Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = experimental arthritis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1226 KiB  
Article
Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study
by Kirkke Reisberg, Kristiine Hõrrak, Aile Tamm, Margarita Kõrver, Liina Animägi and Jonete Visnapuu
Textiles 2025, 5(3), 30; https://doi.org/10.3390/textiles5030030 (registering DOI) - 31 Jul 2025
Viewed by 33
Abstract
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and [...] Read more.
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and control group (n = 18). The intervention involved wearing functional textile socks for 12 weeks. Sock composition was analyzed using X-ray fluorescence spectrometry and scanning electron microscopy. Outcome measures included the Numeric Rating Scale, Health Assessment Questionnaire–Disability Index (HAQ-DI), and RAND-36 (Estonian version). At week 12, the experimental group showed significantly lower metatarsophalangeal and toe joint pain (p = 0.001), stiffness (p = 0.005), and ankle stiffness (p = 0.017) scores than the control group. Improvements were also observed in HAQ-DI reaching (p = 0.035) and activity (p = 0.028) scores. RAND-36 scores were higher in physical functioning (p = 0.013), social functioning (p = 0.024), and bodily pain (p = 0.006). Role limitations due to physical problems improved in the experimental group but worsened in the control group (p = 0.029). In conclusion, wearing functional socks led to some statistically significant improvements in foot and ankle pain and stiffness, physical function, and health-related quality of life. However, the effect sizes were small, and the clinical relevance of these findings should be interpreted with caution. Full article
(This article belongs to the Special Issue Advances of Medical Textiles: 2nd Edition)
Show Figures

Figure 1

21 pages, 2039 KiB  
Article
Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption
by Fernanda D’Amélio, Hugo Vigerelli, Rodrigo Pinheiro Araldi, Isabel de Fátima Correia Batista, Daniel Carvalho Pimenta and Irina Kerkis
Toxins 2025, 17(7), 358; https://doi.org/10.3390/toxins17070358 - 19 Jul 2025
Viewed by 349
Abstract
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied [...] Read more.
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied at 5 µg/mL (crude venom and HMM) or 1 µg/mL (LMM) from day 4 of peripheral blood mononuclear cell (PBMC) differentiation through terminal OC formation, enabling evaluation across early differentiation, fusion, and maturation stages. RNA sequencing revealed 7793 genes common to all experimental groups, with unique gene expression signatures of 149 (control), 221 (HMM), 248 (crude venom), and 60 (LMM) genes, reflecting distinct molecular responses. The negative control PBMC group exhibited 1013 unique genes enriched in immune-related pathways, consistent with their undifferentiated state. Crude venom induced the broadest transcriptional modulation, upregulating key fusion (CD47) and resorption (CTSK) genes, and altering markers of OC differentiation. The HMM fraction predominantly influenced inflammatory and osteoclastogenic pathways, notably TNF and NF-κB signaling, while the LMM fraction selectively regulated fusion-related genes (e.g., CD44) and immune pathways, indicating targeted modulation of OC activity. Cytokine profiling showed that crude venom and HMM suppressed osteoclastogenic cytokines such as IL-1β and IL-6, supporting their potential use in inflammatory bone diseases. Pathway enrichment analyses confirmed these differential effects on immune response and bone resorption mechanisms. Together, these results demonstrate that B. moojeni venom and its fractions differentially impact OC biology, with crude venom exerting broad effects and HMM and LMM fractions offering more specific modulation. Future studies will isolate bioactive components and assess therapeutic efficacy in animal models of osteoporosis and rheumatoid arthritis. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

