Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = extended-spectrum beta-lactamases (ESBL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 223 KB  
Article
Antimicrobial Resistance Patterns of Escherichia coli Isolates from Female Urinary Tract Infection Patients in Lebanon: An Age-Specific Analysis
by Samara Hassan, Ghassan Ghssein, Zeina Kassem, Sema Alarab, Jana El Aris and Zeinab Ezzeddine
Microbiol. Res. 2025, 16(11), 240; https://doi.org/10.3390/microbiolres16110240 - 13 Nov 2025
Abstract
Urinary tract infections (UTIs) are a global health concern, with over 150 million cases annually, primarily caused by Escherichia coli. Due to anatomical differences, females, especially children and postmenopausal women, are four times more susceptible. Crucially, E. coli has developed widespread antimicrobial [...] Read more.
Urinary tract infections (UTIs) are a global health concern, with over 150 million cases annually, primarily caused by Escherichia coli. Due to anatomical differences, females, especially children and postmenopausal women, are four times more susceptible. Crucially, E. coli has developed widespread antimicrobial resistance (AMR), including resistance to broad-spectrum agents and the emergence of Extended-Spectrum Beta-Lactamase (ESBL)-producing strains. This retrospective study analyzed hospital records from 95 female patients with positive urine cultures at Siblin Governmental Hospital in 2024. Patients were stratified into three age categories: children (≤18 years), adults (18–64 years) and elderly patients (>64 years). Statistical analysis using SPSS focused on descriptive resistance patterns and differences across age groups. Overall, cephalothin (85.7%) and cefaclor (78.49%) exhibited the highest resistance rates. Conversely, tigecycline (97.22%) and ertapenem (91.67%) showed the highest susceptibility. Resistance patterns varied significantly by age. For instance, elderly patients showed high resistance to agents like Augmentin (52.5%) and cefixime (66.1%), while the pediatric group (≤18 years) displayed exceptionally high resistance to cefixime (90.0%). E. coli isolates show high resistance to conventionally used antibiotics, complicating UTI treatment. These findings highlight the need for continuous local surveillance, particularly focusing on third-generation cephalosporins and beta-lactamase production. Ultimately, age is a critical factor that must be considered when determining empirical antibiotic therapy for UTIs. Full article
(This article belongs to the Special Issue Host–Microbe Interactions in Health and Disease)
12 pages, 216 KB  
Article
Implementation of an Early Mobility Initiative in a Pediatric Bone Marrow Transplant Unit
by Anne Swanson, Kylie James, Kimberly Fan, Akshay Sharma, Xiaomeng Yuan, Haitao Pan, Gabriela Maron, Hana Hakim and Saad Ghafoor
Pediatr. Rep. 2025, 17(6), 119; https://doi.org/10.3390/pediatric17060119 - 5 Nov 2025
Viewed by 184
Abstract
Background/Objectives: Children who have received hematopoietic cell transplants (HCTs) often face complex clinical courses and complications that increase their risk of functional impairments. Because of this, pediatric HCT recipients may benefit from early mobilization efforts to reduce long-term functional issues. However, early ambulation [...] Read more.
Background/Objectives: Children who have received hematopoietic cell transplants (HCTs) often face complex clinical courses and complications that increase their risk of functional impairments. Because of this, pediatric HCT recipients may benefit from early mobilization efforts to reduce long-term functional issues. However, early ambulation can be limited by clinical complexity and concerns about infectious transmission in HCT patients. Some patients are under contact precautions due to colonization with bacteria that produce extended-spectrum beta-lactamase (ESBL) enzymes. Our goal was to significantly increase ambulation in pediatric HCT recipients at our institution within three months of the intervention. We aimed to raise the number of ambulation events per day, the number of physical therapy (PT) visits per week, and the distance patients walked with PT per session. Methods: From January to October 2022, data on mobilization, demographics, and clinical characteristics were retrospectively collected from electronic health records. Starting in June 2022, we permitted ESBL-colonized patients to leave their rooms while wearing personal protective equipment (PPE), and we trained clinical staff about this in our QI initiative. Results: In Group 1, the ambulation rate was 1.36 times higher before the intervention than after, with an effect size of 0.3042 (p = 0.004 *). The ambulation rate in Group 2, admitted before the intervention, was 1.33 times higher than in Group 3, admitted after the intervention, with an effect size of 0.2856 (p = 0.016 *). Conclusions: The initiative did not increase ambulation among the targeted group. Patients ambulated more before the intervention, though these results lack statistical power. The lack of success of the intervention may be due to various factors, including the short monitoring period, retrospective data collection, difficulties with PPE use among young patients, and uncollected confounding variables related to clinical status. Full article
17 pages, 275 KB  
Review
Ceftazidime/Avibactam Monotherapy Versus Other Antibiotics: Where Do We Stand?
