
- The scenario implies a change in symmetry across the horizon; is there any physical explanation for this (e.g., a phase transition)?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrera, L.; Witten, L. An alternative approach to the static spherically symmetric vacuum global solutions to the Einstein’s equations. Adv. High Energy Phys. 2018, 2018, 3839103. [Google Scholar] [CrossRef]
- Schwarzschild, K. Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte Königlich Preußischen Akad. Wiss. 1916, 189–196. [Google Scholar]
- Lemaître, G. L’Univers en expansion. Ann. Soc. Sci. Brux. 1933, A 53, 51. [Google Scholar]
- Finkelstein, D. Past-Future Asymmetry of the Gravitational Field of a Point Particle. Phys. Rev. 1958, 110, 965. [Google Scholar] [CrossRef]
- Kruskal, M.D. Maximal Extension of Schwarzschild Metric. Phys. Rev. 1960, 119, 1743. [Google Scholar] [CrossRef]
- Israel, W. New Interpretation of the Extended Schwarzschild Manifold. Phys. Rev. 1966, 143, 1016. [Google Scholar] [CrossRef]
- Rosen, N. The nature of the Schwarzschild singularity. In Relativity; Carmeli, M., Fickler, S.I., Witten, L., Eds.; Plenum Press: New York, NY, USA, 1970; pp. 229–258. [Google Scholar]
- Caroll, S. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004; p. 246. [Google Scholar]
- Rindler, W. Relativity. Special, General and Cosmological; Oxford University Press: New York, NY, USA, 2001; pp. 260–261. [Google Scholar]
- Papapetrou, A. Lectures on General Relativity; D. Reidel, Dordrecht-Holland: Boston, MA, USA, 1974. [Google Scholar]
- Harrison, B.K. Exact Three-Variable Solutions of the Field Equations of General Relativity. Phys. Rev. 1959, 116, 1285. [Google Scholar] [CrossRef]
- Ellis, G. Dynamics of Pressure-Free Matter in General Relativity. J. Math. Phys. 1967, 8, 1171. [Google Scholar] [CrossRef]
- Stephani, H.; Kramer, D.; MacCallum, M.; Honselaers, C.; Herlt, E. Exact Solutions to Einsteins Field Equations, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gaudin, M.; Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry. Int. J. Mod. Phys. D 2006, 15, 1387–1399. [Google Scholar] [CrossRef]
- Rizzi, L.; Cacciatori, S.L.; Gorini, V.; Kamenshchik, A.; Piattella, O.F. Dark matter effects in vacuum spacetime. Phys. Rev. D 2010, 82, 027301. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Vardanyan, T.; Venturi, G.; Yu, S. Verno. Duality between static spherically or hyperbolically symmetric solutions and cosmological solutions in scalar-tensor gravity. Phys. Rev. D 2018, 98, 124028. [Google Scholar] [CrossRef]
- Madler, T. On the affine-null metric formulation of General Relativity. Phys. Rev. D 2019, 99, 104048. [Google Scholar] [CrossRef]
- Maciel, A.; Delliou, M.L.; Mimoso, J.P. New perspectives on the TOV equilibrium from a dual null approach. Class. Quantum Gravity 2020, 37, 125005. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Witten, L. Geodesics of the hyperbolically symmetric black hole. Phys. Rev. D 2020, 101, 064071. [Google Scholar] [CrossRef]
