Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = expansibility and contractility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 221 KiB  
Article
Left Atrial Structural and Functional Changes in Adults with Congenital Septal Defects and Paroxysmal Atrial Fibrillation
by Anton V. Minaev, Marina Yu. Mironenko, Vera I. Dontsova, Yulia D. Pirushkina, Bektur Sh. Berdibekov, Alexander S. Voynov, Julia A. Sarkisyan and Elena Z. Golukhova
J. Clin. Med. 2024, 13(19), 6023; https://doi.org/10.3390/jcm13196023 - 9 Oct 2024
Viewed by 1186
Abstract
Aims. To identify the difference between adult patients with septal defects and paroxysmal atrial fibrillation (AF) and patients without a history of arrhythmia using the left atrial (LA) volume and function parameters, to reveal the parameters associated with AF development. Methods and [...] Read more.
Aims. To identify the difference between adult patients with septal defects and paroxysmal atrial fibrillation (AF) and patients without a history of arrhythmia using the left atrial (LA) volume and function parameters, to reveal the parameters associated with AF development. Methods and results. In this prospective study, 81 patients with septal defects and left-to-right shunts were enrolled between 2021 and 2023 and divided into two groups: with paroxysmal AF and without AF. Left atrial function was analyzed based on the indexed left atrial volumes (LAVI and preA-LAVI), ejection fraction (LAEF), expansion index (LAEI), reservoir (LAS-r), conduit (LAS-cd) and contractile (LAS-ct) strain, and stiffness index (LASI) using a Philips CVx3D ultrasound system (Philips, Amsterdam, The Netherlands) and corresponding software. In total, 26 patients with paroxysmal atrial fibrillation (mean age: 59.6 ± 11.7 years, female: 80.8%) and 55 patients with septal defects without any history of arrhythmias (mean age: 44.8 ± 11.6 years, female: 81.8%) were included. All patients were in the NYHA class I or II at baseline. Our findings demonstrated a significant difference between all LA function parameters in the two groups. Upon univariable analysis, the LAVI, preA-LAVI, LASI, LAEF, LAEI, LAS-r, LAS-c, LAS-ct, age, cardiac index, E/A, and RV pressure were found to be associated with AF. The multivariate analysis identified LAVI (OR 1.236, 95% CI 1.022–1.494, p = 0.03), LAS-r (OR 0.723, 95% CI 0.556–0.940, p = 0.02), and LAS-ct (OR 1.518, 95% CI 1.225–1.880, p < 0.001) as independent predictors of AF development. The proposed model demonstrated high sensitivity and specificity with an adjusted classification threshold of 0.38 (AUC: 0.97, 95% CI 0.93–1.00, sensitivity 92% and specificity 92%, p < 0.001). Conclusions. The assessment of LA function using speckle-tracking echocardiography demonstrated significantly different values in the AF group among patients with congenital septal defects. This technique can therefore be implemented in routine clinical management. The key message. Atrial fibrillation development in adult patients with congenital septal defects and a left-to-right shunt is associated with the changes in left atrial function under conditions of an increased preload. Full article
37 pages, 4373 KiB  
Review
The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair?
by Fereshteh Sadat Younesi and Boris Hinz
Int. J. Mol. Sci. 2024, 25(16), 8712; https://doi.org/10.3390/ijms25168712 - 9 Aug 2024
Cited by 2 | Viewed by 3407
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is [...] Read more.
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring—called fibrosis—that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies. Full article
Show Figures

Figure 1

17 pages, 6061 KiB  
Article
Pharmacological Blockade of the Adenosine A2B Receptor Is Protective of Proteinuria in Diabetic Rats, through Affecting Focal Adhesion Kinase Activation and the Adhesion Dynamics of Podocytes
by Pablo Mendoza-Soto, Claudia Jara, Ángelo Torres-Arévalo, Carlos Oyarzún, Gonzalo A. Mardones, Claudia Quezada-Monrás and Rody San Martín
Cells 2024, 13(10), 846; https://doi.org/10.3390/cells13100846 - 16 May 2024
Cited by 3 | Viewed by 1635
Abstract
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We [...] Read more.
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