by Georgios Vougiouklakis, Constantinos Tsioutis, Nayia Vasileiadi, Konstantinos Alexakis, Nikolaos Spernovasilis and Aris P. Agouridis
Pathogens 2025, 14(11), 1119; https://doi.org/10.3390/pathogens14111119 - 3 Nov 2025
Viewed by 571
Abstract
The global rise of multi-drug resistant (MDR) pathogens, including the widespread resistance to beta-lactams through the production of β-lactamases, like extended spectrum β-lactamases (ESBLs), has led to the increasing use of last-line antibiotics such as carbapenems. Subsequently, the worldwide emergence of carbapenemase-producing pathogens [...] Read more.
The global rise of multi-drug resistant (MDR) pathogens, including the widespread resistance to beta-lactams through the production of β-lactamases, like extended spectrum β-lactamases (ESBLs), has led to the increasing use of last-line antibiotics such as carbapenems. Subsequently, the worldwide emergence of carbapenemase-producing pathogens poses a formidable challenge. The combination ceftazidime/avibactam (CAZ/AVI) has emerged as a pivotal agent in the management of multidrug-resistant Gram-negative infections. Avibactam, a novel β-lactamase inhibitor, demonstrates a wider spectrum of activity against Ambler Class A, C, and partially D β-lactamases in comparison to older inhibitors, thus enhancing the antimicrobial activity of ceftazidime against organisms producing ESBL and carbapenemases, such as oxacillinase (OXA)-type and Klebsiella pneumoniae Carbapenemase (KPC). This review synthesizes findings from randomized controlled trials and cohort studies, evaluating the efficacy of CAZ/AVI across diverse clinical settings, including complicated intra-abdominal infections, urinary tract infections, nosocomial pneumonia, skin and soft tissue infections, and bloodstream infections. The non-inferiority of CAZ-AVI with respect to carbapenems and superiority over polymyxins in terms of both clinical outcomes and safety are outlined, along with evidence supporting the use of CAZ/AVI in high-risk populations such as immunocompromised and critically ill patients. Overall, CAZ/AVI represents a compelling therapeutic option with favorable efficacy and safety, thus appearing as a reasonable frontline treatment for resistant Gram-negative infections. Full article
17 pages, 886 KB  
Article
Genotypic Characterization of Virulence Factors in Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli Strains from Chickens in Hungary
by Ádám Kerek, Ábel Szabó, Gergely Tornyos, Eszter Kaszab, Krisztina Bali and Ákos Jerzsele
Antibiotics 2025, 14(11), 1083; https://doi.org/10.3390/antibiotics14111083 - 27 Oct 2025
Viewed by 412
Abstract
Background: The increasing attention on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains isolated from poultry flocks stems from concerns about their virulence potential and zoonotic risk. Of particular significance is the identification of extraintestinal pathogenic E. coli (ExPEC) pathotypes in poultry, as these [...] Read more.
Background: The increasing attention on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains isolated from poultry flocks stems from concerns about their virulence potential and zoonotic risk. Of particular significance is the identification of extraintestinal pathogenic E. coli (ExPEC) pathotypes in poultry, as these strains pose not only animal health concerns but also serious threats to food safety and public health. Mapping the genetic background of pathogenicity and antimicrobial resistance is essential for risk assessment and the development of effective control strategies. Methods: A total of 87 E. coli isolates were isolated from tracheal and cloacal swab samples collected from healthy chickens between 2022 and 2023. Whole-genome sequencing was performed using Illumina and MGI next-generation sequencing platforms. Bioinformatic analyses were conducted to identify virulence-associated genes and pathotype markers using multiple reference databases, including VirulenceFinder. The frequency of virulence genes was summarized both in tabular form and visualized through graphical representations. Results: A substantial proportion of the isolates harbored virulence genes linked to various ExPEC pathotypes, particularly uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and neonatal meningitis-causing E. coli (NMEC). The most frequently detected colonization factors included members of the fim, pap, ecp, and fae gene families. Among fitness-related genes, iron acquisition systems—ent, chu, iro, iuc, fep, and ybt—were especially prevalent. Classic UPEC-associated genes such as pap and fimH, along with the APEC-related iutA and vat, were found at high frequencies. Four isolates exhibited a virulence gene profile characteristic of the NMEC pathotype (ibeA, kpsD/M/T, fimH). In contrast, hallmark genes of enteric pathotypes were absent from all isolates. Conclusions: The predominance of extraintestinal virulence factors in the examined poultry-derived E. coli strains underscores their zoonotic potential. The complete absence of enteric pathotype markers indicates that the studied poultry populations primarily harbor ExPEC-like strains. These findings highlight the critical need for ongoing genomic surveillance and targeted preventive strategies within poultry production systems. Full article
(This article belongs to the Special Issue Genomic Surveillance of Antimicrobial Resistance (AMR))
Show Figures

