Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = executor gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2118 KB  
Article
Ribosomal Hibernation Factor Links Quorum-Sensing to Acid Resistance in EHEC
by Yang Yang, Xinyi Zhang, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1730; https://doi.org/10.3390/microorganisms13081730 - 24 Jul 2025
Viewed by 731
Abstract
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with [...] Read more.
The mechanism by which quorum sensing (QS) enhances stress resistance in enterohemorrhagic Escherichia coli (E. coli) O157:H7 remains unclear. We employed optimized exogenous QS signal N-acyl-homoserinelactones (AHL) (100 μM 3-oxo-C6-AHL, 2 h) in EHEC O157:H7 strain EDL933, which was validated with endogenous yenI-derived AHL, to investigate QS-mediated protection against acid stress. RNA-seq transcriptomics identified key upregulated genes (e.g., rmf). Functional validation using isogenic rmf knockout mutants generated via λ-Red demonstrated abolished stress resistance and pan-stress vulnerability. Mechanistic studies employing qRT-PCR and stress survival assays established Ribosomal Hibernation Factor (RMF) as a non-redundant executor in a SdiA–RMF–RpoS axis, which activates ribosomal dormancy and SOS response to enhance EHEC survival under diverse stresses. For the first time, we define ribosomal hibernation as the core adaptive strategy linking QS to pathogen resilience, providing crucial mechanistic insights for developing EHEC control measures against foodborne threats. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

21 pages, 722 KB  
Review
SnRK2s: Kinases or Substrates?
by Yunmin Wei, Linzhu Peng and Xiangui Zhou
Plants 2025, 14(8), 1171; https://doi.org/10.3390/plants14081171 - 9 Apr 2025
Cited by 4 | Viewed by 2933
Abstract
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to [...] Read more.
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to modulate gene expression and physiological adjustments. While SnRK2 substrates have been extensively identified, the existing literature lacks a systematic classification of these components and their functional implications. This review synthesizes recent advances in characterizing SnRK2-phosphorylated substrates in Arabidopsis thaliana, providing a mechanistic framework for their roles in stress signaling and developmental regulation. Furthermore, we explore the understudied paradigm of SnRK2 undergoing multilayered post-translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, S-nitrosylation, sulfation (S-sulfination and tyrosine sulfation), and N-glycosylation. These PTMs collectively fine-tune SnRK2 stability, activity, and subcellular dynamics, revealing an intricate feedback system that balances kinase activation and attenuation. By integrating substrate networks with regulatory modifications, this work highlights SnRK2’s dual role as both a phosphorylation executor and a PTM-regulated scaffold, offering new perspectives for engineering stress-resilient crops through targeted manipulation of SnRK2 signaling modules. Full article
Show Figures

Figure 1

23 pages, 1051 KB  
Review
Cardiac Metabolism and MiRNA Interference
by Krishnamoorthi Sumaiya, Thiruvelselvan Ponnusamy, Kalimuthusamy Natarajaseenivasan and Santhanam Shanmughapriya
Int. J. Mol. Sci. 2023, 24(1), 50; https://doi.org/10.3390/ijms24010050 - 20 Dec 2022
Cited by 17 | Viewed by 4831
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers’ attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in [...] Read more.
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers’ attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3’ seed sequence and conserved heptametrical sequence in the 5’ end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches. Full article
(This article belongs to the Special Issue MicroRNA Signaling in Human Diseases 2.0)
Show Figures