15 pages, 2889 KiB  
Article
Effects of High-Dose Cyclophosphamide on Ultrastructural Changes and Gene Expression Profiles in the Cardiomyocytes of C57BL/6J Mice
by Takuro Nishikawa, Emiko Miyahara, Ieharu Yamazaki, Kazuro Ikawa, Shunsuke Nakagawa, Yuichi Kodama, Yoshifumi Kawano and Yasuhiro Okamoto
Diseases 2024, 12(5), 85; https://doi.org/10.3390/diseases12050085 - 27 Apr 2024
Cited by 1 | Viewed by 1977
Abstract
The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown, and methods for its prevention have not been established. To elucidate the acute structural changes that take place in myocardial cells and the pathways leading to myocardial damage under high-dose CY treatments, we performed detailed [...] Read more.
The pathogenesis of cyclophosphamide (CY)-induced cardiotoxicity remains unknown, and methods for its prevention have not been established. To elucidate the acute structural changes that take place in myocardial cells and the pathways leading to myocardial damage under high-dose CY treatments, we performed detailed pathological analyses of myocardial tissue obtained from C57BL/6J mice subjected to a high-dose CY treatment. Additionally, we analysed the genome-wide cardiomyocyte expression profiles of mice subjected to the high-dose CY treatment. Treatment with CY (400 mg/kg/day intraperitoneally for two days) caused marked ultrastructural aberrations, as observed using electron microscopy, although these aberrations could not be observed using optical microscopy. The expansion of the transverse tubule and sarcoplasmic reticulum, turbulence in myocardial fibre travel, and a low contractile protein density were observed in cardiomyocytes. The high-dose CY treatment altered the cardiomyocyte expression of 1210 genes (with 675 genes upregulated and 535 genes downregulated) associated with cell–cell junctions, inflammatory responses, cardiomyopathy, and cardiac muscle function, as determined using microarray analysis (|Z-score| > 2.0). The expression of functionally important genes related to myocardial contraction and the regulation of calcium ion levels was validated using real-time polymerase chain reaction analysis. The results of the gene expression profiling, functional annotation clustering, and Kyoto Encyclopedia of Genes and Genomes pathway functional-classification analysis suggest that CY-induced cardiotoxicity is associated with the disruption of the Ca2+ signalling pathway. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 30994 KiB  
Article
Combined Soft Grasping and Crawling Locomotor Robot for Exterior Navigation of Tubular Structures
by Nicolás Mendoza and Mahdi Haghshenas-Jaryani
Machines 2024, 12(3), 157; https://doi.org/10.3390/machines12030157 - 24 Feb 2024
Cited by 6 | Viewed by 2069
Abstract
This paper presents the design, development, and testing of a robot that combines soft-body grasping and crawling locomotion to navigate tubular objects. Inspired by the natural snakes’ climbing locomotion of tubular objects, the soft robot includes proximal and distal modules with radial expansion/contraction [...] Read more.
This paper presents the design, development, and testing of a robot that combines soft-body grasping and crawling locomotion to navigate tubular objects. Inspired by the natural snakes’ climbing locomotion of tubular objects, the soft robot includes proximal and distal modules with radial expansion/contraction for grasping around the objects and a longitudinal contractile–expandable driving module in-between for providing a bi-directional crawling movement along the length of the object. The robot’s grasping modules are made of fabrics, and the crawling module is made of an extensible pneumatic soft actuator (ePSA). Conceptual designs and CAD models of the robot parts, textile-based inflatable structures, and pneumatic driving mechanisms were developed. The mechanical parts were fabricated using advanced and conventional manufacturing techniques. An Arduino-based electro-pneumatic control board was developed for generating cyclic patterns of grasping and locomotion. Different reinforcing patterns and materials characterize the locomotor actuators’ dynamical responses to the varying input pressures. The robot was tested in a laboratory setting to navigate a cable, and the collected data were used to modify the designs and control software and hardware. The capability of the soft robot for navigating cables in vertical, horizontal, and curved path scenarios was successfully demonstrated. Compared to the initial design, the forward speed is improved three-fold. Full article
(This article belongs to the Special Issue Biorobotic Locomotion and Cybernetic Control)
Show Figures