Figure 1

12 pages, 558 KB  
Article
Recreational Water Risk from Extended-Spectrum Beta-Lactamase-Producing Escherichia coli of Broiler Origin: A Quantitative Microbial Risk Assessment
by Nunzio Sarnino, Subhasish Basak, Lucie Collineau and Roswitha Merle
Environments 2025, 12(11), 403; https://doi.org/10.3390/environments12110403 - 27 Oct 2025
Viewed by 602
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing E. coli from broiler farms can reach watersheds used for recreational swimming. We assessed short-term swimmer exposure by extending a modular quantitative microbial risk assessment (QMRA) to the recreational water pathway linking land manure application to in-stream fate and transport [...] Read more.
Extended-spectrum beta-lactamase (ESBL)-producing E. coli from broiler farms can reach watersheds used for recreational swimming. We assessed short-term swimmer exposure by extending a modular quantitative microbial risk assessment (QMRA) to the recreational water pathway linking land manure application to in-stream fate and transport with dilution and decay. We modeled single-event exposure doses and estimated loss of disability-adjusted life years (DALYs). We ran sensitivity analyses on several parameters and compared outputs to published recreational water assessments that include ESBL E. coli. Assuming a worst-case scenario, single-event doses were lower for adults (2.95 CFU; UI 0.14–6.11) and higher for children (8.78 CFU; UI 0.56–17.20) on day 1 after land application, then dropped below 0.01 CFU by day 200, with DALY losses from 10−7 to 10−10. Uncertainty was dominated by fate and transport. Stronger particle binding, faster in-stream decay, and larger effective volumes lowered exposure, while higher shedding, greater flow, and larger wash-off raised it. Estimates fell at the low end of prior studies. Swimmer exposure appears to be extremely low and short-lived. The modular QMRA links farm contamination to bathing-site risk and supports risk-based monitoring (after spreading or storms) and short-term forecasts that focus advisories on short, higher-risk windows after litter application. Full article
Show Figures

Figure 1

24 pages, 2361 KB  
Article
Phenotypic and Genotypic Characterization of Colistin, ESBL, and Multidrug Resistance in Escherichia coli Across the Broiler Production Chain in Karnataka, India
by Mohammad Nasim Sohail, Srikrishna Isloor, Doddamane Rathnamma, S. Chandra Priya, Belamaranahally M. Veeregowda, Nagendra R. Hegde, Csaba Varga and Nicola J. Williams
Poultry 2025, 4(4), 51; https://doi.org/10.3390/poultry4040051 - 27 Oct 2025
Viewed by 450
Abstract
The emergence of antimicrobial resistance (AMR) across the broiler production chain holds significant economic, animal, and public health implications. This study investigated phenotypic resistance to 13 antimicrobials and the presence of 35 antimicrobial resistance genes (ARGs) in Escherichia coli (n = 291) [...] Read more.
The emergence of antimicrobial resistance (AMR) across the broiler production chain holds significant economic, animal, and public health implications. This study investigated phenotypic resistance to 13 antimicrobials and the presence of 35 antimicrobial resistance genes (ARGs) in Escherichia coli (n = 291) isolated across three broiler production chains (broiler breeder farms, hatcheries, commercial broiler farms, and retail meat shops). An extremely high phenotypic resistance (>70%) to doxycycline, ciprofloxacin, and cefpodoxime, and very high resistance (50–70%) to ampicillin, cefotaxime, gentamicin, and ceftazidime was observed. In addition, 97% of isolates were multidrug-resistant (resistant to ≥1 drug in ≥3 antimicrobial classes), 42% were extended-spectrum beta-lactamase (ESBL) producers, 65% were resistant to third-generation cephalosporins (3GCR), and 21% were resistant to colistin. The Poisson regression model revealed no significant difference in AMR among broiler production stages, except for colistin. Among 35 ARGs tested, 24 (67%) were detected at least once. The most prevalent were tetA, blaTEM, qnrB, qnrS, and aac(6′)-Ib-cr, while qnrD, sul2, blaOXA, and blaCTX-M were detected at lower levels (1–7%). All five tested mcr genes (mcr-1 to mcr-5) were identified in commercial farms and retail shops. No blaNDM, tetB, tetC, tetD, tetM, qnrC, aac(3)-IIa (aacC2), aph(3)-IIa (aphA2), or aac(6′)-Ib genes were found. A strong correlation was observed between AMR phenotypes and ARGs. High AMR among E. coli in broiler production poses significant One Health risks, with widespread MDR, ESBL production, and resistance to critically important antimicrobials. Prudent antimicrobial use, enhanced surveillance and education, farm biosecurity, and One Health strategies are crucial in mitigating these threats. Full article
Show Figures