18 pages, 4140 KiB  
Article
Immune Responses Induced by Recombinant Membrane Proteins of Mycoplasma agalactiae in Goats
by Beatriz Almeida Sampaio, Maysa Santos Barbosa, Matheus Gonçalves de Oliveira, Manoel Neres Santos Júnior, Bruna Carolina de Brito Guimarães, Emilly Stefane Souza Andres, Ágatha Morgana Bertoti da Silva, Camila Pacheco Gomes, Rafaela de Souza Bittencourt, Thiago Macêdo Lopes Correia, Lucas Santana Coelho da Silva, Jurandir Ferreira da Cruz, Rohini Chopra-Dewasthaly, Guilherme Barreto Campos, Jorge Timenetsky, Bruno Lopes Bastos and Lucas Miranda Marques
Vaccines 2025, 13(7), 746; https://doi.org/10.3390/vaccines13070746 - 11 Jul 2025
Viewed by 471
Abstract
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study [...] Read more.
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study aimed to develop a recombinant subunit vaccine against M. agalactiae and evaluate its specific immune response in goats. Methods: Goats were divided into three groups: group 1 received recombinant proteins (P40 and MAG_1560), group 2 received formalin-inactivated M. agalactiae, and group 3 received Tris-buffered saline (negative control). All solutions were emulsified in Freund’s adjuvant. Animals were monitored for 181 days. IgG antibody production was assessed by ELISA, and peripheral blood mononuclear cells (PBMCs) were analyzed by real-time PCR for the expression of IL-1β, IFN-γ, IL-12, and MHC class II genes. Results: M. agalactiae-specific antibody response was observed for six months in the sera of animals from group 1. Analysis of cytokine gene expression revealed increased IL-1β mRNA levels over time in both experimental groups. In group 1, IFN-γ mRNA levels increased with P40 stimulation and decreased with MAG_1560. IL-12 mRNA expression decreased over time in group 1 with P40 stimulation, whereas group 2 showed increased IL-12 expression for both proteins. MHC-II expression was stimulated in both groups. Conclusions: The recombinant proteins induced antibody production and cytokine expression, demonstrating immunogenic potential and supporting their promise as vaccine candidates capable of eliciting both humoral and cellular immune responses against M. agalactiae. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

17 pages, 1639 KiB  
Article
Tricyclic Isatin Derivatives as Anti-Inflammatory Compounds with High Kinase Binding Affinity
by Alexander V. Uvarov, Igor A. Schepetkin, Mark T. Quinn and Andrei I. Khlebnikov
Molecules 2025, 30(14), 2914; https://doi.org/10.3390/molecules30142914 - 10 Jul 2025
Viewed by 313
Abstract
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and [...] Read more.
Oximes have been reported to exhibit useful pharmaceutical properties, including compounds with anticancer, anti-arthritis, antibacterial, and neuroprotective activities. Many oximes are kinase inhibitors and have been shown to inhibit various kinases. Herein, a panel of oxime derivatives of tricyclic isatins was synthesized and evaluated for inhibition of cellular inflammatory responses and binding affinity to several kinases. Compounds 5a and 5d (a.k.a. NS-102), which have an unsubstituted oxime group, inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in human THP-1Blue monocytic cells and interleukin-6 (IL-6) production in human MonoMac-6 monocytic cells, with IC50 values in the micromolar range. These compounds also inhibited LPS-induced production of several other proinflammatory cytokines, including IL-1α, IL-1β, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF) in MonoMac-6 cells. Compounds 5a and 5d exhibited nanomolar/submicromolar binding affinity toward several kinase targets. The most potent inhibitor, 5d (3-(hydroxyimino)-5-nitro-1,3,6,7,8,9-hexahydro-2H-benzo[g]indol-2-one), demonstrated high binding affinity for 12 kinases, including DYRK1A, DYRK1B, PIM1, Haspin, HIPK1-3, IRAK1, NEK10, and DAPK1-3. Molecular modeling suggested modes of binding interaction of selected compounds in the DYRK1A and PIM1 catalytic sites that agreed with the experimental binding data. Our results demonstrate that tricyclic isatin oximes could be potential candidates for developing anti-inflammatory drugs with neuroprotective effects for treating neurodegenerative diseases. Full article
Show Figures