Figure 1

12 pages, 1946 KiB  
Article
The Influence of Food Intake and Preload Augmentation on Cardiac Functional Parameters: A Study Using Both Cardiac Magnetic Resonance and Echocardiography
by Lasse Visby, Rasmus Møgelvang, Frederik Fasth Grund, Katrine Aagaard Myhr, Christian Hassager, Niels Vejlstrup, Raj Mattu and Charlotte Burup Kristensen
J. Clin. Med. 2023, 12(21), 6781; https://doi.org/10.3390/jcm12216781 - 26 Oct 2023
Cited by 1 | Viewed by 1390
Abstract
(1) Background: To investigate how food intake and preload augmentation affect the cardiac output (CO) and volumes of the left ventricle (LV) and right ventricle (RV) assessed using cardiac magnetic resonance (CMR) and trans-thoracic echocardiography (TTE). (2) Methods: Eighty-two subjects with (n [...] Read more.
(1) Background: To investigate how food intake and preload augmentation affect the cardiac output (CO) and volumes of the left ventricle (LV) and right ventricle (RV) assessed using cardiac magnetic resonance (CMR) and trans-thoracic echocardiography (TTE). (2) Methods: Eighty-two subjects with (n = 40) and without (n = 42) cardiac disease were assessed using both CMR and TTE immediately before and after a fast infusion of 2 L isotonic saline. Half of the population had a meal during saline infusion (food/fluid), and the other half were kept fasting (fasting/fluid). We analyzed end-diastolic (EDV) and end-systolic (ESV) volumes and feature tracking (FT) using CMR, LV global longitudinal strain (GLS), and RV longitudinal strain (LS) using TTE. (3) Results: CO assessed using CMR increased significantly in both groups, and the increase was significantly higher in the food/fluid group: LV-CO (ΔLV-CO: +2.6 ± 1.3 vs. +0.7 ± 1.0 p < 0.001), followed by increased heart rate (HR) (ΔHR: +12 ± 8 vs. +1 ± 6 p < 0.001). LV and RV achieved increased stroke volume (SV) through different mechanisms. For the LV, through increased contractility, increased LV-EDV, decreased LV-ESV, increased LV-FT, and GLS were observed. For the RV, increased volumes, increased RV-EDV, increased RV-ESV, and at least for the fasting/fluid group, unchanged RV-FT and RV-LS were reported. (4) Conclusions: Preload augmentation and food intake have a significant impact on hemodynamic and cardiac functional parameters. This advocates for standardized recommendations regarding oral intake of fluid and food before cardiac assessment, for example, TTE, CMR, and right heart catheterization. We also demonstrate different approaches for the LV and RV to increase SV: for the LV by increased contractility, and for the RV by volume expansion. Full article
Show Figures