Figure 1

13 pages, 380 KB  
Article
Risk Factors Associated with Community-Onset Infections Due to Multidrug-Resistant Organisms
by Rafail Matzaras, Dimitrios Biros, Sissy Foteini Sakkou, Diamantina Lymperatou, Sempastian Filippas-Ntekouan, Anastasia Prokopidou, Revekka Konstantopoulou, Valentini Samanidou, Lazaros Athanasiou, Anastasia Christou, Petros-Spyridonas Adamidis, Amalia Despoina Koutsogianni, George Liamis, Haralampos Milionis, Matilda Florentin and Eirini Christaki
Antibiotics 2025, 14(11), 1073; https://doi.org/10.3390/antibiotics14111073 - 25 Oct 2025
Viewed by 536
Abstract
Background: Antimicrobial Resistance (AMR) and the emergence of multidrug-resistant organisms (MDROs) represent major public health threats. Although traditionally linked to hospital-acquired infections (HAIs), MDROs are becoming gradually more prevalent in community-onset infections. Objectives: The objective of this study is to identify [...] Read more.
Background: Antimicrobial Resistance (AMR) and the emergence of multidrug-resistant organisms (MDROs) represent major public health threats. Although traditionally linked to hospital-acquired infections (HAIs), MDROs are becoming gradually more prevalent in community-onset infections. Objectives: The objective of this study is to identify major risk factors associated with community-onset MDRO infections among patients admitted to the hospital. Methods: This is a retrospective study of patients admitted to the Internal Medicine Departments of the University General Hospital of Ioannina from July 2022 to August 2023 and had a microbiologically confirmed infection. Patients with HAIs were excluded. Data were extracted from both electronic and paper-based medical records and included variables such as demographics, baseline comorbidities, previous antibiotic use, previous hospitalizations, the type of MDRO and infection, and clinical outcomes. Statistical analysis included descriptive statistics, univariate analyses, and subsequently multiple binary regression models. Each regression model was adjusted for age and sex. Results: Our cohort included 125 participants with a mean age of 77.9 years, with the majority (58.4%) being female. The overall prevalence of MDRO infections was 43.2% (54/125). Notably, the presence of a permanent urinary catheter was associated with a nearly fourfold increase in the risk of community-onset MDRO infections (OR = 3.69; 95% CI: 1.35–10.05; p = 0.011), while prior hospitalization (OR = 3.33; 95% CI: 1.48–7.51; p = 0.004), the Charlson index score (OR = 3.08; 95% Cl: 1.1–8.68; p = 0.033) and previous antibiotic use (OR = 2.18; 95% CI: 0.98–4.84; p = 0.057) were also significant potential risk factors. Conclusions: The identification of key risk factors associated with community-onset MDRO infections in patients admitted to the hospital can assist clinicians in early stratification and rational selection of initial empirical antimicrobial treatment, support antimicrobial stewardship programs, promote targeted public health interventions, and encourage more judicious antibiotic use. Full article
Show Figures