- Bhatti, M.Z.; Yousaf, Z.; Tariq, Z. Hyperbolically symmetric sources in Palatini f(R) gravity. Eur. Phys. J. C 2021, 81, 1070. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Dynamics of hyperbolically symmetric fluids. Symmetry 2021, 13, 1568. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric static fluids: A general study. Phys. Rev. D 2021, 103, 024037. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J. Hyperbolically symmetric versions of Lemaitre-Tolman-Bondi spacetimes. Entropy 2021, 23, 1219. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, M.Z.; Yousaf, Z.; Hanif, S. Hyperbolically symmetric sources, a comprehensive study in f(T) gravity. Eur. Phys. J. Plus 2022, 137, 65. [Google Scholar] [CrossRef]
- Lim, Y. Motion of charged particles in spacetimes with magnetic fields of spherical and hyperbolic symmetry. Phys. Rev. D 2022, 106, 064023. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Khlopov, M.; Asad, H. A Comprehensive Analysis of Hyperbolical Fluids in Modified Gravity. Entropy 2022, 24, 150. [Google Scholar] [CrossRef]
- Asad, H.; Yousaf, Z. Study of Anisotropic Fluid Distributed Hyperbolically in f(R,T,Q) Gravity. Universe 2022, 8, 630. [Google Scholar] [CrossRef]
- Yousaf, Z.; Nashed, G.; Bhatti, M.; Asad, H. Significance of Charge on the Dynamics of Hyperbolically Distributed Fluids. Universe 2022, 8, 337. [Google Scholar] [CrossRef]
- Yousaf, Z.; Bhatti, M.; Khan, S. Analysis of hyperbolically symmetric fluid configurations in modified Gauss-Bonnet gravity. Eur. Phys. J. C 2022, 82, 1077. [Google Scholar] [CrossRef]
- Herrera, L. Non static hyperbolically symmetric fluids. Int. J. Mod. Phys. D 2022, 31, 2240001. [Google Scholar] [CrossRef]
- Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J. Quasi-hyperbolically symmetric γ-metric. Entropy 2023, 25, 1338. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, Z.; Bhatti, M.; Asad, H. Analytical models of hyperbolical gravitational sources. Int. J. Mod. Phys. D 2023, 32, 2350089. [Google Scholar] [CrossRef]
- Carrasco, M.; Contreras, E.; Fuenmayor, E. Hyperbolic polytrope. Ann. Phys. 2025, 473, 169909. [Google Scholar] [CrossRef]
- Landauer, R. Dissipation and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183. [Google Scholar] [CrossRef]
- Kish, L.B.; Granqvist, C.G. Electrical Maxwell demon and Szilard engine utilizing Johnson noise, measurement, logic and control. PLoS ONE 2012, 7, e46800. [Google Scholar] [CrossRef]
- Brillouin, L. The negentropic principle of information. J. Appl. Phys. 1953, 24, 1152–1163. [Google Scholar] [CrossRef]
- Bormashenko, E. The Landauer Principle: Re-Formulation of the Second Thermodynamics Law or a Step to Great Unification. Entropy 2019, 21, 918. [Google Scholar] [CrossRef]
- Plenio, M.B.; Vitelli, V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 2001, 42, 25–60. [Google Scholar] [CrossRef]
- Bais, F.A.; Farmer, J.D. The physics of information. arXiv 2007, arXiv:0708.2837v2. [Google Scholar] [CrossRef]
- Bormashenko, E. Generalization of the Landauer Principle for Computing Devices Based on Many-Valued Logic. Entropy 2019, 21, 1150. [Google Scholar] [CrossRef]
- Herrera, L. Landauer principle and general relativity. Entropy 2020, 22, 340. [Google Scholar] [CrossRef]
- Herrera, L. The mass of a bit of information and the Brillouin’s principle. Fluc. Noise Lett. 2014, 13, 1450002. [Google Scholar] [CrossRef]
- Kish, L.B. Gravitational mass of information? Fluct. Noise Lett. 2007, 7, C51–C68. [Google Scholar] [CrossRef]
- Kish, L.B.; Granqvist, C.G. Does information have mass. Proc. IEEE 2013, 9, 1895–1899. [Google Scholar] [CrossRef]