Figure 1

12 pages, 4026 KB  
Article
Caspase-1 Inhibition Reduces Occurrence of PANoptosis in Macrophages Infected by E. faecalis OG1RF
by Danlu Chi, Yuejiao Zhang, Xinwei Lin, Qimei Gong and Zhongchun Tong
J. Clin. Med. 2022, 11(20), 6204; https://doi.org/10.3390/jcm11206204 - 21 Oct 2022
Cited by 10 | Viewed by 3497
Abstract
To investigate the effect of caspase-1 inhibition on PANoptosis in macrophages infected with Enterococcus faecalis OG1RF. RAW264.7 cells with and without pretreatment by caspase-1 inhibitor were infected with E. faecalis OG1RF at multiplicities of infection (MOIs). A live cell imaging analysis system and [...] Read more.
To investigate the effect of caspase-1 inhibition on PANoptosis in macrophages infected with Enterococcus faecalis OG1RF. RAW264.7 cells with and without pretreatment by caspase-1 inhibitor were infected with E. faecalis OG1RF at multiplicities of infection (MOIs). A live cell imaging analysis system and Western blot were applied to evaluate the dynamic curve of cell death and the expression of executor proteins of PANoptosis. The mRNA expression of IL-1β and IL-18 was quantified by RT-qPCR. Morphological changes were observed under scanning electron microscopy. We found that PI-positive cells emerged earlier and peaked at a faster rate in E. faecalis-infected macrophages (Ef-MPs) at higher MOIs. The expression of the N-terminal domain of the effector protein gasdermin D (GSDMD-N), cleaved caspase-3 and pMLKL were significantly upregulated at MOIs of 10:1 at 6 h and at MOI of 1:1 at 12 h postinfection. In Ef-MPs pretreated with caspase-1 inhibitor, the number of PI-positive cells was significantly reduced, and the expression of IL-1β and IL-18 genes and cleaved caspase-1/-3 and GSDMD-N proteins was significantly downregulated (p < 0.05), while pMLKL was still markedly increased (p < 0.05). Ef-MPs remained relatively intact with caspase-1 inhibitor. In conclusion, E. faecalis induced cell death in macrophages in an MOI-dependent manner. Caspase-1 inhibitor simultaneously inhibited pyroptosis and apoptosis in Ef-MPs, but necroptosis still occurred. Full article
(This article belongs to the Special Issue Clinical Updates in Endodontics)
Show Figures

Figure 1

11 pages, 2776 KB  
Article
Ectopic Expression of Executor Gene Xa23 Enhances Resistance to Both Bacterial and Fungal Diseases in Rice
by Zhiyuan Ji, Hongda Sun, Yena Wei, Man Li, Hongjie Wang, Jiangmin Xu, Cailin Lei, Chunlian Wang and Kaijun Zhao
Int. J. Mol. Sci. 2022, 23(12), 6545; https://doi.org/10.3390/ijms23126545 - 11 Jun 2022
Cited by 10 | Viewed by 3446
Abstract
Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae ( [...] Read more.
Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae (M. oryzae), is the most devastating fungal disease in rice. Generating broad-spectrum resistance to these diseases is one of the key approaches for the sustainable production of rice. Executor (E) genes are a unique type of plant resistance (R) genes, which can specifically trap transcription activator-like effectors (TALEs) of pathogens and trigger an intense defense reaction characterized by a hypersensitive response in the host. This strong resistance is a result of programed cell death induced by the E gene expression that is only activated upon the binding of a TALE to the effector-binding element (EBE) located in the E gene promoter during the pathogen infection. Our previous studies revealed that the E gene Xa23 has the broadest and highest resistance to BB. To investigate whether the Xa23-mediated resistance is efficient against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of BLS, we generated a new version of Xa23, designated as Xa23p1.0, to specifically trap the conserved TALEs from multiple Xoc strains. The results showed that the Xa23p1.0 confers broad resistance against both BB and BLS in rice. Moreover, our further experiment on the Xa23p1.0 transgenic plants firstly demonstrated that the E-gene-mediated defensive reaction is also effective against M. oryzae, the causal agent of the most devastating fungal disease in rice. Our current work provides a new strategy to exploit the full potential of the E-gene-mediated disease resistance in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 3674 KB  
Article
Relative Telomere Length Change in Colorectal Carcinoma and Its Association with Tumor Characteristics, Gene Expression and Microsatellite Instability
by Muhammad G. Kibriya, Maruf Raza, Mohammed Kamal, Zahidul Haq, Rupash Paul, Andrew Mareczko, Brandon L. Pierce, Habibul Ahsan and Farzana Jasmine
Cancers 2022, 14(9), 2250; https://doi.org/10.3390/cancers14092250 - 30 Apr 2022
Cited by 16 | Viewed by 3042
Abstract
We compared tumor and adjacent normal tissue samples from 165 colorectal carcinoma (CRC) patients to study change in relative telomere length (RTL) and its association with different histological and molecular features. To measure RTL, we used a Luminex-based assay. We observed shorter RTL [...] Read more.
We compared tumor and adjacent normal tissue samples from 165 colorectal carcinoma (CRC) patients to study change in relative telomere length (RTL) and its association with different histological and molecular features. To measure RTL, we used a Luminex-based assay. We observed shorter RTL in the CRC tissue compared to paired normal tissue (RTL 0.722 ± SD 0.277 vs. 0.809 ± SD 0.242, p = 0.00012). This magnitude of RTL shortening (by ~0.08) in tumor tissue is equivalent to RTL shortening seen in human leukocytes over 10 years of aging measured by the same assay. RTL was shorter in cancer tissue, irrespective of age group, gender, tumor pathology, location and microsatellite instability (MSI) status. RTL shortening was more prominent in low-grade CRC and in the presence of microsatellite instability (MSI). In a subset of patients, we also examined differential gene expression of (a) telomere-related genes, (b) genes in selected cancer-related pathways and (c) genes at the genome-wide level in CRC tissues to determine the association between gene expression and RTL changes. RTL shortening in CRC was associated with (a) upregulation of DNA replication genes, cyclin dependent-kinase genes (anti-tumor suppressor) and (b) downregulation of “caspase executor”, reducing apoptosis. Full article
(This article belongs to the Special Issue The Dual Roles of Telomeres and Telomerase in Aging and Cancer)
Show Figures

Figure 1

11 pages, 628 KB  
Review
Plant Executor Genes
by Zhiyuan Ji, Wei Guo, Xifeng Chen, Chunlian Wang and Kaijun Zhao
Int. J. Mol. Sci. 2022, 23(3), 1524; https://doi.org/10.3390/ijms23031524 - 28 Jan 2022
Cited by 26 | Viewed by 4863
Abstract
Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host–Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called “susceptibility” ( [...] Read more.
Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host–Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called “susceptibility” (S) genes for disease development. This activation is achieved via the binding of the TALEs to the effector-binding element (EBE) in the S gene promoter. However, host plants have evolved EBEs in the promoters of some otherwise silent R genes, whose expression directly causes a host cell death that is characterized by a hypersensitive response (HR). Such R genes are called E genes because they trap the pathogen TALEs in order to activate expression, and the resulting HR prevents pathogen growth and disease development. Currently, deploying E gene resistance is becoming a major component in disease resistance breeding, especially for rice bacterial blight resistance. Currently, the biochemical mechanisms, or the working pathways of the E proteins, are still fuzzy. There is no significant nucleotide sequence homology among E genes, although E proteins share some structural motifs that are probably associated with the signal transduction in the effector-triggered immunity. Here, we summarize the current knowledge regarding TALE-type avirulence proteins, E gene activation, the E protein structural traits, and the classification of E genes, in order to sharpen our understanding of the plant E genes. Full article
(This article belongs to the Special Issue Plant-Microbe Interactions)
Show Figures

Figure 1

17 pages, 1312 KB  
Review
Recent Progress in Rice Broad-Spectrum Disease Resistance
by Zhiquan Liu, Yujun Zhu, Huanbin Shi, Jiehua Qiu, Xinhua Ding and Yanjun Kou
Int. J. Mol. Sci. 2021, 22(21), 11658; https://doi.org/10.3390/ijms222111658 - 28 Oct 2021
Cited by 76 | Viewed by 8978
Abstract
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective [...] Read more.
Rice is one of the most important food crops in the world. However, stable rice production is constrained by various diseases, in particular rice blast, sheath blight, bacterial blight, and virus diseases. Breeding and cultivation of resistant rice varieties is the most effective method to control the infection of pathogens. Exploitation and utilization of the genetic determinants of broad-spectrum resistance represent a desired way to improve the resistance of susceptible rice varieties. Recently, researchers have focused on the identification of rice broad-spectrum disease resistance genes, which include R genes, defense-regulator genes, and quantitative trait loci (QTL) against two or more pathogen species or many isolates of the same pathogen species. The cloning of broad-spectrum disease resistance genes and understanding their underlying mechanisms not only provide new genetic resources for breeding broad-spectrum rice varieties, but also promote the development of new disease resistance breeding strategies, such as editing susceptibility and executor R genes. In this review, the most recent advances in the identification of broad-spectrum disease resistance genes in rice and their application in crop improvement through biotechnology approaches during the past 10 years are summarized. Full article
(This article belongs to the Special Issue Crop Genome Editing and Plant Breeding Innovation)
Show Figures

Figure 1

13 pages, 3737 KB  
Article
Identification and Characterization of HSP90 Gene Family Reveals Involvement of HSP90, GRP94 and Not TRAP1 in Heat Stress Response in Chlamys farreri
by Haitao Yu, Zujing Yang, Mingyi Sui, Chang Cui, Yuqing Hu, Xiujiang Hou, Qiang Xing, Xiaoting Huang and Zhenmin Bao
Genes 2021, 12(10), 1592; https://doi.org/10.3390/genes12101592 - 9 Oct 2021
Cited by 18 | Viewed by 3070
Abstract
Heat shock proteins 90 (HSP90s) are a class of ubiquitous, highly conserved, and multi-functional molecular chaperones present in all living organisms. They assist protein folding processes to form functional proteins. In the present study, three HSP90 genes, CfHSP90, CfGRP94 and CfTRAP1, [...] Read more.
Heat shock proteins 90 (HSP90s) are a class of ubiquitous, highly conserved, and multi-functional molecular chaperones present in all living organisms. They assist protein folding processes to form functional proteins. In the present study, three HSP90 genes, CfHSP90, CfGRP94 and CfTRAP1, were successfully identified in the genome of Chlamys farreri. The length of CfHSP90, CfGRP94 and CfTRAP1 were 7211 bp, 26,457 bp, and 28,699 bp, each containing an open reading frame (ORF) of 2181 bp, 2397 bp, and 2181 bp, and encoding proteins of 726, 798, and 726 amino acids, respectively. A transcriptomic database demonstrated that CfHSP90 and CfGRP94 were the primary functional executors with high expression during larval development and in adult tissues, while CfTRAP1 expression was low. Furthermore, all of the three CfHSP90s showed higher expression in gonads and ganglia as compared with other tissues, which indicated their probable involvement in gametogenesis and nerve signal transmission in C. farreri. In addition, under heat stress, the expressions of CfHSP90 and CfGRP94 were significantly up-regulated in the mantle, gill, and blood, but not in the heart. Nevertheless, the expression of CfTRAP1 did not change significantly in the four tested tissues. Taken together, in coping with heat stress, CfHSP90 and CfGRP94 could help correct protein folding or salvage damaged proteins for cell homeostasis in C. farreri. Collectively, a comprehensive analysis of CfHSP90s in C. farreri was conducted. The study indicates the functional diversity of CfHSP90s in growth, development, and environmental response, and our findings may have implications for the subsequent in-depth exploration of HSP90s in invertebrates. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 875 KB  
Review
TRIM22. A Multitasking Antiviral Factor
by Isabel Pagani, Guido Poli and Elisa Vicenzi
Cells 2021, 10(8), 1864; https://doi.org/10.3390/cells10081864 - 23 Jul 2021
Cited by 35 | Viewed by 6639
Abstract
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production [...] Read more.
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level. Full article
(This article belongs to the Special Issue Cellular Function of TRIM E3 Ubiquitin Ligases in Health and Disease)
Show Figures

Figure 1

13 pages, 9400 KB  
Article
Proteomic Analysis of Mycelial Exudates of Ustilaginoidea virens
by Haining Wang, Xiaohe Yang, Songhong Wei and Yan Wang
Pathogens 2021, 10(3), 364; https://doi.org/10.3390/pathogens10030364 - 18 Mar 2021
Cited by 5 | Viewed by 3520
Abstract
Rice false smut (RFS) disease, which is caused by Ustilaginoidea virens, has been widespread all over the world in recent years, causing irreversible losses. Under artificial culture conditions, exudates will appear on colonies of U. virens during the growth of the hyphae. [...] Read more.
Rice false smut (RFS) disease, which is caused by Ustilaginoidea virens, has been widespread all over the world in recent years, causing irreversible losses. Under artificial culture conditions, exudates will appear on colonies of U. virens during the growth of the hyphae. Exudation of droplets is a common feature in many fungi, but the functions of exudates are undetermined. As the executors of life functions, proteins can intuitively reflect the functions of exudates. Shotgun proteomics were used in this study. A total of 650 proteins were identified in the exudate of U. virens, and the raw data were made available via ProteomeXchange with the identifier PXD019861. There were 57 subcategories and 167 pathways annotated with Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, respectively. Through protein–protein interaction (PPI) network analysis, it was found that 20 proteins participated in the biosynthesis of secondary metabolites. Two separate PPI analyses were performed for carbon metabolism and microbial metabolism in diverse environments. After comparing and annotating the functions of proteins of the exudate, it was speculated that the exudate was involved in the construction and remodeling of the fungal cell wall. Pathogenicity, sporulation, and antioxidant effects might all be affected by the exudate. Full article
Show Figures

Figure 1

11 pages, 1412 KB  
Review
The Sex Determination Cascade in the Silkworm
by Xu Yang, Kai Chen, Yaohui Wang, Dehong Yang and Yongping Huang
Genes 2021, 12(2), 315; https://doi.org/10.3390/genes12020315 - 23 Feb 2021
Cited by 26 | Viewed by 6902
Abstract
In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect [...] Read more.
In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm. Full article
(This article belongs to the Special Issue The Evolution of Sexual Development in Arthropods)
Show Figures

Figure 1

22 pages, 1862 KB  
Review
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases
by Mateusz C. Ambrozkiewicz, Katherine J. Cuthill, Dermot Harnett, Hiroshi Kawabe and Victor Tarabykin
Cells 2020, 9(11), 2455; https://doi.org/10.3390/cells9112455 - 10 Nov 2020
Cited by 16 | Viewed by 5648
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases [...] Read more.
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Neocortical Circuit Formation)
Show Figures

Figure 1

18 pages, 4650 KB  
Article
Comparative Transcriptome Profiling of Rice Near-Isogenic Line Carrying Xa23 under Infection of Xanthomonas oryzae pv. oryzae
by Rezwan Tariq, Chunlian Wang, Tengfei Qin, Feifei Xu, Yongchao Tang, Ying Gao, Zhiyuan Ji and Kaijun Zhao
Int. J. Mol. Sci. 2018, 19(3), 717; https://doi.org/10.3390/ijms19030717 - 2 Mar 2018
Cited by 40 | Viewed by 8628
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this [...] Read more.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is an overwhelming disease in rice-growing regions worldwide. Our previous studies revealed that the executor R gene Xa23 confers broad-spectrum disease resistance to all naturally occurring biotypes of Xoo. In this study, comparative transcriptomic profiling of two near-isogenic lines (NILs), CBB23 (harboring Xa23) and JG30 (without Xa23), before and after infection of the Xoo strain, PXO99A, was done by RNA sequencing, to identify genes associated with the resistance. After high throughput sequencing, 1645 differentially expressed genes (DEGs) were identified between CBB23 and JG30 at different time points. Gene Ontlogy (GO) analysis categorized the DEGs into biological process, molecular function, and cellular component. KEGG analysis categorized the DEGs into different pathways, and phenylpropanoid biosynthesis was the most prominent pathway, followed by biosynthesis of plant hormones, flavonoid biosynthesis, and glycolysis/gluconeogenesis. Further analysis led to the identification of differentially expressed transcription factors (TFs) and different kinase responsive genes in CBB23, than that in JG30. Besides TFs and kinase responsive genes, DEGs related to ethylene, jasmonic acid, and secondary metabolites were also identified in both genotypes after PXO99A infection. The data of DEGs are a precious resource for further clarifying the network of Xa23-mediated resistance. Full article
Show Figures

Figure 1

20 pages, 6099 KB  
Article
Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children
by Sergio Comincini, Federico Manai, Cristina Meazza, Sara Pagani, Carolina Martinelli, Noemi Pasqua, Gloria Pelizzo, Marco Biggiogera and Mauro Bozzola
Int. J. Mol. Sci. 2017, 18(2), 391; https://doi.org/10.3390/ijms18020391 - 12 Feb 2017
Cited by 42 | Viewed by 7191
Abstract
Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding [...] Read more.
Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann–Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a digestive and autoimmune-related disorder as CD. Full article
(This article belongs to the Special Issue microRNA Regulation 2017)
Show Figures

Graphical abstract

Back to TopTop