Figure 1

29 pages, 2331 KiB  
Review
Therapeutic Potential of Tanshinones in Osteolytic Diseases: From Molecular and Cellular Pathways to Preclinical Models
by Rafael Scaf de Molon
Dent. J. 2025, 13(7), 309; https://doi.org/10.3390/dj13070309 - 9 Jul 2025
Viewed by 459
Abstract
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, [...] Read more.
Tanshinones are a class of lipophilic diterpenoid quinones extracted from Salvia miltiorrhiza (Dan shen), a widely used herb in traditional Chinese medicine. These compounds, particularly tanshinone IIA (T-IIA) and sodium tanshinone sulfonate (STS), have been acknowledged for their broad spectrum of biological activities, including anti-inflammatory, antioxidant, anti-tumor, antiresorptive, and antimicrobial effects. Recent studies have highlighted the potential of tanshinones in the treatment of osteolytic diseases, characterized by excessive bone resorption, such as osteoporosis, rheumatoid arthritis, and periodontitis. The therapeutic effects of tanshinones in these diseases are primarily attributed to their ability to inhibit osteoclast differentiation and activity, suppress inflammatory cytokine production (e.g., tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6), and modulate critical signaling pathways, including NF-kB, MAPK, PI3K/Akt, and the RANKL/RANK/OPG axis. Additionally, tanshinones promote osteoblast differentiation and mineralization by enhancing the expression of osteogenic markers such as Runx2, ALP, and OCN. Preclinical models have demonstrated that T-IIA and STS can significantly reduce bone destruction and inflammatory cell infiltration in arthritic joints and periodontal tissues while also enhancing bone microarchitecture in osteoporotic conditions. This review aims to provide a comprehensive overview of the pharmacological actions of tanshinones in osteolytic diseases, summarizing current experimental findings, elucidating underlying molecular mechanisms, and discussing the challenges and future directions for their clinical application as novel therapeutic agents in bone-related disorders, especially periodontitis. Despite promising in vitro and in vivo findings, clinical evidence remains limited, and further investigations are necessary to validate the efficacy, safety, and pharmacokinetics of tanshinones in human populations. Full article
(This article belongs to the Special Issue New Perspectives in Periodontology and Implant Dentistry)
Show Figures

Figure 1

20 pages, 6229 KiB  
Article
Integrating Network Pharmacology and Experimental Validation to Explore the Effect and Mechanism of Inonotus obliquus Polysaccharide in the Treatment of Rheumatoid Arthritis
by Yuan Fu, Tianyi Jiang, Xizhu Fang, Yifang Chen, Jiawei Li, Shengnan Huang, Fangfang Li and Dan Jin
Pharmaceuticals 2025, 18(7), 1017; https://doi.org/10.3390/ph18071017 - 8 Jul 2025
Viewed by 480
Abstract
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect [...] Read more.
Background/Objectives: Rheumatoid arthritis (RA) is a chronic, systemic, and progressive autoimmune–inflammatory disease primarily affecting small joints. Inonotus obliquus polysaccharide (IOP) is the main component of the parasitic fungus obliquus, which has anti-tumor, anti-inflammatory, and antioxidant effects. However, whether IOP has a therapeutic effect on RA is still unclear. Thus, this study aimed to reveal the effect of IOP on MH7A cells and collagen-induced arthritis (CIA) rats and to investigate the molecular mechanism of IOP in RA. Methods: In this study, network pharmacology was used to identify the key signaling pathways in IOP treatment of RA. The effect of IOP was verified in rats with CIA. We performed CCK-8, EdU, colony formation assay, cell apoptosis, cell migration and invasion, Western blot analysis, and immunofluorescence to elucidate the effect of IOP on the proliferation, apoptosis, migration and invasion of MH7A cells and revealed its modulation of the NF-κB and NLRP3 inflammasome signaling pathways. Results: IOP treatment of CIA rats significantly alleviated joint swelling, synovial tissue proliferation and erosion, and reduced the expression of inflammatory factors TNF-α, IL-6, IL-1β and IL-18. In vitro, IOP significantly inhibited the proliferation, migration, and invasion abilities of TNF-α-stimulated MH7A cells and promoted their apoptosis. Mechanistically, IOP inhibited the NF-κB and NLRP3 inflammasome activation. Conclusions: This study revealed that IOP exerts anti-RA effects by downregulating the NF-κB and NLRP3 inflammasome signaling pathways, promoting cell apoptosis, and inhibiting the expression of inflammatory cytokines, representing a promising therapeutic option for RA. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Graphical abstract