Figure 1

19 pages, 28051 KiB  
Article
Nicotine Administration Augments Abdominal Aortic Aneurysm Progression in Rats
by Hana Hadzikadunic, Tea Bøvling Sjælland, Jes S. Lindholt, Lasse Bach Steffensen, Hans Christian Beck, Egle Kavaliunaite, Lars Melholt Rasmussen and Jane Stubbe
Biomedicines 2023, 11(5), 1417; https://doi.org/10.3390/biomedicines11051417 - 10 May 2023
Cited by 5 | Viewed by 3397
Abstract
Inflammation and elastin degradation are key hallmarks in the pathogenesis of abdominal aortic aneurysms (AAAs). It has been acknowledged that activation of alpha7 nicotinic acetylcholine receptors (α7nAChRs) attenuates inflammation, termed the cholinergic anti-inflammatory pathway (CAP). Thus, we hypothesize that low-dose nicotine impairs the [...] Read more.
Inflammation and elastin degradation are key hallmarks in the pathogenesis of abdominal aortic aneurysms (AAAs). It has been acknowledged that activation of alpha7 nicotinic acetylcholine receptors (α7nAChRs) attenuates inflammation, termed the cholinergic anti-inflammatory pathway (CAP). Thus, we hypothesize that low-dose nicotine impairs the progression of elastase-induced AAAs in rats by exerting anti-inflammatory and anti-oxidative stress properties. Male Sprague–Dawley rats underwent surgical AAA induction with intraluminal elastase infusion. We compared vehicle rats with rats treated with nicotine (1.25 mg/kg/day), and aneurysm progression was monitored by weekly ultrasound images for 28 days. Nicotine treatment significantly promoted AAA progression (p = 0.031). Additionally, gelatin zymography demonstrated that nicotine significantly reduced pro-matrix metalloproteinase (pro-MMP) 2 (p = 0.029) and MMP9 (p = 0.030) activity in aneurysmal tissue. No significant difference was found in the elastin content or the score of elastin degradation between the groups. Neither infiltrating neutrophils nor macrophages, nor aneurysmal messenger RNA (mRNA) levels of pro- or anti-inflammatory cytokines, differed between the vehicle and nicotine groups. Finally, no difference in mRNA levels of markers for anti-oxidative stress or the vascular smooth muscle cells’ contractile phenotype was observed. However, proteomics analyses of non-aneurysmal abdominal aortas revealed that nicotine decreased myristoylated alanine-rich C-kinase substrate and proteins, in ontology terms, inflammatory response and reactive oxygen species, and in contradiction to augmented AAAs. In conclusion, nicotine at a dose of 1.25 mg/kg/day augments AAA expansion in this elastase AAA model. These results do not support the use of low-dose nicotine administration for the prevention of AAA progression. Full article
(This article belongs to the Special Issue Potential Medical Treatments of Abdominal Aortic Aneurysms)
Show Figures

Figure 1

13 pages, 3720 KiB  
Article
Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance
by Muh Amdadul Hoque, Emily Petersen and Xiaomeng Fang
Actuators 2023, 12(3), 129; https://doi.org/10.3390/act12030129 - 18 Mar 2023
Cited by 4 | Viewed by 17938
Abstract
Thin fiber-shaped pneumatic artificial muscle (PAM) can generate contractile motions upon stimulation, and it is well known for its good compliance, high weight-to-power ratio, resemblance to animal muscle movements, and, most importantly, the capability to be integrated into fabrics and other textile forms [...] Read more.
Thin fiber-shaped pneumatic artificial muscle (PAM) can generate contractile motions upon stimulation, and it is well known for its good compliance, high weight-to-power ratio, resemblance to animal muscle movements, and, most importantly, the capability to be integrated into fabrics and other textile forms for wearable devices. This fiber-shaped device, based on McKibben technology, consists of an elastomeric bladder that is wrapped around by a braided sleeve, which transfers radial expansion into longitudinal contraction due to the change in the sleeve’s braiding angle while being inflated. This paper investigates the effect of material properties on fiber-shaped PAM’s behavior, including the braiding yarn and bladder’s dimensional and mechanical properties. A range of samples with combinations of yarn and bladder parameters were developed and characterized. A robust fabrication process verified through several calibration and control experiments of PAM was applied, which ensured a more accurate characterization of the actuators. The results demonstrate that material properties, such as yarn stiffness, yarn diameter, bladder diameter, and bladder hardness, have significant effects on PAMs’ deformation strains and forces generated. The findings can serve as fundamental guidelines for the future design and development of fiber-shaped pneumatic actuators. Full article
Show Figures