Figure 1

11 pages, 704 KB  
Article
Urinary Tract Infections Caused by Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Enterobacterales in Saudi Arabia: Impact of Catheterization
by Asma Ali Sawan, Nada S. Alghamdi, Shahad A. Alzahrani, Muzn S. Alharbi, Nora Alabdulkareem, Dana Ahmed Alnufaily, Sajidah Jaffar Alalwan, Tajammal Mustafa, Maher Alqurashi and Ayman A. El-Badry
Medicina 2025, 61(11), 1907; https://doi.org/10.3390/medicina61111907 - 24 Oct 2025
Viewed by 460
Abstract
Background and Objectives: Catheter-associated urinary tract infections (CAUTIs) caused by extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) significantly contribute to global rates of UTI. This study aimed to compare the prevalence and trends of ESBL-producing Enterobacterales and CRE in patients with CAUTIs [...] Read more.
Background and Objectives: Catheter-associated urinary tract infections (CAUTIs) caused by extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Enterobacterales (CRE) significantly contribute to global rates of UTI. This study aimed to compare the prevalence and trends of ESBL-producing Enterobacterales and CRE in patients with CAUTIs and non-CAUTIs. Materials and Methods: A retrospective review of 4262 UTI-positive urine cultures was conducted at King Fahad Hospital of the University, Al Khobar, Saudi Arabia (January 2022–November 2023). Demographic, clinical, and microbiological data were obtained from hospital records. Antimicrobial susceptibility was tested using the Vitek® System; ESBL and CRE were identified using Ezy MIC™ strips and Xpert® Carba-R assay, respectively. Results: ESBL-producing Enterobacterales accounted for 11.3% of cases; CRE comprised 1.8%. ESBL was significantly more prevalent in non-catheterized patients and those in emergency care. CRE was significantly associated with catheterized patients and inpatient settings. Escherichia coli and Klebsiella pneumoniae were the predominant ESBL-producing and CRE isolates, respectively. bla-OXA-48 was the most frequently detected carbapenemase gene (66.7%). ESBL was prevalent in younger, non-catheterized females, suggesting increasing community transmission. Conversely, CRE were primarily observed in older, catheterized inpatients, emphasizing the role of invasive devices in resistance spread. Conclusions: These findings highlight the importance of targeted infection control and early catheter removal to mitigate resistance trends. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

15 pages, 421 KB  
Article
Occurrence and Molecular Characterization of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Broilers in Indonesia
by Nur Hidayatullah, Imron Suandy, Montira Intanon, Thomas Alter, Oli Susanti, Ajeng Herpianti, Sani Susanty, Riska Desitania and Nattakarn Awaiwanont
Antibiotics 2025, 14(10), 1030; https://doi.org/10.3390/antibiotics14101030 - 15 Oct 2025
Viewed by 581
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli) are widespread in the food chain, but nationwide surveillance in Indonesian broiler production is limited. This study investigated the occurrence, antimicrobial resistance, phylogenetic diversity, and molecular characteristics of ESBL-E. coli from broilers in Indonesia. [...] Read more.
Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E. coli) are widespread in the food chain, but nationwide surveillance in Indonesian broiler production is limited. This study investigated the occurrence, antimicrobial resistance, phylogenetic diversity, and molecular characteristics of ESBL-E. coli from broilers in Indonesia. A total of 2182 E. coli isolates from broiler cecal samples across three regions during the period 2018–2020 were analyzed. Antimicrobial susceptibility testing and ESBL phenotyping were performed following the CLSI guidelines. ESBL resistance genes and phylogenetic groups were detected using multiplex/quadruplex PCR. ESBL-E. coli (9.9%) was most frequently observed in the western (15.2%) region, followed by the central (8.0%) and eastern (7.2%) regions. A total of 85 resistance patterns were identified, with 98.5% exhibiting multidrug resistance. The blaCTX-M gene was detected in 97.5% of isolates, predominantly blaCTX-M-1 (97.5%), while blaCTX-M-9 was found in 2.5%. The blaTEM gene was present in 33.0% of ESBL isolates; however, blaSHV and blaOXA-1 were absent. Phylogenetic group A predominated (42.0%), followed by E (22.5%), B1 (20.5%), F (10.5%), C (2.5%), and D (2.0%). This study demonstrates a significant occurrence of ESBL-E. coli in Indonesian broilers with regional variation and blaCTX-M predominance. The high rate of multidrug resistance poses a serious public health concern, emphasizing the urgent need for antimicrobial stewardship and enhanced surveillance programs. Full article
Show Figures

Figure 1

17 pages, 1454 KB  
Article
Machine Learning Model for Predicting Multidrug Resistance in Clinical Escherichia coli Isolates: A Retrospective General Surgery Study
by Hüseyin Kerem Tolan, İrfan Aydın, Handan Tanyildizi-Kokkulunk, Mehmet Karakuş, Yüksel Akkaya, Osman Kaya and Ferruh Kemal İşman
Antibiotics 2025, 14(10), 969; https://doi.org/10.3390/antibiotics14100969 - 26 Sep 2025
Viewed by 748
Abstract
Background/Objectives: Escherichia coli is one of the leading causes of surgical site infections (SSIs) and poses a growing public health concern due to its increasing antimicrobial resistance. High rates of extended-spectrum beta-lactamase (ESBL) production among E. coli strains complicate treatment outcomes and [...] Read more.
Background/Objectives: Escherichia coli is one of the leading causes of surgical site infections (SSIs) and poses a growing public health concern due to its increasing antimicrobial resistance. High rates of extended-spectrum beta-lactamase (ESBL) production among E. coli strains complicate treatment outcomes and emphasize the need for effective surveillance and control strategies. Methods: A total of 691 E. coli isolates from general surgery clinics (2020–2025) were identified using MALDI-TOF MS. Antibiotic susceptibility data and patient variables were cleaned, encoded, and used to predict resistance using the Random Forest, CatBoost, and Naive Bayes algorithms. SMOTE addressed class imbalance, and model performance was assessed through various validation methods. Results: Among the three machine learning models tested, Random Forest (RF) showed the best performance in predicting antibiotic resistance of E. coli, achieving median accuracy, precision, recall, and F1-scores of 0.90 and AUC values up to 0.99 for key antibiotics. CatBoost performed similarly but was less stable with imbalanced data, while Naive Bayes showed lower accuracy. Feature importance analysis highlighted strong inter-antibiotic resistance links, especially among β-lactams, and some influence of demographic factors. Conclusions: This study highlights the potential of simple, high-performing models using structured clinical data to predict antimicrobial resistance, especially in resource-limited clinical settings. By incorporating machine learning into antimicrobial resistance (AMR) surveillance systems, our goal is to support the advancement of rapid diagnostics and targeted antimicrobial stewardship approaches, which are essential in addressing the growing challenge of multidrug resistance. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

9 pages, 412 KB  
Article
Prediction Score for Identification of ESBL Producers in Urinary Infections Overestimates Risk in High-ESBL-Prevalence Setting
by Jorge Alberto Cortés, Julián Antonio Niño-Godoy and Heidi Johanna Muñoz-Latorre
Antibiotics 2025, 14(9), 938; https://doi.org/10.3390/antibiotics14090938 - 17 Sep 2025
Viewed by 775
Abstract
Background/Objectives: Urinary tract infections (UTIs) caused by extended-spectrum beta-lactamase (ESBL) Enterobacterales have become more frequent. Therefore, strategies for assessing the risks posed by ESBL-producing infections have been developed, creating the need for local validation. The aim of this study was to validate the [...] Read more.
Background/Objectives: Urinary tract infections (UTIs) caused by extended-spectrum beta-lactamase (ESBL) Enterobacterales have become more frequent. Therefore, strategies for assessing the risks posed by ESBL-producing infections have been developed, creating the need for local validation. The aim of this study was to validate the scoring system designed by Tumbarello et al. to identify ESBL producers in patients with a UTI that require hospital care in a region with a high prevalence of ESBL Escherichia coli. Methods: A retrospective cohort study was conducted in a third-level hospital in Bogotá (Colombia) between 2013 and 2020.The study included 817 patients, who were hospitalized due to pyelonephritis and treated with cefuroxime (the first-line antibiotic according to local guidelines), with an ESBL frequency of 9.68%. Diagnostic performances were estimated for a modified version of Tumbarello’s score (omitting admission from another healthcare facility) evaluating the area under the curve (AUC) for ESBL presence with respect to resistance to second- and third-generation cephalosporins. Results: With an index cut-off of ≥6, the score showed a sensitivity of 18% and a specificity of 83%. The AUC for this cut-off was 0.47. This threshold index could not efficiently predict either third- (AUC = 0.49) or second-generation cephalosporin resistance (AUC = 0.51). Conclusions: In Colombia, a region with a high prevalence of ESBL E. coli producers, as the use of the Tumbarello index would result in excessive utilization of wide-spectrum antibiotics, it is not recommended in this specific scenario for UTIs. Further studies are required in order to develop accurate tools to assess the risk of ESBL producers in high-prevalence settings. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

12 pages, 684 KB  
Article
Incidence of Acute Kidney Injury in Autologous Hematopoietic Stem Cell Transplant Recipients According to the Administration of Empirical Amikacin: A Two-Centre Retrospective Cohort Study
by Sophie Schürch, Sarah Dräger, Michèle Hoffmann, Severin Bausch, Nicolas Gürtler, Cédric Hirzel, Jakob Passweg, Stefano Bassetti, Thomas Pabst, Parham Sendi and Michael Osthoff
Antibiotics 2025, 14(9), 919; https://doi.org/10.3390/antibiotics14090919 - 11 Sep 2025
Viewed by 684
Abstract
Background: The benefit of adjunctive aminoglycosides in the treatment of patients with febrile neutropenia (FN) is controversial. We investigated the incidence of acute kidney injury (AKI) in patients with FN or suspected infection according to empirical amikacin treatment. Methods: This two-centre, [...] Read more.
Background: The benefit of adjunctive aminoglycosides in the treatment of patients with febrile neutropenia (FN) is controversial. We investigated the incidence of acute kidney injury (AKI) in patients with FN or suspected infection according to empirical amikacin treatment. Methods: This two-centre, retrospective cohort study was conducted at the University Hospitals of Basel (amikacin group) and Bern (non-amikacin group), Switzerland, between 2016 and 2022. Adult patients requiring antibiotic treatment after autologous hematopoietic stem cell transplantation (HSCT) were included. All patients received empiric beta-lactam treatment combined with amikacin in the amikacin group (only University Hospital Basel). The primary endpoint was the incidence of AKI within seven days after the initiation of antibiotic treatment. Results: Overall, 250 patients were included. The majority was male (n = 163, 65.2%) and had a median age of 61 years (interquartile range (IQR) 55 to 67). The median baseline eGFR was similar in both groups (>90 mL/min/1.7 m2). There was no statistically significant difference in the incidence of AKI (4/125 vs. 5/125, p = 1.0). The maximum decline in eGFR from baseline within 7 days was significantly higher in the amikacin group (−4 mL/min/1.7 m2 (IQR 8 to −12) vs. −2 mL/min/1.7 m2 (IQR −7 to −1), p = 0.001). Two patients suffered from an infection with an extended spectrum beta-lactamase producing (ESBL) pathogen. Conclusions: Amikacin treatment did not significantly impact the incidence of AKI in patients undergoing autologous HSCT. The short-term administration of amikacin in patients with normal to high baseline eGFR is safe regarding renal function. However, in a low-resistance setting, the omission of empirical amikacin treatment should be considered. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Graphical abstract

15 pages, 1659 KB  
Article
Emerging Resistance in Klebsiella pneumoniae: CTX-M Prevalence, Biofilm Formation, and Efficacy of Platanus orientalis Extract
by Ahmed Najm Abed and Basma Mnif
Microbiol. Res. 2025, 16(9), 203; https://doi.org/10.3390/microbiolres16090203 - 7 Sep 2025
Viewed by 1522
Abstract
CTX-M beta-lactamases have become the predominant extended-spectrum beta-lactamases (ESBLs) globally, contributing to increased patient morbidity, mortality, and healthcare costs. This study investigated the prevalence of biofilm formation and CTX-M genes in Klebsiella pneumoniae strains isolated from Baghdad hospitals, aiming to better understand antimicrobial [...] Read more.
CTX-M beta-lactamases have become the predominant extended-spectrum beta-lactamases (ESBLs) globally, contributing to increased patient morbidity, mortality, and healthcare costs. This study investigated the prevalence of biofilm formation and CTX-M genes in Klebsiella pneumoniae strains isolated from Baghdad hospitals, aiming to better understand antimicrobial resistance mechanisms and support the development of targeted interventions. A total of 300 samples were collected from various clinical and hospital sources, and antibiotic susceptibility testing was performed using the Kirby–Bauer disc diffusion method. ESBL production was also confirmed using specifically designed primers. Platanus orientalis Linn extract was evaluated for its antimicrobial and antibiofilm activity against K. pneumoniae isolates. The results showed significant resistance to the majority of antibiotics, including cefotaxime, gentamicin, levofloxacin, ceftazidime, and ceftriaxone. A high prevalence of the CTX-M gene (100%) was detected in the isolates, with the most frequent alleles being blaCTX-M-15 (65.2%) and blaCTX-M-1 (30%). Furthermore, 95.6% of the isolates were capable of forming biofilms. However, when treated with P. orientalis Linn extract, most isolates exhibited reduced biofilm production, becoming weak biofilm producers. Phytochemical analysis of P. orientalis Linn revealed significant amounts of phenolic compounds, tannins, and glycosides, as well as the presence of alkaloids and carbohydrates. Overall, this study demonstrates a correlation between CTX-M production and biofilm-forming ability in K. pneumoniae and highlights the potential role of P. orientalis Linn extract in combating antibiotic-resistant infections. Full article
Show Figures

Figure 1

23 pages, 2707 KB  
Article
Sentinel or Disperser? The Role of White Storks (Ciconia ciconia) in the Spread of Antibiotic-Resistant Bacteria
by Teresa Cardona-Cabrera, Sandra Martínez-Álvarez, Yolanda Muela-Trujillo, Alberto Sánchez-Cano, Juan Carlos Montero, Juan Manuel Fernández-Gallego, Carmen Torres and Ursula Höfle
Microbiol. Res. 2025, 16(9), 202; https://doi.org/10.3390/microbiolres16090202 - 6 Sep 2025
Viewed by 611
Abstract
Antimicrobial resistance (AMR) represents a threat to human, animal, and environmental health. This study evaluated the potential role of birds as AMR dispersers in white storks as a model species investigating dispersal between locations connected by their movements. Throughout a year, 346 samples [...] Read more.
Antimicrobial resistance (AMR) represents a threat to human, animal, and environmental health. This study evaluated the potential role of birds as AMR dispersers in white storks as a model species investigating dispersal between locations connected by their movements. Throughout a year, 346 samples were collected from two landfills (225 fecal samples) and two wetlands (93 fecal/28 water samples) based on satellite tracking data that confirmed continuous stork movements between foraging (landfill) and nighttime roosting (wetlands) locations. Samples were seeded in selective media with antibiotics for the isolation of antibiotic-resistant bacteria. A total of 313 isolates from 35 different bacterial species were obtained, with an AMR prevalence of 43.1% in fecal samples from landfills, 7.5% in fecal samples from wetlands, and 21.4% in water from wetlands. Multidrug resistant bacteria were only found in fecal samples (19.6% landfills/4.3% wetlands) and extended-spectrum beta-lactamase producing-bacteria were found exclusively in fecal samples from landfills with a marked presence during the fall migration period. Our study reveals marked differences in AMR prevalence and resistance phenotypes between study locations and fecal and water samples throughout the year, thus not supporting a clear role of storks as AMR dispersers. Nevertheless, similar changes in AMR phenotype prevalences during fall migration in stork faecal samples from one of the tested landfills and its paired wetland, and the significant increase in ESBL-producing Enterobacterales prevalence matching the arrival of migratory white storks in fall, underline the need for more in-depth genome-based studies to elucidate the role of white storks as dispersers or sentinels of AMR. Full article
Show Figures

Figure 1

17 pages, 422 KB  
Review
Gut Microbiome and Intestinal Colonization with Multidrug-Resistant Strains of Enterobacterales: An Interplay Between Microbial Communities
by Béla Kocsis, Dóra Szabó and László Sipos
Antibiotics 2025, 14(9), 890; https://doi.org/10.3390/antibiotics14090890 - 3 Sep 2025
Cited by 1 | Viewed by 1328
Abstract
Background: The intestinal tract is a host to a high number of diverse bacteria, and the presence of multidrug-resistant (MDR) Enterobacterales strains acts as a reservoir and a source of infection. The interactions between the intestinal microbiome and colonizer Enterobacterales strains influence [...] Read more.
Background: The intestinal tract is a host to a high number of diverse bacteria, and the presence of multidrug-resistant (MDR) Enterobacterales strains acts as a reservoir and a source of infection. The interactions between the intestinal microbiome and colonizer Enterobacterales strains influence long-lasting colonization. Aims: In this narrative review, we summarize available data about the intestinal colonization of MDR Enterobacterales strains and correlations between colonization and the intestinal microbiome. Results: Several endogenous and exogenous factors influence the intestinal colonization of MDR Enterobacterales strains. On the gut microbiome level, the intestinal microbial community is composed of the Lachnospiraceae family (e.g., Lachnoclostridium, Agathobacter, Roseburia, Tyzzerella), which indicates a protective role against colonizer MDR Enterobacterales strains; by contrast, a high abundance of Enterobacterales correlates with the colonization of MDR Enterobacterales strains. In specific patient groups, striking differences in microbiome composition can be detected. Among hematopoietic stem-cell-transplanted patients colonized by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, a greater abundance of Bifidobacterium, Blautia, Clostridium, Coprococcus, L-Ruminococcus, Mogibacteriaceae, Peptostreptococceae and Oscillospira was observed compared to patients not colonized by ESBL-producing strains, who had a greater abundance of Actinomycetales. In liver transplant patients, a reduction in the alpha-diversity of the intestinal microbiome in fecal samples correlates with the carriage of MDR Enterobacterales. Conclusions: Intestinal colonization with MDR Enterobacterales is a multifactorial process that involves the MDR strain (e.g., its plasmids, fimbria), host and mucosal factors (e.g., IgA and defensin) and exogenous factors (e.g., use of antibiotics, hospitalization). On the gut microbiome level, the Lachnospiraceae family is dominant among intestines not colonized by MDR strains, but a high abundance of Enterobacterales was correlated with colonization with MDR Enterobacterales strains. Full article
Show Figures

Figure 1

Back to TopTop