Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = extremal rational surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 7555 KiB  
Article
A Quasi-Bonjean Method for Computing Performance Elements of Ships Under Arbitrary Attitudes
by Kaige Zhu, Jiao Liu and Yuanqiang Zhang
Systems 2025, 13(7), 571; https://doi.org/10.3390/systems13070571 - 11 Jul 2025
Viewed by 219
Abstract
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study [...] Read more.
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study proposes a Quasi-Bonjean (QB) method to compute ship performance elements in arbitrary attitudes. Specifically, the QB method first constructs longitudinally distributed hull sections from the Non-Uniform Rational B-Spline (NURBS) surface model, then simulates arbitrary attitudes through dynamic waterplane adjustments, and finally calculates performance elements via sectional integration. Furthermore, an Adaptive Surface Tessellation (AST) method is proposed to optimize longitudinal section distribution by minimizing the number of stations while maintaining high geometric fidelity, thereby enhancing the computational efficiency of the QB method. Comparative experiments reveal that the AST-generated 100-station sections achieve computational precision comparable to 200-station uniform distributions under optimal conditions, and the performance elements calculated by the QB method under multi-attitude conditions meet International Association of Classification Societies accuracy thresholds, particularly excelling in the displacement and vertical center of buoyancy calculations. These findings confirm that the QB method effectively addresses the critical limitations of traditional hydrostatic tables, providing a theoretical foundation for analyzing damaged ship equilibrium and evaluating residual stability. Full article
Show Figures

Figure 1

16 pages, 3528 KiB  
Article
Transfer Learning-Enhanced Prediction of Glass Transition Temperature in Bismaleimide-Based Polyimides
by Ziqi Wang, Yu Liu, Xintong Xu, Jiale Zhang, Zhen Li, Lei Zheng and Peng Kang
Polymers 2025, 17(13), 1833; https://doi.org/10.3390/polym17131833 - 30 Jun 2025
Viewed by 420
Abstract
The glass transition temperature (Tg) was a pivotal parameter governing the thermal and mechanical properties of bismaleimide-based polyimide (BMI) resins. However, limited experimental data for BMI systems posed significant challenges for predictive modeling. To address this gap, this study introduced a [...] Read more.
The glass transition temperature (Tg) was a pivotal parameter governing the thermal and mechanical properties of bismaleimide-based polyimide (BMI) resins. However, limited experimental data for BMI systems posed significant challenges for predictive modeling. To address this gap, this study introduced a hybrid modeling framework leveraging transfer learning. Specifically, a multilayer perceptron (MLP) deep neural network was pre-trained on a large-scale polymer database and subsequently fine-tuned on a small-sample BMI dataset. Complementing this approach, six interpretable machine learning algorithms—random forest, ridge regression, k-nearest neighbors, Bayesian regression, support vector regression, and extreme gradient boosting—were employed to construct transparent predictive models. SHapley Additive exPlanations (SHAP) analysis was further utilized to quantify the relative contributions of molecular descriptors to Tg. Results demonstrated that the transfer learning strategy achieved superior predictive accuracy in data-scarce scenarios compared to direct training on the BMI dataset. SHAP analysis identified charge distribution inhomogeneity, molecular topology, and molecular surface area properties as the major influences on Tg. This integrated framework not only improved the prediction performance but also provided feasible insights into molecular structure design, laying a solid foundation for the rational engineering of high-performance BMI resins. Full article
(This article belongs to the Section Artificial Intelligence in Polymer Science)
Show Figures