14 pages, 1982 KiB  
Article
Evidence for Pro-Inflammatory Activity of LTα3 on Macrophages: Significance for Experimental Arthritis and for Therapeutic Switching in Rheumatoid Arthritis Patients
by Ariane Benezech, Jacques-Eric Gottenberg, Yannick Degboé, Andrey Kruglov, Jane Grogan, Fabienne Briand-Mésange, Alain Cantagrel, Adeline Ruyssen-Witrand and Jean-Luc Davignon
Int. J. Mol. Sci. 2025, 26(13), 6355; https://doi.org/10.3390/ijms26136355 - 1 Jul 2025
Viewed by 355
Abstract
Lymphotoxin-alpha (LTα3) is a soluble cytokine of the TNF superfamily. Its role in inflammation and arthritis is not well known. Macrophages are important in K/BxN Serum-Transfer Arthritis (STA) and rheumatoid arthritis (RA). Anti-TNF monoclonal antibodies as well as etanercept (ETA), a soluble TNF [...] Read more.
Lymphotoxin-alpha (LTα3) is a soluble cytokine of the TNF superfamily. Its role in inflammation and arthritis is not well known. Macrophages are important in K/BxN Serum-Transfer Arthritis (STA) and rheumatoid arthritis (RA). Anti-TNF monoclonal antibodies as well as etanercept (ETA), a soluble TNF receptor II that also neutralizes LTα3, are efficient in the treatment of RA. Objectives: To evaluate the role of LTα3 in macrophage phenotypes and in arthritis. Methods: Macrophages were cultured in the presence of recombinant LTα3, and their phenotypes were studied. The clinical effect of blocking LTα3 in STA was evaluated, as well as the effect of switching from anti-TNF monoclonal antibodies to etanercept in the “ROC” register of RA patients. Results: We showed that recombinant LTα3 was capable of directing mouse and human macrophages towards a pro-inflammatory “M1” phenotype. In K/BxN STA, ETA decreased clinical score and joint swelling. Anti-LTα3 reduced arthritis only in TNF-KO mice, indicating that the effect of LTα3 was visible in the absence of TNF. The “ROC” register indicated that switching anti-TNF mAb to ETA did not induce clinical and biological improvement in RA. Conclusion: We show a pro-inflammatory role for LTα3 in murine and human macrophages. The neutralization of both TNF and LTα3 is not beneficial in the treatment of RA. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 7173 KiB  
Article
Inhibition of Matrix Metalloproteinase-7 Attenuates Subpleural Fibrosis in Rheumatoid Arthritis-Associated Interstitial Lung Disease
by Li Xiong, Li-Mei Liang, Shu-Yi Ye, Xiao-Lin Cui, Shi-He Hu, Chen-Yue Lian, Wen-Jia Sun, Yang-Ping Lv, He-De Zhang, Meng Wang, Fei Xiang, Liang Xiong, Hong Ye, Wan-Li Ma and Lin-Jie Song
Biomedicines 2025, 13(7), 1581; https://doi.org/10.3390/biomedicines13071581 - 27 Jun 2025
Viewed by 612
Abstract
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD [...] Read more.
Background: Rheumatoid arthritis-related interstitial lung disease (RA-ILD) is a significant complication of RA which lacks effective treatments with high mortality. This study aimed to investigate the role of matrix metalloproteinase-7 (MMP-7) in mediating RA-ILD. Methods: Based on the database of RA-ILD patients, a bioinformatics analysis was performed. A protein–protein interaction (PPI) network focusing on MMP-7 was simulated. Pleural mesothelial cells (PMCs) were treated with RA-ILD patients’ serum or RA-ILD-related inflammatory factors, and the protein expressions of collagen-I and MMP-7 were examined. An arthritis model was established using complete Freund’s adjuvant (CFA). Changes in the weight and joints of mice were recorded, and lung tissues were evaluated by Masson staining and Sirius red stain techniques. MMP-7 inhibitor, MMP-7 siRNA and MMP shRNA lentivirus were used to inhibit MMP-7 and investigate changes in collagen-I and fibrosis in vivo and in vitro. Results: MMP-7 was found to be significantly expressed in RA-ILD lung tissue by bioinformatics analysis, and MMP-7 to maybe interact with collagen-I. In vitro experiments indicated cytokines IL-1β, IL-6 and TNF-α promoted MMP-7 and collagen-I expression in PMCs. Serum obtained from patients with RA-ILD also upregulated MMP-7 and collagen-I expression in PMCs. Inhibition of MMP-7 with MMP-7 siRNA or MMP inhibitor prevented collagen-I synthesis in PMCs. In vivo, CFA induced arthritis and subpleural lung inflammation in rats, but the MMP-7 inhibitor and MMP-7 siRNA attenuated CFA-induced lung inflammation and subpleural lung fibrosis. Conclusions: MMP-7 mediated subpleural lung inflammation as well as fibrosis in RA-ILD. It provided theoretical and experimental support for MMP-7 being a therapeutic target in RA-ILD. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnostics, and Therapeutics for Rheumatic Diseases)
Show Figures

