Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = extreme high-speed laser material deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3072 KB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 1277
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

23 pages, 7411 KB  
Review
Improvement of High Temperature Wear Resistance of Laser-Cladding High-Entropy Alloy Coatings: A Review
by Yantao Han and Hanguang Fu
Metals 2024, 14(9), 1065; https://doi.org/10.3390/met14091065 - 18 Sep 2024
Cited by 10 | Viewed by 4552
Abstract
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the [...] Read more.
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the substrate, thereby significantly improvement of the wear resistance of the material surface. In this paper, the research progress on improving the high-temperature wear resistance of high entropy alloy coatings (LC-HEACs) was mainly analyzed based on the effect of some added alloying elements and the presence of hard ceramic phases. Building on this foundation, the study primarily examines the impact of adding elements such as aluminum, titanium, copper, silicon, and molybdenum, along with hard ceramic particles like TiC, WC, and NbC, on the phase structure of coatings, high-temperature mechanisms, and the synergistic interactions between these elements. Additionally, it explores the potential of promising lubricating particles and introduces an innovative, highly efficient additive manufacturing technology known as extreme high-speed laser metal deposition (EHLMD). Finally, this paper summarizes the main difficulties involved in increasing the high-temperature wear resistance of LC-HEACs and some problems worthy of attention in the future development. Full article
(This article belongs to the Special Issue Surface Engineering and Coating Tribology—2nd Edition)
Show Figures

Figure 1

17 pages, 20152 KB  
Article
Extreme High-Speed DED of AISI M2 Steel for Coating Application and Additive Manufacturing
by Min-Uh Ko, Julius Cüppers, Thomas Schopphoven and Constantin Häfner
Coatings 2024, 14(8), 953; https://doi.org/10.3390/coatings14080953 - 31 Jul 2024
Cited by 3 | Viewed by 2364
Abstract
This work focuses on the development of the 3D Extreme High-Speed DED process (EHLA3D), a variant of the laser-based Directed Energy Deposition (DED-LB), for the processing of the material HSS M2. Characteristics for the EHLA3D process are feed rates of >20 m/min, high [...] Read more.
This work focuses on the development of the 3D Extreme High-Speed DED process (EHLA3D), a variant of the laser-based Directed Energy Deposition (DED-LB), for the processing of the material HSS M2. Characteristics for the EHLA3D process are feed rates of >20 m/min, high cooling rates, and layer thicknesses in the range of 100 µm. This work covers the three subsequent stages: (1) a process parameter study on single-track deposition, (2) development of coating parameters, and (3) development of parameters for AM. In scope of stage 2, a coating parameter with a powder mass flow of ṁ = 1.9 kg/h was achieved. A variation in the deposition angles indicates that the coating process is feasible within a tilted deviation of up to 20°. In stage 3, a process parameter with a deposition rate of ṁ = 0.4 kg/h was developed. The hardness results of the as-built specimen with 67 HRC exceeds the hardness of conventionally manufactured and heat-treated M2 steel. The results of this work indicate that the EHLA3D process can be potentially utilized for the additive manufacturing with the material M2 as well as for the productive deposition of anti-wear coatings on free-form surfaces. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Figure 1

23 pages, 23317 KB  
Article
Influence of the Relative Position of Powder–Gas Jet and Laser Beam on the Surface Properties of Inconel 625 Coatings Produced by Extreme High-Speed Laser Material Deposition (EHLA)
by Matthias Brucki, Tobias Schmickler, Andres Gasser and Constantin Leon Häfner
Coatings 2023, 13(6), 998; https://doi.org/10.3390/coatings13060998 - 27 May 2023
Cited by 7 | Viewed by 3152
Abstract
Laser material deposition (LMD) is a widely used coating process in industry. However, to increase its economic appeal, higher process speeds are required. The solution to this challenge is an innovative modification known as extreme high-speed laser material deposition (EHLA). EHLA allows for [...] Read more.
Laser material deposition (LMD) is a widely used coating process in industry. However, to increase its economic appeal, higher process speeds are required. The solution to this challenge is an innovative modification known as extreme high-speed laser material deposition (EHLA). EHLA allows for an impressive increase in process speed from 2 m/min for conventional LMD to 500 m/min. With the ability to adjust process parameters, EHLA can generate tailor-made surface properties, expanding its potential application beyond current industrial uses. In this novel study, we explore the effects of relative positioning between tools (laser beam and powder–gas jet) and substrate on the surface properties of EHLA coatings. By laterally and axially offsetting the tools, the proportional energy coupling of the laser radiation into the powder–gas jet and substrate can be modified. Altering the position of the powder–gas jet can also affect the weld pool flow or number of particle attachments, thereby affecting surface properties. This approach allows for the adjustment of surface roughness over a wide range—from smooth, quasi-laser-polished surfaces to rough surfaces covered with particle adhesions. Full article
(This article belongs to the Special Issue Laser Cladding Coatings: Microstructure, Properties, and Applications)
Show Figures