Graphical abstract

20 pages, 4160 KiB  
Article
Study on Failure Surface Morphology of Supporting Structures Under Extreme Climate–Mechanical Coupling Effects Based on Reinforcement Theory
by Feilong Li, Changshan Jiang, Zhenli Hao, Jinbao Han, Xianfeng Meng and Miaoxian Yao
Appl. Sci. 2025, 15(9), 4874; https://doi.org/10.3390/app15094874 - 27 Apr 2025
Viewed by 404
Abstract
The high-filling engineering of airports is common in mountainous cities, and as critical infrastructure for urban development, airports are prone to slope instability under extreme climate and mechanical coupling effects. Therefore, it is essential to investigate the geometric form of failure surfaces under [...] Read more.
The high-filling engineering of airports is common in mountainous cities, and as critical infrastructure for urban development, airports are prone to slope instability under extreme climate and mechanical coupling effects. Therefore, it is essential to investigate the geometric form of failure surfaces under limit stability conditions for airport slopes. The rational determination of the form of the rupture surface of a soil nailing support structure is a key factor in the structural safety of a project. In this study, we analyzed the rupture surface form and reinforcement mechanism of four common soil nailing support structures in engineering. First, we established theoretical model I and verified the consistency of the upper-limit theorem of plastic mechanics and energy conservation in this model. Next, a theoretical analytical model of the rupture surface form was established taking into consideration the existence of tension depth in a certain depth range at the top. The mathematical expressions of the rupture surface form with respect to h/H and L/H were derived by combining plasticity mechanics and energy conservation. Finally, the rupture surface forms of the structure were analyzed for different slope angles of soil nail-supported structures and different friction angles within the soil. The findings were compared with the rupture surface forms in the existing codes and literature. The results showed that L/H decreased continuously with the slope angle β of the soil nailing support structure and decreased gradually with an increasing friction angle φ within the soil. Furthermore, h/H decreased with the slope angle of the soil nailing support structure, but it showed a trend with the increase in soil internal friction angle and the slope angle of the soil nailing support structure. The analysis revealed that only in some specific cases were β and φ closely aligned with the values acquired using standard methods in specifications and the literature. The theoretical analysis provided important reference values for the design and improvement of soil nailing length in soil nailing support structures under certain conditions, thereby ensuring their enhanced stability and strength. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

16 pages, 5966 KiB  
Article
Assessment of Hoisting Conveyance Guiding Forces Based on Field Acceleration Measurements and Numerical Simulation
by Przemysław Fiołek and Jacek Jakubowski
Appl. Sci. 2024, 14(22), 10758; https://doi.org/10.3390/app142210758 - 20 Nov 2024
Viewed by 1031
Abstract
Shafts play a key role in the operation of mining plants. They connect underground excavations with the surface and provide the ability to transport people, equipment, and raw materials. The nature of the dynamic interaction of a conveyance moving at a significant speed [...] Read more.
Shafts play a key role in the operation of mining plants. They connect underground excavations with the surface and provide the ability to transport people, equipment, and raw materials. The nature of the dynamic interaction of a conveyance moving at a significant speed along deformed guide rails is complex, and the method of assessing the interaction of hoisting conveyances with shaft steelwork, despite ongoing research, still requires further understanding and improvement. Misalignments of the guide rails and conveyance movements transverse to the shaft axis induce impact (guiding) forces, which are the key design parameters of shaft steelwork. The reliable assessment of guiding forces allows the design of safe and economical steelworks and the assessment of their structural safety during operation under deformations and corrosive deterioration. Determining the value of guiding forces requires their field measurements or the use of approximate empirical formulas. Both methods have their limitations—measurement is expensive and interferes with normal shaft operation, while empirical formulas are subject to high error due to the lack of consideration of many structural details specific to each shaft that significantly affect the behavior of the system. This study presents a new method for using a relatively simple-to-implement measurement of hoisting conveyance acceleration to assess guiding forces. A finite element model of the skip and steelwork was built, and simulations of the conveyance interaction with the structure were carried out. A strong relationship between the sliding plate’s impact point location and the guiding force was found. Extreme values of the guiding force were observed in the vicinity of the bunton connection. The study showed that reducing the skip load mass does not affect the force value. Simplified methods of calculating the moments of inertia of the hoisting conveyance significantly overestimate the code-based values of the guiding forces. The presented method considers the actual stiffness and mass distribution of hoisting conveyance and, therefore, allows for a more accurate estimation of the guiding forces and the transport of larger loads. This data-driven approach allows for the continuous monitoring of the guiding forces, the adjustments of the hoisting parameters, the rational planning of repairs, and a reduction in the replacement of corroded shaft steelwork. Full article
(This article belongs to the Special Issue Recent Advances in Mining Technology and Geotechnical Engineering)
Show Figures

Figure 1

13 pages, 3856 KiB  
Article
Decoration of Pt–Ni Alloy on Molten Salt Etched Halloysite Nanotubes for Enhanced Catalytic Reduction of 4-Nitrophenol
by Jingmin Duan, Yafei Zhao, Zhuhe Zhai, Shengqiang Chen and Bing Zhang
Separations 2024, 11(11), 305; https://doi.org/10.3390/separations11110305 - 24 Oct 2024
Cited by 2 | Viewed by 945
Abstract
Efficient and low-cost nanocatalysts are extremely desirable for the catalytic reduction of 4-nitrophenol (4-NP). A smaller nanocatalyst particle size and stronger support effect can significantly enhance the catalytic performance. Naturally occurring halloysite nanotubes (HNTs) are promising alternative supports for fine metal nanoparticles, but [...] Read more.
Efficient and low-cost nanocatalysts are extremely desirable for the catalytic reduction of 4-nitrophenol (4-NP). A smaller nanocatalyst particle size and stronger support effect can significantly enhance the catalytic performance. Naturally occurring halloysite nanotubes (HNTs) are promising alternative supports for fine metal nanoparticles, but the smooth surface and single type of functional groups on HNTs are usually unfavorable for the anchoring of metal ions. Herein, we modified HNTs using a mild and controllable molten salt etching method to create a rough surface (rHNTs), followed by loading Pt–Ni alloys to prepare Pt–Ni/rHNTs for the catalytic reduction of 4-NP. The results demonstrate that ultrafine Pt–Ni alloy nanoparticles with a diameter of 1.60 nm are uniformly dispersed on the rough surface of rHNTs. The particle size and catalytic performance can be tuned by adjusting the loading amount of Pt–Ni. The optimized Pt–Ni/rHNT (1 wt %) nanocatalyst reveals the smallest Pt–Ni particle size and the highest catalytic rate of 0.1953 min−1, which exceeds many Pt–Ni-based catalysts in previous reports. This work offers an ingenious idea for the mild surface modification of HNTs and a brilliant perspective for the rational design of inexpensive 4-NP reduction nanocatalysts. Full article
Show Figures

Figure 1

14 pages, 10752 KiB  
Article
Analysis of Surface Runoff Characteristics in Zhengzhou City under Extreme Rainfall Conditions
by Yong Wang, Shuangquan Li, Chanjuan Hu, Jie Ren, Peng Liu, Chang Zhao and Mengke Zhu
Sustainability 2024, 16(16), 6980; https://doi.org/10.3390/su16166980 - 14 Aug 2024
Cited by 3 | Viewed by 1673
Abstract
In recent years, global climate change has become more and more obvious, and extreme rainfall weather has occurred frequently, which has a serious impact on people’s life and property safety. In order to reduce the risk of urban flooding and contribute to the [...] Read more.
In recent years, global climate change has become more and more obvious, and extreme rainfall weather has occurred frequently, which has a serious impact on people’s life and property safety. In order to reduce the risk of urban flooding and contribute to the sustainable development of the urban economy, society, and environment, this study takes Zhengzhou City as the study area. The surface runoff during extreme rainfall events from 2005 to 2023 was simulated using the SCS-CN model, and the spatiotemporal patterns of surface runoff during extreme rainfall conditions and their influencing factors were investigated. The results showed that (1) the average annual extreme rainfall in the study area was 95.6 mm, and the average annual surface runoff was 76.5 mm, with cultivated land contributing the most to surface runoff, accounting for more than 50%. The annual average frequency of extreme rainfall in the study area ranged from 0 to 3 times. (2) During the extreme rainfall events in 2021 and 2023, the surface runoff of the main urban area was relatively great. Under the influence of impermeable surfaces, the surface runoff of the main urban area was greater than that of the surrounding area, even when the rainfall in the main urban area was less than that in the surrounding urban area. In addition, during these two extreme rainfall events, the surface runoff in the slight slope (<5°) area was the greatest; overall, the larger the slope was, the smaller the surface runoff. (3) Differences between rainfall and surface runoff (DRS) of the different administrative districts in the study area showed three trends from 2005 to 2020, with those of most areas showing a clear decreasing trend, which was affected mainly by the surface runoff potential of the land use type. Under the same rainfall conditions (110 mm), the surface runoff of urban land and construction land was 1.4–2.5 times that of various types of woodland and grassland. From 2005 to 2020, the area of urban land and other construction land increased by 104.13%, the coverage area of woodland and grassland decreased by 35.90%, and the surface runoff potential increased in most areas of the study area. To reduce the risk of urban waterlogging, most areas of Zhengzhou, especially the main urban area and slight slope areas, need to rationally regulate land use and increase the coverage ratio of woodland and grassland. Full article
Show Figures

Figure 1

20 pages, 18214 KiB  
Article
Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model
by Xueling Wu, Xiaoshuai Qi, Bo Peng and Junyang Wang
Remote Sens. 2024, 16(16), 2873; https://doi.org/10.3390/rs16162873 - 6 Aug 2024
Cited by 9 | Viewed by 4024
Abstract
Landslide susceptibility mapping (LSM) can accurately estimate the location and probability of landslides. An effective approach for precise LSM is crucial for minimizing casualties and damage. The existing LSM methods primarily rely on static indicators, such as geomorphology and hydrology, which are closely [...] Read more.
Landslide susceptibility mapping (LSM) can accurately estimate the location and probability of landslides. An effective approach for precise LSM is crucial for minimizing casualties and damage. The existing LSM methods primarily rely on static indicators, such as geomorphology and hydrology, which are closely associated with geo-environmental conditions. However, landslide hazards are often characterized by significant surface deformation. The Small Baseline Subset-Interferometric Synthetic Aperture Radar (SBAS-InSAR) technology plays a pivotal role in detecting and characterizing surface deformation. This work endeavors to assess the accuracy of SBAS-InSAR coupled with ensemble learning for LSM. Within this research, the study area was Shiyan City, and 12 static evaluation factors were selected as input variables for the ensemble learning models to compute landslide susceptibility. The Random Forest (RF) model demonstrates superior accuracy compared to other ensemble learning models, including eXtreme Gradient Boosting, Logistic Regression, Gradient Boosting Decision Tree, and K-Nearest Neighbor. Furthermore, SBAS-InSAR was utilized to obtain surface deformation rates both in the vertical direction and along the line of sight of the satellite. The former is used as a dynamic characteristic factor, while the latter is combined with the evaluation results of the RF model to create a landslide susceptibility optimization matrix. Comparing the precision of two methods for refining LSM results, it was found that the method integrating static and dynamic factors produced a more rational and accurate landslide susceptibility map. Full article
Show Figures

Figure 1

17 pages, 12637 KiB  
Article
Land Use Sustainability: Assessment of the Dynamic Response of Typical Bedrock-Buried-Hill Earth Fissure Sites in the Su-Xi-Chang Area
by Ge Cao, Yahong Deng, Huandong Mu, Jiang Chang, You Xuan and Dexin Niu
Sustainability 2024, 16(8), 3117; https://doi.org/10.3390/su16083117 - 9 Apr 2024
Cited by 1 | Viewed by 1234
Abstract
Disaster prevention and the mitigation of earth fissures is a key issue in the sustainable development of urban land. Structures directly avoiding earth fissures are not conducive to the rational planning and efficient utilization of urban construction. The Su-Xi-Chang area, which consists of [...] Read more.
Disaster prevention and the mitigation of earth fissures is a key issue in the sustainable development of urban land. Structures directly avoiding earth fissures are not conducive to the rational planning and efficient utilization of urban construction. The Su-Xi-Chang area, which consists of the cities of Suzhou, Wuxi, and Changzhou, surrounded by Taihu Lake, has developed bedrock buried-hill earth fissures that are rare in the rest of the country. Existing research results have identified the genesis mechanisms, distribution patterns, and developmental characteristics of this type of fissure. Not only does the slow-variable activity of earth fissures cause direct damage to surface and underground structures, but in addition, when an earthquake occurs, the presence of earth fissures may cause the seismic response of the site to be altered or even strengthened, leading to unknown damage or the possible destruction of structures near the fissures. However, no studies have been conducted to assess the dynamic effects of bedrock-buried-hill earth fissure sites. Therefore, in this research, based on six typical bedrock-buried-hill-type earth fissures in the Su-Xi-Chang area, and in order to accurately reveal the dynamic amplification effect law of the earth fissure sites, systematic spectral analyses and comparisons of the microtremor signals were carried out by using the linear analysis method (Direct Fourier Transform Analysis) and the nonlinear analysis method (Hilbert–Huang Transform). The results show that bedrock-buried-hill-type earth fissures have a significant amplification effect on the dynamic response of the site; the amplification effect of bedrock-buried-hill fissure sites follows the same attenuation pattern, and the furthest range of the dynamic response on the site is about 25 m, beyond which the original seismic fortification level can be maintained; the extreme value of the amplification factor of the two sides of this type of site, as derived from the Fourier and HHT methods, is about double, and the nearest earth fissure region should be considered to have a raised seismic fortification intensity of more than double the original. The Hilbert–Huang transform method has good applicability for processing microtremor data, and nonlinear signal analysis methods can be considered comprehensive for future microtremor signal processing. Full article
(This article belongs to the Special Issue Disaster Risk Reduction and Resilient Built Environment)
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
An Experimental Investigation of the Material Properties of the A356 Aluminum Alloy Power Fittings in the Vacuum Die-Casting Process
by Jianli Zhao, Yilin Wang, Xiaowei Wang and Yisheng Zhang
Materials 2024, 17(6), 1242; https://doi.org/10.3390/ma17061242 - 8 Mar 2024
Cited by 1 | Viewed by 1835
Abstract
To enhance the performance of ultra-high voltage power fittings in severe weather conditions without altering their current structure, the high-strength and toughness aluminum alloys were rationally selected to study the optimization of the die-casting process. This approach aims to improve the overall longevity [...] Read more.
To enhance the performance of ultra-high voltage power fittings in severe weather conditions without altering their current structure, the high-strength and toughness aluminum alloys were rationally selected to study the optimization of the die-casting process. This approach aims to improve the overall longevity and function of the power fittings in extreme climates. First of all, the propose of this study is to use the material’s strength–toughness product (STP) concept to evaluate the material stability of the power fitting impact resistance and fatigue toughness in order to determine the appropriate material selection. Secondly, the location of the mold’s sprue and gate was optimized through finite element simulation to prevent gas volume and flow defects during the casting process. This improves the material’s toughness and anti-fatigue failure characteristics of the product. Then, vacuum equipment and a vacuum valve auxiliary system were added based on the existing die-casting machine, and the mold structure was optimized to enable the vacuum die-casting process. Finally, a water-based boron nitride environmentally friendly mold release agent was used to solve demolding difficulties with an A356 aluminum alloy and improve mold lubrication and surface quality. The production of quad-bundled spacers using A356 and vacuum die casting has resulted in parts with a tensile strength of at least 250 MPa and an elongation of no less than 7%. This improvement has laid a foundation for enhancing the operational reliability of existing overhead transmission line fittings. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

19 pages, 5758 KiB  
Article
Insights into the Adsorption Mechanisms of the Antimicrobial Peptide CIDEM-501 on Membrane Models
by Daniel Alpízar-Pedraza, Yessica Roque-Diaz, Hilda Garay-Pérez, Frank Rosenau, Ludger Ständker and Vivian Montero-Alejo
Antibiotics 2024, 13(2), 167; https://doi.org/10.3390/antibiotics13020167 - 8 Feb 2024
Cited by 3 | Viewed by 2548
Abstract
CIDEM-501 is a hybrid antimicrobial peptide rationally designed based on the structure of panusin and panulirin template peptides. The new peptide exhibits significant antibacterial activity against multidrug-resistant pathogens (MIC = 2–4 μM) while conserving no toxicity in human cell lines. We conducted molecular [...] Read more.
CIDEM-501 is a hybrid antimicrobial peptide rationally designed based on the structure of panusin and panulirin template peptides. The new peptide exhibits significant antibacterial activity against multidrug-resistant pathogens (MIC = 2–4 μM) while conserving no toxicity in human cell lines. We conducted molecular dynamics (MD) simulations using the CHARMM-36 force field to explore the CIDEM-501 adsorption mechanism with different membrane compositions. Several parameters that characterize these interactions were analyzed to elucidate individual residues’ structural and thermodynamic contributions. The membrane models were constructed using CHARMM-GUI, mimicking the bacterial and eukaryotic phospholipid compositions. Molecular dynamics simulations were conducted over 500 ns, showing rapid and highly stable peptide adsorption to bacterial lipids components rather than the zwitterionic eucaryotic model membrane. A predominant peptide orientation was observed in all models dominated by an electric dipole. The peptide remained parallel to the membrane surface with the center loop oriented to the lipids. Our findings shed light on the antibacterial activity of CIDEM-501 on bacterial membranes and yield insights valuable for designing potent antimicrobial peptides targeting multi- and extreme drug-resistant bacteria. Full article
Show Figures

Figure 1

24 pages, 6875 KiB  
Article
Pysanky to Microfluidics: An Innovative Wax-Based Approach to Low Cost, Rapid Prototyping of Microfluidic Devices
by Philip J. Schneider, Liam B. Christie, Nicholas M. Eadie, Tyler J. Siskar, Viktor Sukhotskiy, Domin Koh, Anyang Wang and Kwang W. Oh
Micromachines 2024, 15(2), 240; https://doi.org/10.3390/mi15020240 - 5 Feb 2024
Cited by 1 | Viewed by 2467
Abstract
A wax-based contact printing method to create microfluidic devices is demonstrated. This printing technology demonstrates a new pathway to rapid, cost-effective device prototyping, eliminating the use of expensive micromachining equipment and chemicals. Derived from the traditional Ukrainian Easter egg painting technique called “pysanky” [...] Read more.
A wax-based contact printing method to create microfluidic devices is demonstrated. This printing technology demonstrates a new pathway to rapid, cost-effective device prototyping, eliminating the use of expensive micromachining equipment and chemicals. Derived from the traditional Ukrainian Easter egg painting technique called “pysanky” a series of microfluidic devices were created. Pysanky is the use of a heated wax stylus, known as a “kistka”, to create micro-sized, intricate designs on the surface of an egg. The proposed technique involves the modification of an x-y-z actuation translation system with a wax extruder tip in junction with Polydimethysiloxane (PDMS) device fabrication techniques. Initial system optimization was performed considering design parameters such as extruder tip size, contact angle, write speed, substrate temperature, and wax temperature. Channels created ranged from 160 to 900 μm wide and 10 to 150 μm high based upon system operating parameters set by the user. To prove the capabilities of this technology, a series of microfluidic mixers were created via the wax technique as well as through traditional photolithography: a spiral mixer, a rainbow mixer, and a linear serial dilutor. A thermo-fluidic computational fluid dynamic (CFD) model was generated as a means of enabling rational tuning, critical to the optimization of systems in both normal and extreme conditions. A comparison between the computational and experimental models yielded a wax height of 57.98 μm and 57.30 μm, respectively, and cross-sectional areas of 11,568 μm2 and 12,951 μm2, respectively, resulting in an error of 1.18% between the heights and 10.76% between the cross-sectional areas. The device’s performance was then compared using both qualitative and quantitative measures, considering factors such as device performance, channel uniformity, repeatability, and resolution. Full article
Show Figures

Figure 1

15 pages, 16424 KiB  
Article
Evaluation of the Seasonal Thermal Environmental Benefits of Urban Green Space in the Core Areas of Urban Heat Island
by Jiachen Liu, Jianting Wu, Yong Yang, Baolei Zhang and Le Yin
Forests 2023, 14(7), 1500; https://doi.org/10.3390/f14071500 - 21 Jul 2023
Cited by 4 | Viewed by 2143
Abstract
The core areas of the urban heat island (CAUHI) are the most concentrated and closely associated with humans, and they are key to managing the urban heat island (UHI). It is widely acknowledged that one of the best ways to reduce the risk [...] Read more.
The core areas of the urban heat island (CAUHI) are the most concentrated and closely associated with humans, and they are key to managing the urban heat island (UHI). It is widely acknowledged that one of the best ways to reduce the risk of UHI is the creation of urban green spaces (UGSs). However, most of the current studies are based on the grid or block scale to explore the impact of UGS on UHI. The key to mitigating the urban heat environment is to plan urban UGS rationally in the CAUHI and explore the thermal environmental benefits of UGS. This paper provides an assessment model for the thermal environmental advantages of UGS and uses ten UGS metrics as explanatory factors for seasonal land surface temperature (LST). It quantitatively evaluates the potential differences in landscape characteristics between LST and UGS under different seasons, as well as the seasonal impact on CAUHI. This study found the following: (1) The overall distribution pattern of CAUHI shows a characteristic of spreading from the central part to the surrounding area. Most of the extremely significant CAUHI is dispersed in the center and southeastern regions of the city, where there is a much greater density of impermeable surfaces and essentially no distribution of CAUHI on the natural surface represented by forest land and water bodies. (2) Except for the aggregation index (AI), correlation analysis revealed that other metrics were highly connected with LST. Among the metrics used in this study, the largest patch index (LPI) and landscape division index (DIVISION) had the highest significant correlation with LST. Patch density (PD) was strongly negatively correlated with LST, indicating that fragmented and complex UGS patches could promote vegetation cooling. (3) The green environmental benefit index (GEBI) results showed a significant degree of spatial and temporal variability in the extracted CAUHI. This study found higher GEBI values in the larger thermal patches and lower GEBI in the surrounding smaller patches. The highest mean GEBI was found in winter, at 0.6083, and the largest distribution of large high-value patches. This study revealed the geographical and temporal variability of UGS and CAUHI, and with the help of the constructed scientific evaluation model, it offered suggestions for the optimization of urban greenery. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Design of Photovoltaic Power Generation Servo System Based on Discrete Adaptive Network Dynamic Surface Control Technology
by Xiaowei Xu, Ding Nie, Wenhua Xu, Ke Wang, Shan Chen, Yongjie Nie, Xiao Fu and Wan Xu
Processes 2023, 11(6), 1667; https://doi.org/10.3390/pr11061667 - 30 May 2023
Cited by 2 | Viewed by 1474
Abstract
In recent years, under the development of the dual carbon goal, the energy crisis has become increasingly serious, and China has also experienced serious power rationing. However, the research on dynamic surface control technology in solar tracking systems in nonlinear control systems is [...] Read more.
In recent years, under the development of the dual carbon goal, the energy crisis has become increasingly serious, and China has also experienced serious power rationing. However, the research on dynamic surface control technology in solar tracking systems in nonlinear control systems is mostly based on continuous-time systems, while adaptive dynamic surface control based on discrete-time nonlinear control systems can describe an actual control system more accurately in the production process. It can effectively suppress interference with extremely high stability and safety. To solve the problem of low efficiency in photovoltaic power generation, this research first built a photovoltaic power generation servo system model based on the parameter of uncertainty. Then, a discrete adaptive neural network dynamic surface (DANNDS) controller was designed to solve the problems in the design of the traditional backstepping method. Finally, based on the designed method of a dynamic surface controller, a discrete adaptive neural network quantization controller (DANNQC) for the photovoltaic power generation servo system was designed by introducing external disturbance. The control parameters and their studied ranges were as follows: The reference signals were or1=sin(0.1t) and or2=cos(0.1t). The parameters of the virtual control law and the final control law were m11=0.01, m22=0.01, m12=0.02, m13=0.02, and m23=0.02. The time constant of the low-pass filter was ζ12=ζ13=ζ22=ζ23=0.005. The parameters of the parameter regulation law were ρ12=ρ13=ρ22=ρ23=0.0005 and a12=a13=20, a22=a23=22. The research results show that the MTE, RMSTE, and 2NTE scores of the height angle servo motor of the DANNDS control method were 0.0026, 7.0279 × 10−4, and 0.3552, respectively. The scores for each index of the azimuth servo motor were 0.0028, 8.9237 × 10−4, and 0.4511, respectively. The height angle tracking error for the DANNQC control method was [−0.02,0.022]. The azimuth tracking error was [−0.03,0.03]. In summary, the photovoltaic power generation servo system based on the DANNQC has a better control performance. By controlling the height angle and azimuth angles, it can better track the position of the sun and adjust the position of the photovoltaic panel in real time. The sun’s rays illuminate the photovoltaic panel at an appropriate angle to achieve maximum power generation efficiency, which is of great practical significance for the development of solar technology. Full article
(This article belongs to the Special Issue Photovoltaic (PV) Systems: Modelling, Measurement and Assessment)
Show Figures

Figure 1

23 pages, 40810 KiB  
Article
Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China
by Zijin Huang, Jianhua Xu and Lilin Zheng
Water 2023, 15(8), 1444; https://doi.org/10.3390/w15081444 - 7 Apr 2023
Cited by 13 | Viewed by 3740
Abstract
Lakes play a role as the sentinel of climate change. Surrounded by vast expanses of barren land with limited infrastructure, there is also a lack of knowledge about the dynamics of dryland lakes. The change of lake area can be effectively monitored by [...] Read more.
Lakes play a role as the sentinel of climate change. Surrounded by vast expanses of barren land with limited infrastructure, there is also a lack of knowledge about the dynamics of dryland lakes. The change of lake area can be effectively monitored by remote sensing, and multi-source satellite altimetry datasets provide the possibility to obtain long-term lake water level data. Using the Global Surface Water Monthly Historical dataset and altimetry water level dataset (Hydroweb), we reconstructed a time series of lake water storage changes in Xinjiang, Northwestern China, by establishing the empirical models based on the statistical relationship between the surface area and water level of each lake. We further explored lake response to climate change. The results show that the storage of water at Ayakkum Lake, Aqqikkol Lake and Aksayquin Lake have been undergoing an obvious expanding trend from 2000 to 2020, at a rate of 3.59×108m3/a, 9.43×108m3/a and 0.44×108m3/a, respectively. In the plain and transition zone, Ulungur Lake showed an upward tendency (0.413×108m3/a) in water storage, while Manas Lake and Bosten Lake experienced shrinkage with descending rates of 0.1×108m3/a and 0.86×108m3/a. Temperature changes significantly affect the lake water storage on plateaus, especially those lakes supplied with a large proportion of glacial meltwater. Precipitation is a key factor for changes of lake storage in the plain and transition zones. Meanwhile, extreme weather and man-made factors also play crucial roles. To reduce the risk of flood and drought disasters, rational regulation of water resources is required, and a large-scale integrated catchment management plan can avoid inadvertent trade-offs. This research provides a new perspective for lake water storage inversion, as well as data support for water resources management in arid areas including Xinjiang. Full article
Show Figures

Figure 1

24 pages, 6392 KiB  
Article
3D Reality-Based Survey and Retopology for Structural Analysis of Cultural Heritage
by Sara Gonizzi Barsanti, Mario Guagliano and Adriana Rossi
Sensors 2022, 22(24), 9593; https://doi.org/10.3390/s22249593 - 7 Dec 2022
Cited by 12 | Viewed by 2511
Abstract
Cultural heritage’s structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of finite element methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The workflow involves the use of CAD 3D models and the [...] Read more.
Cultural heritage’s structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of finite element methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The workflow involves the use of CAD 3D models and the use of non-uniform rational B-spline (NURBS) surfaces. For cultural heritage objects, altered by the time elapsed since their creation, the representation created with the CAD model may introduce an extreme level of approximation, leading to wrong simulation results. The focus of this work is to present an alternative method intending to generate the most accurate 3D representation of a real artefact from highly accurate 3D reality-based models, simplifying the original models to make them suitable for finite element analysis (FEA) software. The approach proposed, and tested on three different case studies, was based on the intelligent use of retopology procedures to create a simplified model to be converted to a mathematical one made by NURBS surfaces, which is also suitable for being processed by volumetric meshes typically embedded in standard FEM packages. This allowed us to obtain FEA results that were closer to the actual mechanical behaviour of the analysed heritage asset. Full article
(This article belongs to the Special Issue Intelligent Point Cloud Processing, Sensing and Understanding)
Show Figures

Figure 1

Back to TopTop