Figure 1

12 pages, 2552 KiB  
Article
Investigating the Mechanism of Emodin in Rheumatoid Arthritis Through the HIF-1α/NLRP3 Pathway and Mitochondrial Autophagy
by Dehao Du, Linlan Zhou, Jiayu Tian, Lianying Cheng, Han Zhang, Yifu Tang, Zexuan Qiu, Tingdan Zhang and Xiaofeng Rong
Curr. Issues Mol. Biol. 2025, 47(7), 486; https://doi.org/10.3390/cimb47070486 - 25 Jun 2025
Viewed by 669
Abstract
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including [...] Read more.
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including normal control, model group, and emodin-treated groups at different concentrations (5 μM, 10 μM, and 20 μM). We optimized the CoCl2 concentration via CCK-8 assay to ensure cell viability. ELISA, Western blotting, transmission electron microscopy, and immunofluorescence were employed to assess HIF-1α, IL-1β, and IL-18 levels, pyroptosis-related proteins, autophagy markers, and NLRP3 fluorescence intensity. Statistical analysis revealed that increased CoCl2 concentrations led to a significant cell viability reduction (p < 0.05), with 300 μM CoCl2 causing ~50% inhibition at 24 h. Transmission electron microscopy confirmed autophagosome formation in emodin-treated groups, while Western blotting showed dose-dependent downregulation of HIF-1α, NLRP3, BNIP3, and related proteins. Immunofluorescence revealed reduced NLRP3 fluorescence intensity with increasing emodin doses (p < 0.05), alongside dose-dependent cell viability recovery (p < 0.05). Our findings demonstrate that emodin alleviates RA synovitis through dual mechanisms: inhibition of mitochondrial autophagy to regulate the balance between mitochondrial autophagy and pyroptosis, and suppression of HIF-1α/NLRP3-mediated pyroptosis signaling, thereby reducing IL-1β and IL-18 release and inhibiting synovial cell proliferation. This study provides innovative approaches for targeted RA therapy. Full article
Show Figures