- Vopson, M. The mass-energy-information equivalence principle. AIP Adv. 2019, 9, 095206. [Google Scholar] [CrossRef]
- Daffertshoffer, A.; Plastino, A.R. Forgetting and gravitation: From Landauer’s principle to Tolman temperature. Phys. Lett. A 2007, 362, 243–245. [Google Scholar] [CrossRef]
- Tolman, R. On the weight of heat and thermal equilibrium in general relativity. Phys. Rev. 1930, 35, 904–924. [Google Scholar] [CrossRef]
- Eckart, C. The thermodynamics of irreversible processes III. Relativistic theory of the simple fluid. Phys. Rev. 1940, 58, 919–924. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics; Pergamon Press: London, UK, 1959. [Google Scholar]
- Israel, W.; Stewart, J. Transient relativistic thermodynamics and kinetic theory. Ann. Phys. 1979, 118, 341–372. [Google Scholar] [CrossRef]
- Hawking, S.W. Particles creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Sasada, M.; Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First Sagittarius A Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Vagnozzi, S.; Roy, R.; Tsai, Y.D.; Visinelli, L.; Afrin, M.; Allahyari, A.; Bambhaniya, P.; Dey, D.; Ghosh, S.G.; Joshi, P.S.; et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. arXiv 2022, arXiv:2205.07787. [Google Scholar] [CrossRef]
- Psaltis, D. Testing general relativity with the Event Horizon Telescope. Gen. Relativ. Gravit. 2019, 51, 137. [Google Scholar] [CrossRef]
- Gralla, S.E. Can the EHT M87 results be used to test general relativity? Phys. Rev. D 2021, 103, 024023. [Google Scholar] [CrossRef]
- Glampedakis, K.; Pappas, G. Can supermassive black hole shadows test the Kerr metric? Phys. Rev. D 2021, 104, L081503. [Google Scholar] [CrossRef]
- Ghasemi-Nodehi, M.; Azreg-Ainou, M.; Jusufi, K.; Jamil, M. Shadow, quasinormal modes, and quasiperiodic oscillations of rotating Kaluza-Klein black holes. Phys. Rev. D 2020, 102, 104032. [Google Scholar] [CrossRef]
- Jusufi, K.; Azreg-Ainou, M.; Jamil, M.; Wei, S.W.; Wu, Q.; Wang, A. Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled Einstein-Yang-Mills theory. Phys. Rev. D 2021, 103, 024013. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, T.; Wu, Q.; Jusufi, K.; Jamil, M.; Azreg-Ainou, M.; Wang, A. Shadow and quasinormal modes of a rotating loop quantum black hole. Phys. Rev. D 2020, 101, 084001. [Google Scholar] [CrossRef]
- Jusufi, K.; Jamil, M.; Chakrabarty, H.; Wu, Q.; Bambi, C.; Wang, A. Rotating regular black holes in conformal massive gravity. Phys. Rev. D 2020, 101, 044035. [Google Scholar] [CrossRef]
- Afrin, M.; Kumar, R.; Ghosh, S.G. Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87. Mon. Not. R. Astron. Soc. 2021, 504, 5927. [Google Scholar] [CrossRef]
- Cardoso, V.; Gualtieri, L. Testing the black hole “no-hair” hypothesis. Class. Quantum Gravity 2016, 33, 174001. [Google Scholar] [CrossRef]
- Kurmanov, E.; Boshkayev, K.; Giambo, R.; Konysbayev, T.; Luongo, O.; Malafarina, D.; Quevedo, H. Accretion Disk Luminosity for Black Holes Surrounded by Dark Matter with Anisotropic Pressure. Astrophys. J. 2022, 925, 210. [Google Scholar] [CrossRef]
- Boshkayev, K.; Konysbayev, T.; Kurmanov, E.; Luongo, O.; Malafarina, D.; Mutalipova, K.; Zhumakhanova, G. Effects of non-vanishing dark matter pressure in the Milky Way Galaxy. Mon. Not. R. Astron. Soc. 2021, 508, 1543. [Google Scholar] [CrossRef]
- Boshkayev, K.; Idrissov, A.; Luongo, O.; Malafarina, D. Accretion disc luminosity for black holes surrounded by dark matter. Mon. Not. R. Astron. Soc. 2020, 496, 1115. [Google Scholar] [CrossRef]
- Blandford, R.D.; Rees, M.J. A “Twin-Exhaust” Model for Double Radio Sources. Mon. Not. R. Astron. Soc. 1974, 169, 395. [Google Scholar] [CrossRef]
- Margon, B.A. Observations of SS 433. Annu. Rev. Astron. Astrophys. 1984, 22, 507. [Google Scholar] [CrossRef]
- Sams, B.J.; Eckart, A.; Sunyaev, R. Near-infrared jets in the Galactic microquasar GRS1915+105. Nature 1996, 382, 47–49. [Google Scholar] [CrossRef]
- Blandford, R.D. AGN Jets. Astron. Soc. Pacif. Conf. Ser. 2003, 290, 267. [Google Scholar]
- Bondi, H. Negative Mass in General Relativity. Rev. Mod. Phys. 1957, 29, 423–428. [Google Scholar] [CrossRef]
- Cooperstock, F.I.; Rosen, N. A nonlinear gauge-invariant field theory of leptons. Int. J. Theor. Phys. 1989, 28, 423–440. [Google Scholar] [CrossRef]
- Bonnor, W.B.; Cooperstock, F.I. Does the electron contain negative mass? Phys. Lett. A 1989, 139, 442–444. [Google Scholar] [CrossRef]
- Herrera, L.; Varela, V. Negative energy density and classical electron models. Phys. Lett. A 1994, 189, 11–14. [Google Scholar] [CrossRef]
- Najera, S.; Gamboa, A.; Aguilar-Nieto, A.; Escamilla-Rivera, C. On Negative Mass Cosmology in General Relativity. Astron. Astrophys. 2021, 651, L13. [Google Scholar] [CrossRef]
- Bormashenko, E. The effect of negative mass in gravitating systems. Pramana 2023, 97, 199. [Google Scholar] [CrossRef]
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified λ cdm framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Energy conditions in modified gravity. Phys. Lett. B 2014, 730, 280–283. [Google Scholar] [CrossRef]
- Capozziello, S.; Lobo, F.S.N.; Mimoso, J.P. Generalized energy conditions in extended theories of gravity. Phys. Rev. D 2015, 91, 124019. [Google Scholar] [CrossRef]
- Barcelo, C.; Visser, M. Twilight for the Energy Conditions? Int. J. Mod. Phys. D 2002, 11, 1553–1560. [Google Scholar] [CrossRef]
- Kontou, E.A.; Sanders, K. Energy conditions in general relativity and quantum field theory. Class. Quantum Gravity 2020, 37, 193001. [Google Scholar] [CrossRef]
- Pavsic, M. On negative energies, strings, branes, and braneworlds: A review of novel approaches. Int. J. Mod. Phys. A 2020, 35, 2030020. [Google Scholar] [CrossRef]
- Hao, C.H.; Huang, L.X.; Su, X.; Wang, Y.Q. Emergence of negative mass in general relativity. Eur. Phys. J. C 2024, 84, 878. [Google Scholar] [CrossRef]
- Darmois, G. Memorial des Sciences Mathematiques; Gauthier-Villars: Paris, France, 1927; p. 25. [Google Scholar]
- Israel, W. Singular hypersurfaces and thin shells in general relativity. Il Nuovo Cimento B 1966, 10, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, L.; Witten, L. The Hyperbolically Symmetric Black Hole. Entropy 2025, 27, 831. https://doi.org/10.3390/e27080831
Herrera L, Witten L. The Hyperbolically Symmetric Black Hole. Entropy. 2025; 27(8):831. https://doi.org/10.3390/e27080831
Chicago/Turabian StyleHerrera, Luis, and Louis Witten. 2025. "The Hyperbolically Symmetric Black Hole" Entropy 27, no. 8: 831. https://doi.org/10.3390/e27080831
APA StyleHerrera, L., & Witten, L. (2025). The Hyperbolically Symmetric Black Hole. Entropy, 27(8), 831. https://doi.org/10.3390/e27080831