Figure 1

13 pages, 2574 KiB  
Article
Effects of ATP on Time Parameters of Contractility of Rats’ Slow and Fast Skeletal Muscles in Normal and Hypothermic Conditions
by Adel E. Khairullin, Sergey N. Grishin, Azat I. Gabdrahmanov and Ayrat U. Ziganshin
Muscles 2023, 2(1), 23-35; https://doi.org/10.3390/muscles2010003 - 12 Jan 2023
Cited by 2 | Viewed by 2404
Abstract
We have previously shown that hypothermia leads to an increase in the synaptic modulating effects of ATP but not of adenosine in several different animal skeletal muscles. In this paper, we studied the effect of ATP on the amplitude–time parameters of single and [...] Read more.
We have previously shown that hypothermia leads to an increase in the synaptic modulating effects of ATP but not of adenosine in several different animal skeletal muscles. In this paper, we studied the effect of ATP on the amplitude–time parameters of single and tetanic contractions of rats’ isolated fast (1) and slow (2) muscles at different temperatures. We found that when muscles were stimulated by the electrical field (0.1 Hz, 0.5 ms, 10 V), with a decrease in the bath temperature from 37 °C to 14 °C (3), there was an increase in the half-relaxation time of the slow muscle (m. soleus), but not of the fast muscle (m. EDL). Similar effects were observed using a carbachol-induced contraction technique, which suggests the postsynaptic (4) nature of the expansion of the contractile response of the slow muscle induced by ATP (5). To confirm the postsynaptic nature of the observed phenomenon, experiments were performed at a high calcium level (7.2 mM), in which the presynaptic effects of ATP were shown to be offset. We found that the hypercalcium condition did not significantly change the effects of ATP on the measured parameters in both muscles. To record muscle tetanic contractions, we gradually increased the frequency of electrical impulses with the increment of 2.5 Hz to achieve the fusion frequencies of 12.5 Hz for m. soleus and 17.5 Hz for m. EDL at normal temperatures. ATP (100 μM) did not change the fusion frequency for both muscles at a normal temperature but decreased this parameter for the slow muscle to 5 Hz at 14 °C without affecting that for the fast muscle. We conclude that ATP potentiates a hypothermia-induced increase in the half-relaxation time of the contraction of rats’ slow, but not fast, skeletal muscles by acting on postsynaptic P2 receptors (6). Full article
(This article belongs to the Special Issue Feature Papers in Muscles)
Show Figures

Figure 1

14 pages, 7349 KiB  
Article
Mechanisms of Basement Membrane Micro-Perforation during Cancer Cell Invasion into a 3D Collagen Gel
by Shayan S. Nazari, Andrew D. Doyle and Kenneth M. Yamada
Gels 2022, 8(9), 567; https://doi.org/10.3390/gels8090567 - 7 Sep 2022
Cited by 10 | Viewed by 4493
Abstract
Cancer invasion through basement membranes represents the initial step of tumor dissemination and metastasis. However, little is known about how human cancer cells breach basement membranes. Here, we used a three-dimensional in vitro invasion model consisting of cancer spheroids encapsulated by a basement [...] Read more.
Cancer invasion through basement membranes represents the initial step of tumor dissemination and metastasis. However, little is known about how human cancer cells breach basement membranes. Here, we used a three-dimensional in vitro invasion model consisting of cancer spheroids encapsulated by a basement membrane and embedded in 3D collagen gels to visualize the early events of cancer invasion by confocal microscopy and live-cell imaging. Human breast cancer cells generated large numbers of basement membrane perforations, or holes, of varying sizes that expanded over time during cell invasion. We used a wide variety of small molecule inhibitors to probe the mechanisms of basement membrane perforation and hole expansion. Protease inhibitor treatment (BB94), led to a 63% decrease in perforation size. After myosin II inhibition (blebbistatin), the basement membrane perforation area decreased by only 15%. These treatments produced correspondingly decreased cellular breaching events. Interestingly, inhibition of actin polymerization dramatically decreased basement membrane perforation by 80% and blocked invasion. Our findings suggest that human cancer cells can primarily use proteolysis and actin polymerization to perforate the BM and to expand perforations for basement membrane breaching with a relatively small contribution from myosin II contractility. Full article
(This article belongs to the Special Issue Cancer Cell Biology in Biological Hydrogel)
Show Figures

Graphical abstract

13 pages, 4453 KiB  
Article
Research on the Mechanism and Prevention Methods of the Drying Shrinkage Effect of Earthen Sites
by Zehuan Zhang, Jianzhong Yang, Jianwei Yue, Wenhao Li and Huijie Gao
Materials 2022, 15(7), 2595; https://doi.org/10.3390/ma15072595 - 1 Apr 2022
Cited by 4 | Viewed by 2533
Abstract
In view of the fact that it is easy for the ancient city soil site of Cai Kingdom to expand and crack when encountering water, this paper explores the methods to improve the expansion and shrinkage deformation, dry shrinkage cracks and easy water [...] Read more.
In view of the fact that it is easy for the ancient city soil site of Cai Kingdom to expand and crack when encountering water, this paper explores the methods to improve the expansion and shrinkage deformation, dry shrinkage cracks and easy water absorption characteristics of the expanded site soil based on a lime and silicone hydrophobic agent. In this paper, the expansive clay in the old city site of Cai Kingdom in Zhumadian was taken as the research object, and the dry-shrinkage fissure test of saturated expansive soil was carried out, to study the influencing factors of the dry-shrinkage cracking of expansive soil in this area. The site soil was modified with lime and glue powder, and the fissure image was quantitatively analyzed by MATLAB. The test shows that the smaller the particle size, the faster the evaporation of water and the smaller the surface fissure rate; the thicker the thickness of the soil sample, the greater the surface fissure rate and the greater the crack width; and with the increase in the number of drying and wetting cycles, the surface fissure rate of the soil sample increases. In this paper, lime and waterproof materials are used to improve the expansive soil. This not only reduces the dry shrinkage crack rate, but also improves the waterproof performance and durability of expansive soil. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 892 KiB  
Review
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis
by Jasni Viralippurath Ashraf and Ayman Al Haj Zen
Int. J. Mol. Sci. 2021, 22(19), 10585; https://doi.org/10.3390/ijms221910585 - 30 Sep 2021
Cited by 49 | Viewed by 6851
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered [...] Read more.
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease. Full article
(This article belongs to the Special Issue Arteriogenesis and Therapeutic Angiogenesis)
Show Figures

Figure 1

21 pages, 6031 KiB  
Article
Antigen-Based Nano-Immunotherapy Controls Parasite Persistence, Inflammatory and Oxidative Stress, and Cardiac Fibrosis, the Hallmarks of Chronic Chagas Cardiomyopathy, in A Mouse Model of Trypanosoma cruzi Infection
by Nandadeva Lokugamage, Subhadip Choudhuri, Carolina Davies, Imran Hussain Chowdhury and Nisha Jain Garg
Vaccines 2020, 8(1), 96; https://doi.org/10.3390/vaccines8010096 - 21 Feb 2020
Cited by 16 | Viewed by 4906
Abstract
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated [...] Read more.
Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). We identified two candidate antigens (TcG2 and TcG4) that elicit antibodies and T cell responses in naturally infected diverse hosts. In this study, we cloned TcG2 and TcG4 in a nanovector and evaluated whether nano-immunotherapy (referred as nano2/4) offers resistance to chronic Chagas disease. For this, C57BL/6 mice were infected with Tc and given nano2/4 at 21 and 42 days post-infection (pi). Non-infected, infected, and infected mice treated with pcDNA3.1 expression plasmid encoding TcG2/TcG4 (referred as p2/4) were used as controls. All mice responded to Tc infection with expansion and functional activation of splenic lymphocytes. Flow cytometry showed that frequency of splenic, poly-functional CD4+ and CD8+ T cells expressing interferon-γ, perforin, and granzyme B were increased by immunotherapy (Tc.nano2/4 > Tc.p2/4) and associated with 88%–99.7% decline in cardiac and skeletal (SK) tissue levels of parasite burden (Tc.nano2/4 > Tc.p2/4) in Chagas mice. Subsequently, Tc.nano2/4 mice exhibited a significant decline in peripheral and tissues levels of oxidative stress (e.g., 4-hydroxynonenal, protein carbonyls) and inflammatory infiltrate that otherwise were pronounced in Chagas mice. Further, nano2/4 therapy was effective in controlling the tissue infiltration of pro-fibrotic macrophages and established a balanced environment controlling the expression of collagens, metalloproteinases, and other markers of cardiomyopathy and improving the expression of Myh7 (encodes β myosin heavy chain) and Gsk3b (encodes glycogen synthase kinase 3) required for maintaining cardiac contractility in Chagas heart. We conclude that nano2/4 enhances the systemic T cell immunity that improves the host’s ability to control chronic parasite persistence and Chagas cardiomyopathy. Full article
Show Figures

Figure 1

18 pages, 5085 KiB  
Article
Effects of Off-Plane Deformation and Biased Bi-Axial Pre-Strains on a Planar Contractile Dielectric Elastomer Actuator
by Runan Zhang, Pejman Iravani and Patrick Keogh
Actuators 2018, 7(4), 75; https://doi.org/10.3390/act7040075 - 30 Oct 2018
Cited by 3 | Viewed by 5605
Abstract
Dielectric elastomers are in a special class of electro-active polymers known for generating expansion in plane and contraction in thickness under voltage application. This paper advances the understanding of a planar contractile dielectric elastomer actuator (cDEA) that is distinct from conventional multi-layer cDEAs [...] Read more.
Dielectric elastomers are in a special class of electro-active polymers known for generating expansion in plane and contraction in thickness under voltage application. This paper advances the understanding of a planar contractile dielectric elastomer actuator (cDEA) that is distinct from conventional multi-layer cDEAs but generates comparable contractile strains. Its structure has a rod-constrained rhombus-shaped electrode region, which undergoes simultaneous in-plane contraction and extension during actuation depending on the configuration of the rod-constraining. It is demonstrated that when the planar cDEA is driven by high voltages, off-plane deformation (i.e., wrinkling) in the direction of contraction causes the rod-constrained electrode region to lose tension and extend in the lateral direction, resulting in a significant increase in contraction strain. It also demonstrates that the contraction strain can be increased further by having biased bi-axial pre-strains. By incorporating both effects, the new cDEA generates a maximum contraction strain of 13%, twice that reported previously for planar cDEAs. A modified planar cDEA, having an additional rigid frame to maintain the pre-strain in the lateral direction to contraction was also developed to demonstrate contractile force actuation. Finally, a stability study shows that the planar cDEA has a primary failure mode of electrical breakdown close to the corners of the rod-constrained electrode region. Having inactive regions around the active cell is essential for generating contraction and eliminating buckling of the planar cDEA in the lateral direction. Full article
Show Figures

Figure 1

18 pages, 970 KiB  
Review
cGMP Signaling and Vascular Smooth Muscle Cell Plasticity
by Moritz Lehners, Hyazinth Dobrowinski, Susanne Feil and Robert Feil
J. Cardiovasc. Dev. Dis. 2018, 5(2), 20; https://doi.org/10.3390/jcdd5020020 - 19 Apr 2018
Cited by 52 | Viewed by 9769
Abstract
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as [...] Read more.
Cyclic GMP regulates multiple cell types and functions of the cardiovascular system. This review summarizes the effects of cGMP on the growth and survival of vascular smooth muscle cells (VSMCs), which display remarkable phenotypic plasticity during the development of vascular diseases, such as atherosclerosis. Recent studies have shown that VSMCs contribute to the development of atherosclerotic plaques by clonal expansion and transdifferentiation to macrophage-like cells. VSMCs express a variety of cGMP generators and effectors, including NO-sensitive guanylyl cyclase (NO-GC) and cGMP-dependent protein kinase type I (cGKI), respectively. According to the traditional view, cGMP inhibits VSMC proliferation, but this concept has been challenged by recent findings supporting a stimulatory effect of the NO-cGMP-cGKI axis on VSMC growth. Here, we summarize the relevant studies with a focus on VSMC growth regulation by the NO-cGMP-cGKI pathway in cultured VSMCs and mouse models of atherosclerosis, restenosis, and angiogenesis. We discuss potential reasons for inconsistent results, such as the use of genetic versus pharmacological approaches and primary versus subcultured cells. We also explore how modern methods for cGMP imaging and cell tracking could help to improve our understanding of cGMP’s role in vascular plasticity. We present a revised model proposing that cGMP promotes phenotypic switching of contractile VSMCs to VSMC-derived plaque cells in atherosclerotic lesions. Regulation of vascular remodeling by cGMP is not only an interesting new therapeutic strategy, but could also result in side effects of clinically used cGMP-elevating drugs. Full article
(This article belongs to the Special Issue Cyclic Nucleotide Signaling and the Cardiovascular System)
Show Figures

Figure 1

Back to TopTop