Figure 1

19 pages, 8031 KiB  
Article
Exploring Exosome Contributions to Gouty Arthritis: A Proteomics and Experimental Study
by Chengjin Lu, Xiaoxiong Yang, Xue Wang, Yu Wang, Bing Zhang and Zhijian Lin
Int. J. Mol. Sci. 2025, 26(11), 5320; https://doi.org/10.3390/ijms26115320 - 1 Jun 2025
Viewed by 709
Abstract
This study investigated the role of exosomes in the pathological processes of gouty arthritis (GA), with the aim of clarifying their mechanistic role and pathological significance in the onset and progression of GA. Using a rat model of GA established through potassium oxonate [...] Read more.
This study investigated the role of exosomes in the pathological processes of gouty arthritis (GA), with the aim of clarifying their mechanistic role and pathological significance in the onset and progression of GA. Using a rat model of GA established through potassium oxonate and yeast gavage combined with intra-articular monosodium urate (MSU) injection, we isolated and characterized plasma exosomes using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Differential exosomal protein expression was analyzed using 4D label-free proteomics technology, followed by GO and KEGG enrichment analyses, and protein–protein interaction (PPI) network construction to identify core targets. In vivo experiments measured the expression levels of CTSD in synovial tissues and joint fluid, as well as HPRT1 in renal tissues, while in vitro experiments involved co-culturing NRK cells with exosomes to validate target protein expression. The results indicated that serum uric acid levels were significantly elevated in the model group (p < 0.01), accompanied by pronounced joint swelling and inflammation. Exosome characterization confirmed their typical bilayer membrane structure and the expression of marker proteins (CD63/TSG101). Proteomic analysis identified 40 differentially expressed proteins (12 upregulated and 28 downregulated) enriched in pathways such as complement and coagulation cascades, autophagy, lysosomal function, and purine metabolism. In vivo and in vitro experiments demonstrated significantly increased CTSD expression (p < 0.05/p < 0.01) and decreased HPRT1 expression (p < 0.05/p < 0.01) in the model group, suggesting that exosomes are involved in the occurrence and development of GA by regulating purine metabolism and lysosomal dysfunction. These findings offer new insights into disease mechanisms and potential therapeutic targets. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 2267 KiB  
Review
Medical Ozone Increases Methotrexate Effects in Rheumatoid Arthritis Through a Shared New Mechanism Which Involves Adenosine
by Olga Sonia León Fernández, Gabriel Takon Oru, Renate Viebahn-Haensler, Gilberto López Cabreja, Irainis Serrano Espinosa and María Elena Corrales Vázquez
Int. J. Mol. Sci. 2025, 26(11), 5256; https://doi.org/10.3390/ijms26115256 - 29 May 2025
Viewed by 513
Abstract
Medical ozone is a redox regulator with beneficial effects in oxidative etiology diseases such as rheumatoid arthritis (RA). The aim of this study is to conduct a holistic review of different pharmacological trials involving ozone in model diseases, as well as the clinical [...] Read more.
Medical ozone is a redox regulator with beneficial effects in oxidative etiology diseases such as rheumatoid arthritis (RA). The aim of this study is to conduct a holistic review of different pharmacological trials involving ozone in model diseases, as well as the clinical responses of RA patients. The ROS (reactive oxygen species) involved in RA and their relationship with the main pathological pathways of this autoimmune disease are considered here. The integrative analysis of experimental results from animals with clinical findings reveals that both methotrexate (MTX) and medical ozone share common mechanisms via adenosinergic regulation. This finding enables us to propose a new pharmacological mechanism in the treatment of RA. We conclude that MTX + medical ozone combined therapy reduces ROS overproduction and the generation of proinflammatory cytokines and decreases anti-cyclic citrullinate peptide levels by a mutual mechanism involving adenosine A1 receptors. Full article
Show Figures

Figure 1

27 pages, 5833 KiB  
Article
Investigating the Role of Gut Microbiota in the Pathogenesis and Progression of Rheumatoid Arthritis in a Collagen-Induced Arthritis Mouse Model
by Paulína Belvončíková, Kristína Macáková, Nikola Tóthová, Pavel Babál, Lenka Tarabčáková and Roman Gardlík
Int. J. Mol. Sci. 2025, 26(11), 5099; https://doi.org/10.3390/ijms26115099 - 26 May 2025
Viewed by 681
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder whose precise etiology remains unclear, though growing evidence implicates gut microbiota in its pathogenesis. This study aimed to investigate the role of gut microbiota in the onset and progression of RA by employing fecal [...] Read more.
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder whose precise etiology remains unclear, though growing evidence implicates gut microbiota in its pathogenesis. This study aimed to investigate the role of gut microbiota in the onset and progression of RA by employing fecal microbiota transplantation (FMT) in a collagen-induced arthritis (CIA) mouse model using DBA/1J and Aire/ strains. Mice received FMT from healthy donors, treatment-naïve RA patients, or treated RA patients in relapse, followed by assessment of microbiota composition via 16S rRNA sequencing, arthritis severity scoring, histological evaluations, and systemic inflammatory markers. The findings revealed distinct microbiota clustering patterns post-FMT across experimental groups, highlighting strain-specific colonization effects. Notably, genera such as Bifidobacterium and Paraprevotella correlated positively with arthritis severity in DBA/1J mice, whereas Corynebacterium, Enterorhabdus, and Odoribacter exhibited negative correlations, suggesting potential protective roles. Despite these microbial differences, minor variations in arthritis scores, paw inflammation, or systemic inflammation were observed among FMT groups. This indicates that although gut microbiota alterations are associated with RA pathogenesis, further investigation with larger cohorts and comprehensive sequencing approaches is essential to elucidate the therapeutic potential of microbiome modulation in autoimmune diseases. Full article
Show Figures