Figure 1

17 pages, 80823 KB  
Article
Comparative Study of HVOF Cr3C2–NiCr Coating with Different Bonding Layer on the Interactive Behavior of Fatigue and Corrosion
by Bing He, Lijie Zhang, Xiao Yun, Jing Wang, Guangzhi Zhou, Zhikai Chen and Xiaoming Yuan
Coatings 2022, 12(3), 307; https://doi.org/10.3390/coatings12030307 - 24 Feb 2022
Cited by 12 | Viewed by 4967
Abstract
In order to improve material service life under a fatigue and corrosion coupling environment, a high-velocity oxygen fuel (HVOF) Cr3C2–NiCr coating with a bonding layer was prepared. The objective was to obtain the optimum bonding layer for the HVOF [...] Read more.
In order to improve material service life under a fatigue and corrosion coupling environment, a high-velocity oxygen fuel (HVOF) Cr3C2–NiCr coating with a bonding layer was prepared. The objective was to obtain the optimum bonding layer for the HVOF Cr3C2–NiCr coating, which included a laser cladding (LC) Ni625 layer, extreme high-speed laser material deposition (EHLA) Ni625 layer and HVOF NiCr layer. Fatigue properties of the samples with various bonding layers were investigated by means of a four-point bending fatigue test. Electrochemical impedance spectroscopy (EIS) and the salt spray test were executed after the bending fatigue test to simulate the interactive effect of fatigue and corrosion atmosphere. Failure surfaces were characterized by scanning electron microscopy (SEM) and an energy-dispersive spectrometer (EDS) to indicate the details of corrosion products. Corrosive behaviors of samples were adequately demonstrated according to the results, which included the curves of potentiostatic polarization, impedance magnitude and phase degree, and corrosion products. The result showed that the cycles of perforative cracking for the sample with the EHLA Ni625 bonding layer was almost three times than that of the sample with the HVOF NiCr layer. The magnitude of EIS reduced from ~105 to ~103 for the sample after BFT. Eventually, the main improvement mechanism of the HVOF Cr3C2–NiCr coating with the EHLA Ni625 bonding layer was attributed to the grain refinement of the bonding layer and performed a good level of metallurgical bonding with the substrate. Full article
(This article belongs to the Special Issue Laser Processing Effects on Special Steels and High Entropy Alloys)
Show Figures

Figure 1

17 pages, 6060 KB  
Article
Statistical/Numerical Model of the Powder-Gas Jet for Extreme High-Speed Laser Material Deposition
by Thomas Schopphoven, Norbert Pirch, Stefan Mann, Reinhart Poprawe, Constantin Leon Häfner and Johannes Henrich Schleifenbaum
Coatings 2020, 10(4), 416; https://doi.org/10.3390/coatings10040416 - 22 Apr 2020
Cited by 32 | Viewed by 5570
Abstract
Extreme high-speed laser material deposition, known by its German acronym EHLA, is a new variant of laser material deposition (LMD) with powdered additives. This variant’s process control is unlike that of LMD, where the powder melts as it contacts the melt pool. In [...] Read more.
Extreme high-speed laser material deposition, known by its German acronym EHLA, is a new variant of laser material deposition (LMD) with powdered additives. This variant’s process control is unlike that of LMD, where the powder melts as it contacts the melt pool. In the EHLA process, the laser beam melts the powder above the surface of the substrate to deliver a liquid to the melt pool. At a given intensity distribution in a laser beam, the heating of powder particles in the beam path depends largely on the three-dimensional powder particle density distribution (PDD) and the relative position within the laser beam caustic. As a key element of a comprehensive numerical process model for EHLA, this paper presents a statistical/numerical model of the powder-gas jet, as previously published in Experimentelle und modelltheoretische Untersuchungen zum Extremen Hochgeschwindigkeits-Laserauftragschweißen. The powder-gas jet is characterized experimentally and described with a mathematical model. This serves to map the PDD of the powder-gas flow—and particularly the particle trajectories for different grain fractions—as well as the powder mass flows and carrier and inert gas settings, to a theoretical model. The result is a numerical description of the particle trajectories that takes into account the measured particle size distribution with calculations made on the assumption of a constant particle velocity and linear trajectories of the particles. Full article
(This article belongs to the Special Issue Surface Treatment by Laser-Assisted Techniques)
Show Figures

Figure 1

16 pages, 16662 KB  
Article
Extreme High-Speed Laser Material Deposition (EHLA) of AISI 4340 Steel
by Tianci Li, Lele Zhang, Gregor Gilles Pierre Bultel, Thomas Schopphoven, Andres Gasser, Johannes Henrich Schleifenbaum and Reinhart Poprawe
Coatings 2019, 9(12), 778; https://doi.org/10.3390/coatings9120778 - 21 Nov 2019
Cited by 48 | Viewed by 9299
Abstract
A variant of conventional laser material deposition (LMD), extreme high-speed laser material deposition (German acronym: EHLA) is characterized by elevated process speeds of up to 200 m/min, increased cooling rates, and a significantly reduced heat affected zone. This study focuses on the feasibility [...] Read more.
A variant of conventional laser material deposition (LMD), extreme high-speed laser material deposition (German acronym: EHLA) is characterized by elevated process speeds of up to 200 m/min, increased cooling rates, and a significantly reduced heat affected zone. This study focuses on the feasibility of using EHLA to apply material onto Fe-based substrate materials with AISI 4340 as a filler material. We studied how three different build-up strategies—consisting of one, three, and five consecutive deposited layers and hence, different thermal evolutions of the build-up volume—influence the metallurgical characteristics such as microstructure, porosity, hardness, and static mechanical properties. We propose a thermo-metallurgical scheme to help understand the effects of the build-up strategy and the thermal evolution on the microstructure and hardness. The tensile strength of the build-up volume was determined and is higher than the ones of forged AISI 4340 material. Full article
(This article belongs to the Special Issue From Metallic Coatings to Additive Manufacturing)
Show Figures

Graphical abstract

Back to TopTop