Figure 1

21 pages, 2244 KiB  
Article
Therapeutic Effects of Two Different Molecular Weights of Orally Administered Hyaluronan, Both as Monotherapy and in Combination with Methotrexate in a Rat Model of Arthritis
by Sasan Khademnematolahi, Silvester Ponist, Karol Svik, Frantisek Drafi, Lukas Slovak, Jana Muchova, Elisabeth Louise Mindang, Waqar Ahmad and Katarina Bauerova
Int. J. Mol. Sci. 2025, 26(9), 3958; https://doi.org/10.3390/ijms26093958 - 22 Apr 2025
Viewed by 582
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation and systemic involvement. This study investigates the therapeutic potential of oral hyaluronan (HA) with different molecular weights (SHA: 0.99 MDa and VHA: 1.73 MDa) as monotherapy and in combination with methotrexate [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation and systemic involvement. This study investigates the therapeutic potential of oral hyaluronan (HA) with different molecular weights (SHA: 0.99 MDa and VHA: 1.73 MDa) as monotherapy and in combination with methotrexate (MTX) in a preclinical adjuvant arthritis (AA) model in Lewis rats. The aim was to evaluate the impact of these treatments on biometric, inflammatory, and oxidative stress parameters. The preliminary study tested two doses of HA (0.5 mg/kg and 5 mg/kg), and the pivotal study focused on the combination of 0.5 mg/kg HA with 0.3 mg/kg MTX. Based on our experimental findings on combined therapy, the MTX + SHA combination demonstrated superior efficacy compared to MTX + VHA and MTX monotherapy. Specifically, the MTX + SHA regimen significantly promoted weight gain and reduced hind-paw volume in all monitored experimental days. This treatment markedly reduced plasmatic IL-17A levels (day 21) and GGT activity in both the spleen and joints (day 28), showing the most pronounced effects among all groups, including the MTX monotherapy group. The MTX + VHA combination showed a therapeutic response comparable to MTX alone, indicating no additional benefit. These findings suggest a superior efficacy of the MTX + SHA combination in comparison to other studied treatments. The overall efficacy can be ranked as: MTX ≈ MTX + VHA < MTX + SHA. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 2068 KiB  
Article
Triacetyl-5-Azacytidine Suppresses Experimental Allergic Encephalomyelitis (EAE) in Mice
by Tibor Attila Rauch, Annamaria Marton, Tamás Solymosi, Hristos Glavinas and Csaba Vizler
Therapeutics 2025, 2(2), 6; https://doi.org/10.3390/therapeutics2020006 - 15 Apr 2025
Viewed by 368
Abstract
Background/Objectives: The epigenetic drug 5-azacytidine (AzaC) is being used for the treatment of myeloproliferative diseases. It has multiple immunomodulating activities: it enhances the activity of Treg cells and suppresses effector T cell proliferation and function. Our aim was to repurpose AzaC for the [...] Read more.
Background/Objectives: The epigenetic drug 5-azacytidine (AzaC) is being used for the treatment of myeloproliferative diseases. It has multiple immunomodulating activities: it enhances the activity of Treg cells and suppresses effector T cell proliferation and function. Our aim was to repurpose AzaC for the treatment of multiple sclerosis (MS). AzaC treatment of myelodysplastic syndrome often improves the autoimmune disorders accompanying it. Another epigenetic drug, decytabin, was effective in EAE, suggesting that AzaC might behave similarly. Earlier, we found that AzaC improves aggrecan-induced arthritis in mice, further supporting our hypothesis. Methods: AzaC was tested in an animal model of MS: MOG35–55-induced experimental allergic encephalomyelitis (EAE) in B6 mice. In addition to AzaC, its ester, prodrug triacetyl-5-azacytidine (TAC), reported earlier to exhibit improved stability and oral bioavailability, was also tested. Results: In our proof-of-concept experiment, i.p. administered AzaC ameliorated EAE. Then, we demonstrated that oral TAC is as effective as the positive comparator fingolimod. Next, we demonstrated that sub-optimal doses of oral TAC and fingolimod positively synergize. Importantly, the myelosuppression induced by TAC was not worse than that of the gold-standard fingolimod. Conclusions: Ours is the first study reporting the therapeutic activity of oral TAC. Both AzaC and TAC were effective in EAE; therefore, they can be proposed for the treatment of remitting–relapsing MS and possibly other autoimmune diseases. In addition, combination treatment with TAC and fingolimod might allow for lower individual drug doses, thus offering an alternative when side effects limit the use of current multiple sclerosis drugs. Full article
Show Figures

Figure 1

20 pages, 15109 KiB  
Article
Piceatannol Inhibits the Immunostimulatory Functions of Dendritic Cells and Alleviates Experimental Arthritis
by Luyang Han, Peng Han, Yanbo Zhu, Jiawei Dong, Zhenyang Guan, Yuekang Xu, Jinyao Li and Xiaoying Liu
Int. J. Mol. Sci. 2025, 26(8), 3626; https://doi.org/10.3390/ijms26083626 - 11 Apr 2025
Viewed by 617
Abstract
Rheumatoid arthritis (RA) is a highly prevalent systemic autoimmune disease. Recently, natural small molecules have been explored as alternative therapeutic agents. Iris halophila Pall is the traditional herbal medicine, and it is rich in active ingredients with anti-inflammatory and immunomodulatory effects. In our [...] Read more.
Rheumatoid arthritis (RA) is a highly prevalent systemic autoimmune disease. Recently, natural small molecules have been explored as alternative therapeutic agents. Iris halophila Pall is the traditional herbal medicine, and it is rich in active ingredients with anti-inflammatory and immunomodulatory effects. In our previous study, LC-MS analysis revealed that piceatannol (PIC) is one of the primary active ingredients in the root of Iris tectorum. The purpose of this study was to explore the immunomodulatory effects of PIC on the maturation and function of dendritic cells, as well as on experimental arthritis induced by complete Freund’s adjuvant (CFA) and incomplete Freund’s adjuvant (IFA). Additionally, we aimed to probe into the potential mechanisms underlying the effects of PIC. We first verified the immunosuppressive effect of PIC using flow cytometry and an ELISA. The immunosuppressive mechanism of PIC on dendritic cells (DCs) was investigated through a joint analysis of network pharmacology and Western blotting. Our findings revealed that under Lipopolysaccharide (LPS)-induced inflammatory conditions, PIC could restrain the maturation and function of DCs (p < 0.001) and decrease the secretion of inflammatory cytokines (p < 0.001) compared to the LPS group. Furthermore, PIC suppressed the activation and polarization of CD4+ T cells, resulting in a decreased proportion of Th1 and Th17 cells (p < 0.001), ultimately improving the symptoms of CFA-induced arthritis in comparison to the model group. The PIC-induced shift in the T helper cell differentiation correlated with the secretion of polarizing cytokines from DCs in the AIA model. Mechanistically, PIC exerted its immunosuppressive function mainly by down-regulating the Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor kappa-B (NF-κB) signaling pathways. Collectively, these data unveil the anti-inflammatory mechanisms of a traditional medicine via the inhibition of the immune activation function of DCs in vivo and open up a therapeutic approach for autoinflammatory diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop