Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = excited-state energy transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5152 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 (registering DOI) - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

25 pages, 7320 KiB  
Article
A Comprehensive Evaluation of a Chalcone Derivative: Structural, Spectroscopic, Computational, Electrochemical, and Pharmacological Perspectives
by Rekha K. Hebasur, Varsha V. Koppal, Deepak A. Yaraguppi, Neelamma B. Gummagol, Raviraj Kusanur and Ninganagouda R. Patil
Photochem 2025, 5(3), 20; https://doi.org/10.3390/photochem5030020 - 30 Jul 2025
Viewed by 210
Abstract
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole [...] Read more.
This study details how 3-(naphthalen-2-yl)-1-phenylprop-2-en-1-one (3NPEO) behaves in terms of photophysics when exposed to different solvents. The solvatochromic effect study reveals significant polarity shifts in the excited states of the 3NPEO compound, likely due to an intramolecular proton transfer mechanism. Measurements of dipole moments provide insight into their resonance structures in both ground and excited states. Electrochemical analysis revealed a reversible redox process, indicating a favorable charge transport potential. HOMO and LUMO energies of the compound were computed via oxidation and reduction potential standards. 3NPEO exhibits optimal one-photon and two-photon absorption characteristics, validating its suitability for visible wavelength laser applications in photonic devices. Furthermore, molecular docking and dynamics simulations demonstrated strong interactions between 3NPEO and the progesterone receptor enzyme, supported by structure–activity relationship (SAR) analyses. In vitro cytotoxicity assays on the MDAMB-231 breast cancer cell line showed moderate tumor cell inhibitory activity. Apoptosis studies confirmed the induction of both early and late apoptosis. These findings suggest that 3NPEO holds promise as a potential anticancer agent targeting the progesterone receptor in breast cancer cells. Overall, the findings highlight the substantial influence of solvent polarity on the photophysical properties and the design of more effective and stable therapeutic agents. Full article
Show Figures

Figure 1

19 pages, 4094 KiB  
Article
Precision Molecular Engineering of Alternating Donor–Acceptor Cycloparaphenylenes: Multidimensional Optoelectronic Response and Chirality Modulation via Polarization-Driven Charge Transfer
by Danmei Zhu, Xinwen Gai, Yi Zou, Ying Jin and Jingang Wang
Molecules 2025, 30(15), 3127; https://doi.org/10.3390/molecules30153127 - 25 Jul 2025
Viewed by 179
Abstract
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, [...] Read more.
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, excited-state dynamics, and optical behavior were elucidated through density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results show that the alternating D–A design significantly reduced the HOMO–LUMO energy gap (e.g., 3.11 eV for [12]CPP 2a), enhanced charge transfer characteristics, and induced pronounced red-shifted absorption. The introduction of an imide-based acceptor ([12]CPP 2a) further strengthened the electron push-pull interaction, exhibiting superior performance in two-photon absorption, while the symmetrically multifunctionalized structure ([12]CPP 3a) predominantly exhibited localized excitation with the highest absorption intensity but lacked charge transfer features. Chiral analysis reveals that the alternating D–A architecture modulated the distribution of chiral signals, with [12]CPP 1a displaying a strong Cotton effect in the low-wavelength region. These findings not only provide a theoretical basis for the molecular design of functionalized CPP derivatives, but also lay a solid theoretical foundation for expanding their application potential in optoelectronic devices and chiral functional materials. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

15 pages, 2389 KiB  
Article
Tracking Photoinduced Charge Redistribution in a Cu(I) Diimine Donor–Bridge–Acceptor System with Time-Resolved Infrared Spectroscopy
by Sean A. Roget, Wade C. Henke, Maxwell Taub, Pyosang Kim, Jonathan T. Yarranton, Xiaosong Li, Karen L. Mulfort and Lin X. Chen
Photochem 2025, 5(2), 16; https://doi.org/10.3390/photochem5020016 - 19 Jun 2025
Viewed by 433
Abstract
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and [...] Read more.
Understanding electron density migration along excited-state pathways in photochemical systems is critical for optimizing solar energy conversion processes. In this study, we investigate photoinduced electron transfer (PET) in a covalently linked donor–bridge–acceptor (D-B-A) system, where [Cu(I)-bis(1,10-phenanthroline)]+ acts as an electron donor, and anthraquinone, tethered to one of the phenanthroline ligands via a vibrationally active ethyne bridge, behaves as an electron acceptor. Visible transient absorption spectroscopy revealed the dynamic processes occurring in the excited state, including PET to the acceptor species. This was indicated by the spectral features of the anthraquinone radical anion that appeared on a timescale of 30 ps in polar solvents. Time-resolved infrared (TRIR) spectroscopy of the alkyne vibration (CC stretch) of the ethyne bridge provided insight into electronic structural changes in the metal-to-ligand charge transfer (MLCT) state and along the PET reaction coordinate. The observed spectral shift and enhanced transition dipole moment of the CC stretch demonstrated that there was already partial delocalization to the anthraquinone acceptor following MLCT excitation, verified by DFT calculations. An additional excited-state TRIR signal unrelated to the vibrational mode highlighted delocalization between the phenanthroline ligands in the MLCT state. This signal decayed and the CC stretch narrowed and shifted towards the ground-state frequency following PET, indicating a degree of localization onto the acceptor species. This study experimentally elucidates charge redistribution during PET in a Cu(I) diimine D-B-A system, yielding important information on the ligand design for optimizing PET reactions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 1143 KiB  
Article
Activation of Perovskite Nanocrystals for Volumetric Displays Using Near-Infrared Photon Upconversion by Triplet Fusion
by Yu Hu, Guiwen Luo, Pengfei Niu, Ling Zhang, Tianjun Yu, Jinping Chen, Yi Li and Yi Zeng
Molecules 2025, 30(11), 2273; https://doi.org/10.3390/molecules30112273 - 22 May 2025
Viewed by 456
Abstract
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, [...] Read more.
Coupling organic light-harvesting materials with lead halide perovskite quantum dots (LHP QDs) is an attractive approach that could provide great potential in optoelectronic applications owing to the diversity of organic materials available and the intriguing optical and electronic properties of LHP QDs. Here, we demonstrate energy collection by CsPbI3 QDs from a near-infrared (NIR) light-harvesting upconversion system. The upconversion system consists of Pd-tetrakis-5,10,15,20-(p-methoxycarbonylphenyl)-tetraanthraporphyrin (PdTAP) as the sensitizer to harvest NIR photons and rubrene as the annihilator to generate upconverted photons via triplet fusion. Steady-state and time-resolved photoluminescence spectra reveal that CsPbI3 QDs are energized via radiative energy transfer from the singlet excited rubrene with photophysics fidelity of respective components. In addition, a volumetric display demo incorporating CsPbI3 QDs as light emitters employing triplet fusion upconversion was developed, showing bright luminescent images from CsPbI3 QDs. These results present the feasibility of integrating organic light-harvesting systems and perovskite QDs, enabling diverse light harvesting and activation of perovskite materials for optoelectronic applications. Full article
(This article belongs to the Special Issue Photochemistry in Asia)
Show Figures

Graphical abstract

21 pages, 11237 KiB  
Article
Investigation of Heat Transfer Enhancement Mechanisms in Elastic Tube Bundles Subjected to Exogenous Self-Excited Fluid Oscillation
by Jing Hu, Lei Guo and Shusheng Zhang
Fluids 2025, 10(5), 122; https://doi.org/10.3390/fluids10050122 - 8 May 2025
Viewed by 439
Abstract
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This [...] Read more.
Flow-induced vibration (FIV) characteristics are key factors in enhancing heat transfer. However, challenges such as insufficient heat transfer enhancement and the fatigue strength of the tube bundle persist in the context of improving the heat transfer in elastic tube bundle heat exchangers. This study proposes a novel passive heat transfer enhancement paradigm for elastic tube bundles based on externally induced self-excited oscillations of fluid. By constructing a non-contact energy transfer system, the external oscillation energy is directed into the elastic tube bundle heat exchanger, achieving dynamic stress buffering and breaking through the steady-state flow heat transfer boundary layer. A three-dimensional fluid–structure interaction numerical model is established using Star CCM+2021.3 (16.06.008) to conduct a comparative analysis of the flow characteristics and heat transfer performance between the original structure without an oscillator and the improved structure equipped with a fluid oscillator. The results indicate that the improved structure, through the periodic unsteady jet induced by the fluid oscillator, significantly enhances the turbulence intensity of the shell-side fluid, with the turbulent kinetic energy increasing by over 50%. The radial flow area is notably expanded, thereby reducing the thermal resistance of the boundary layer. At cooling fluid velocities of 6 to 9 m/s, the heat transfer capability of the improved structure is enhanced by more than 50%. Compared with the original structure, the new structure, due to the loading of an external oscillation structure, causes the cold air to present a periodic up and down jet phenomenon. This jet phenomenon, on the one hand, increases the heat exchange area between the cold air and the outer surface of the tube bundle, thereby enhancing the heat exchange capacity. On the other hand, the large-area impact of the fluid reduces the thickness of the boundary layer, lowers the thermal resistance and thereby enhances the heat exchange capacity. Furthermore, this improved structure buffers the mechanical vibrations through self-excited oscillations of the fluid medium, ensuring that the stress levels in the tube bundle remain below the fatigue threshold, effectively mitigating the failure risks associated with traditional active vibration strategies. Full article
Show Figures

Figure 1

20 pages, 5614 KiB  
Article
Heterostructures of CdSe Quantum Dots and g-C3N4 Applied as Electrochemiluminescent Probes for the Detection of Hydrogen Peroxide in Human Serum
by Roodney Alberto Carrillo Palomino, Aylén Di Tocco, Gastón Darío Pierini, Gabriela Valeria Porcal and Fernando Javier Arévalo
Chemosensors 2025, 13(5), 171; https://doi.org/10.3390/chemosensors13050171 - 7 May 2025
Viewed by 562
Abstract
In this work, we developed a highly sensitive and reproducible electrochemiluminescent sensor based on a heterostructure of cadmium selenide quantum dots capped with 3-mercaptopropionic acid (MPA) + 3-morpholinoethanesulfonic acid (MES) (QDs CdSe) and carbon nitride nanosheets (g-C3N4) for the [...] Read more.
In this work, we developed a highly sensitive and reproducible electrochemiluminescent sensor based on a heterostructure of cadmium selenide quantum dots capped with 3-mercaptopropionic acid (MPA) + 3-morpholinoethanesulfonic acid (MES) (QDs CdSe) and carbon nitride nanosheets (g-C3N4) for the detection of H2O2 in lyophilized serum samples. To enhance the sensor sensitivity, g-C3N4 nanosheets were utilized as a platform to immobilize the QDs CdSe. An exhaustive characterization of the heterostructure was conducted, elucidating the interaction mechanism between QDs CdSe and g-C3N4. It was revealed that g-C3N4 acts as a hole (h+) donor, while QDs CdSe act as energy acceptors in a resonance energy transfer process, with the electrochemiluminescence emission originating from the QDs CdSe. The electrochemiluminescence intensity decreases in the presence of H2O2 due to the deactivation of the excited states of the QDs CdSe. This electrochemiluminescent sensor demonstrates exceptional performance for detecting H2O2 in aqueous systems, achieving a remarkably low limit of detection (LOD) of 1.81 nM, which is more sensitive than most reported sensors to detect H2O2. The applicability of the sensor was successfully tested where sub-µM levels of H2O2 were accurately quantified. These results highlight the potential of this electrochemiluminescent sensor as a reliable and pre-treatment-free tool for H2O2 detection in biochemical studies and human health applications. Full article
Show Figures

Graphical abstract

17 pages, 11806 KiB  
Article
Identification and Methods of Influencing the Oxidation States of Mn and Ce in Silicate Glasses
by Jakub Volf, Petr Vařák, Maksym Buryi, Martin Kormunda and Pavla Nekvindová
Materials 2025, 18(9), 1948; https://doi.org/10.3390/ma18091948 - 25 Apr 2025
Viewed by 469
Abstract
Non-hygroscopic borosilicate glasses containing Ce3+ and Mn2+ ions were prepared using the conventional melt-quenching method. The electrochemical equilibrium of the Ce and Mn oxidation states has a significant effect on the energy levels and luminescence of both elements. Consequently, the oxidation [...] Read more.
Non-hygroscopic borosilicate glasses containing Ce3+ and Mn2+ ions were prepared using the conventional melt-quenching method. The electrochemical equilibrium of the Ce and Mn oxidation states has a significant effect on the energy levels and luminescence of both elements. Consequently, the oxidation states in the glasses were analyzed using a combination of XPS, EPR, and absorption spectroscopy. The oxidation–reduction equilibrium was altered by systematically changing three factors: the Mn concentration, the presence or absence of SnO as a reducing agent, and the optical basicity of the glass. Upon excitation with light with a wavelength of 320 nm, the prepared glasses exhibited a blue luminescence band in the region of 350–450 nm, corresponding to the Ce3+ ion, and a broad, weak red luminescence emission in the region of 540–640 nm, corresponding to Mn2+ ions. To obtain a high luminescence intensity for both bands, it was necessary to reduce the MnO content below 1 mol.%. Furthermore, doping the glasses with Sn2+ ions helped to maintain both cerium and manganese in low oxidation states, resulting in measurable luminescence in both observed bands. These low oxidation states of Ce and Mn can also be achieved by reducing the optical basicity of the glass through the addition of MgO. The general relationships obtained could potentially be applied in the production of light-emitting diodes or field-emission displays that utilize energy transfer. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 5190 KiB  
Article
Engineering Photoluminescence of Lanthanide Doped Yttrium-MOF-76 for Volatile Organic Compound Sensing
by Oswaldo Rosas Rivas, Mariana Hamer, Héctor A. Baldoni, Maya Boone, Rik Van Deun and Germán E. Gomez
Polymers 2025, 17(9), 1135; https://doi.org/10.3390/polym17091135 - 22 Apr 2025
Viewed by 1162
Abstract
A set of three-dimensional metal-organic frameworks, named MOF-76, belonging to the tetragonal P4322 space group, based on [Y(BTC)(H2O)](DMF)1.1 (1,3,5-benzenetricarboxylate) doped with Eu3+, Tb3+, and Eu3+/Tb3+ were obtained under solvothermal conditions and [...] Read more.
A set of three-dimensional metal-organic frameworks, named MOF-76, belonging to the tetragonal P4322 space group, based on [Y(BTC)(H2O)](DMF)1.1 (1,3,5-benzenetricarboxylate) doped with Eu3+, Tb3+, and Eu3+/Tb3+ were obtained under solvothermal conditions and fully characterized by powder X-ray diffraction, thermal, and vibrational analyses. In addition, upon UV light excitation (280 nm), all the powdered samples exhibited fine 4f-4f transitions, of which the 5D07F2 (Eu3+) and 5D47F5 (Tb3+) were the most intense ones. All samples were photophysically analyzed by determining the luminescence lifetimes, and their emission colors were quantified by calculating their chromaticities and color purities. Moreover, the intrinsic quantum yield, radiative, and non-radiative constants were calculated and compared to establish a structure–property relationship. Specifically, the Eu/Tb co-doped sample was employed to monitor its hypersensitive emissions in the presence of small volatile organic compounds (VOCs), showing quenching or enhancement of emission in protic and non-protic solvents. Furthermore, DFT calculations were carried out to understand the energy transfer processes between the sensor and the respective analytes. These results are promising for the development of solid-state lighting devices and colorimetric chemical sensors for specific compounds. Full article
Show Figures

Graphical abstract

32 pages, 10438 KiB  
Article
Deciphering the Role of Rhodanine Flanked Non-Fullerene Acceptor Molecules for Efficient Organic Photovoltaics
by Zobia Irshad, Muzammil Hussain, Riaz Hussain and Muhammad Adnan
Int. J. Mol. Sci. 2025, 26(7), 3314; https://doi.org/10.3390/ijms26073314 - 2 Apr 2025
Cited by 1 | Viewed by 649
Abstract
In recent years, extensive research has been conducted with the aim of developing non-fullerene acceptors as they have a promising ability to drive the development of cost-effective and highly efficient organic solar cells (OSCs). By harnessing the potential of rhodanine-flanked non-fullerene acceptors (NFAs), [...] Read more.
In recent years, extensive research has been conducted with the aim of developing non-fullerene acceptors as they have a promising ability to drive the development of cost-effective and highly efficient organic solar cells (OSCs). By harnessing the potential of rhodanine-flanked non-fullerene acceptors (NFAs), we proposed eight new A-D-A type NFAs (SBA1–SBA8) through precise end-cap modifications on both sides of the bridging-core unit. We performed various advanced quantum chemical analyses to unveil these designed materials’ potential and compared them with the synthetic reference molecule (R). The proposed NFAs series presented lower binding and excitation energy, along with narrower energy gaps of 2.11 eV and enhanced absorption at 671.20 nm and 719.88 nm in gaseous and chloroform environments, respectively. Furthermore, the optoelectronic and photophysical characterizations related to the electrostatic potential, density of states, reorganization energy of electron and hole mobilities, and transition density matrix analysis reveal that these materials could be efficiently used as acceptor materials for efficient organic photovoltaics. Additionally, to check the impact of charge transfer at the donor: acceptor (D: A) interface, we studied the PTB7-Th:SBA1 D:A analysis and demonstrated a remarkable interface charge transfer phenomenon. Therefore, the engineered SBA1–SBA8 NFAs represent a significant advancement as sustainable and effective options for developing high-performance OSCs. Full article
(This article belongs to the Special Issue Advancements in Perovskite and Tandem Solar Cell Technologies)
Show Figures

Figure 1

12 pages, 3753 KiB  
Article
Unveiling the ESIPT Luminescence Mechanism of 4′-N,N-Diethylamino-3-Hydroxyflavone in Ionic Liquid: A Computational Study
by Jin Yang, Qi Li, Meilin Guo, Lu Yan, Lixia Zhu, Jing Zhao, Guangxiong Hu, Hang Yin and Ying Shi
Molecules 2025, 30(6), 1381; https://doi.org/10.3390/molecules30061381 - 20 Mar 2025
Cited by 1 | Viewed by 505
Abstract
Excited state intramolecular proton transfer (ESIPT) within molecules in solvents plays important roles in photo-chemistry and photo-biology. Herein, the influence of 1-ethyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide ([EMIm][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) on the ESIPT of 4′-N,N-diethylamino-3-hydroxyflavone (DEAHF) was explored. The [...] Read more.
Excited state intramolecular proton transfer (ESIPT) within molecules in solvents plays important roles in photo-chemistry and photo-biology. Herein, the influence of 1-ethyl-3-methyl-imidazolium bis (trifluoromethylsulfonyl) imide ([EMIm][NTf2]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) on the ESIPT of 4′-N,N-diethylamino-3-hydroxyflavone (DEAHF) was explored. The density functional theory and time-dependent density functional theory methodologies were used. The calculated fluorescence spectrum reveals that the fluorescence peaks of DEAHF in [EMIm][NTf2] and [BMIm][PF6] originate from the emission of N* and T* forms. The structure’s optimization, infrared spectra, non-covalent interactions and the scanning of potential energy curves collectively demonstrate that the ESIPT of DEAHF likely happen more in [EMIm][NTf2] than in [BMIm][PF6]. The solvation effects in [BMIm][PF6] exhibit greater prominence compared to those in [EMIm][NTf2], as evidenced by the free energy curve. The alterations in dipole moment indicate a substantial solvation relaxation during the ESIPT processes. Our aforementioned research offers backing for the advancement of novel fluorescent probes. Full article
(This article belongs to the Special Issue Theoretical Study on Luminescent Properties of Organic Materials)
Show Figures

Figure 1

16 pages, 2997 KiB  
Review
Ultra-Fast Charge Transfer in P3HT Composites Using the Core Hole Clock Technique
by Yan Li, Xiaoyu Hao, Xiongbai Cao, Tingting Wang, Haolong Fan, Lingtao Zhan, Zhenru Zhou, Huixia Yang, Quanzhen Zhang, Roberto Costantini, Cesare Grazioli, Teng Zhang and Yeliang Wang
Nanomaterials 2025, 15(6), 433; https://doi.org/10.3390/nano15060433 - 12 Mar 2025
Viewed by 854
Abstract
Charge transfer dynamics fundamentally influence energy conversion efficiency in excited electronic states, directly impacting photoelectric conversion, molecular electronics, and catalysis. The core hole clock (CHC) technique enables the precise measurement of interfacial charge transfer time, providing insights into the electronic structure and dynamics [...] Read more.
Charge transfer dynamics fundamentally influence energy conversion efficiency in excited electronic states, directly impacting photoelectric conversion, molecular electronics, and catalysis. The core hole clock (CHC) technique enables the precise measurement of interfacial charge transfer time, providing insights into the electronic structure and dynamics of organic and inorganic coupled systems. Among these materials, poly(3-hexylthiophene) (P3HT), a p-type semiconductor known for its high charge mobility, serves as an ideal model for charge transfer studies. This review discusses recent advancements in understanding charge transfer dynamics in P3HT-based composites through the application of the CHC technique. The studies are categorized into two main areas: (1) P3HT combined with carbon-based nanomaterials and (2) P3HT combined with 2D materials. These findings highlight the effectiveness of the CHC technique in probing interfacial charge transfer and emphasize the critical role of nanomaterial interfaces in modulating charge transfer, which is essential for advancing organic electronic devices and energy conversion systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 3997 KiB  
Article
The Triplet–Triplet Annihilation Efficiency of Some 9,10-Substituted Diphenyl Anthracene Variants—A Decisive Analysis from Kinetic Rate Constants
by Mikael Lindgren, Victoria M. Bjelland, Thor-Bernt Melø, Callum McCracken, Satoshi Seo and Harue Nakashima
Optics 2025, 6(1), 8; https://doi.org/10.3390/opt6010008 - 12 Mar 2025
Viewed by 1175
Abstract
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding [...] Read more.
Triplet–triplet transfer photochemical reactions are essential in many biological, chemical, and photonic applications. Here, the Pd-octaethylporphyrin sensitizer along with triplet–triplet annihilator (TTA) active 9,10-diphenylantracenes (DPA) and the related substituted variants in low concentrations were examined. A full experimental approach is presented for finding the necessary rate parameters with statistical standard deviation parameters. This was achieved by solving the pertinent non-analytical kinetic differential equation and fitting it to the experimental time-resolved photoluminescence of both slow fluorescence and sensitizer phosphorescence. The efficiency of the triplet–triplet energy transfer rate was found to be around 90% in THF but only around 75% in toluene. This appears to follow from the shorter lifetime of the sensitizer triplet in toluene. Moreover, the TTA transfer rate was on average more than 40% in THF toluene whereas a considerably lower value around 20–30% was found for toluene. This originated in an order of magnitude higher solvent quenching rate using toluene, based on the analysis of the delayed fluorescence decay traces. These are also higher than the statistically expected 1/9 TTA efficiency but in accordance with recent results in the literature, that attributed these high values to an inverse intersystem crossing process. In addition, quantum chemical calculations were carried out to reveal the pertinent excited triplet molecular orbitals of the lowest triplet excited state for a series of substituted DPAs, in comparison with the singlet ground state. Conclusively, these states distribute mainly in an anthracene ring in all compounds being in the range 1.64–1.65 eV above the ground state. The TTA efficiency was found to vary depending on the DPA annihilator substitution scheme and found to be smaller in THF. This is likely because the molecular framework over which the T1 excited molecular orbitals distribute is less sensitive for a longer lifetime of the annihilator triplet state. Full article
Show Figures

Figure 1

24 pages, 2813 KiB  
Article
Axial Ligand Effects on the Mechanism of Ru-CO Bond Photodissociation and Photophysical Properties of Ru(II)-Salen PhotoCORMs/Theranostics: A Density Functional Theory Study
by Niq Catevas and Athanassios Tsipis
Molecules 2025, 30(5), 1147; https://doi.org/10.3390/molecules30051147 - 3 Mar 2025
Viewed by 1013
Abstract
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/−1 (X = Cl, F, SCN, DMSO, Phosphabenzene, Phosphole, TPH, CN, N3, NO3 [...] Read more.
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/−1 (X = Cl, F, SCN, DMSO, Phosphabenzene, Phosphole, TPH, CN, N3, NO3, CNH, NHC, P(OH)3, PF3, PH3). The effect of ligands X on the Ru-CO bond was quantified by the trans-philicity, Δσ13C NMR parameter. The potential of Δσ13C to be used as a probe of the CO photodissociation by Ru(II) transition metal complexes is established upon comparing it with other trans-effect parameters. An excellent linear correlation is found between the energy barrier for the Ru-CO photodissociation and the Δσ13C parameter, paving the way for studying photoCORMs with the 13C NMR method. The strongest trans-effect on the Ru-CO bond in the [Ru(salen)(X)(CO)]0/−1 complexes are found when X = CNH, NHC, and P(OH)3, while the weakest for X = Cl, NO3 and DMSO trans-axial ligands. The Ru-CO bonding properties were scrutinized using Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA) and Natural Orbital of Chemical Valence (NOCV) methods. The nature of the Ru-CO bond is composite, i.e., electrostatic, covalent and charge transfer. Both donation and backdonation between CO ligand and Ru metal centre equally stabilize the Ru(II) complexes. Ru-CO photodissociation proceeds via a 3MC triplet excited state, exhibiting a conical intersection with the T1 3MLCT excited state. Calculations show that these complexes show bands within visible while they are expected to be red emitters. Therefore, the [Ru(salen)(X)(CO)]0/−1 complexes under study could potentially be used for dual action, photoCORMs and theranostics compounds. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

11 pages, 1925 KiB  
Article
Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers
by Grzegorz Szewczyk and Krystian Mokrzyński
Molecules 2025, 30(5), 1130; https://doi.org/10.3390/molecules30051130 - 1 Mar 2025
Cited by 3 | Viewed by 1067
Abstract
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks [...] Read more.
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks for determining ΦΔ. However, accurate determination of ΦΔ relies not only on the intrinsic properties of these photosensitizers but also on their experimental conditions, such as concentration. This study investigated the influence of photosensitizer concentration on singlet oxygen quantum yield using several standard photosensitizers. Our findings revealed a significant decrease in ΦΔ with increasing photosensitizer concentrations across all tested compounds. This decline was attributed to self-quenching effects and molecular aggregation, which reduced the efficiency of energy transfer from the excited triplet state of the photosensitizer to molecular oxygen. The results emphasize the importance of optimizing photosensitizer concentration to ensure reliable ΦΔ measurements and avoid underestimations. This work underscores the need to consider concentration-dependent effects in future studies to ensure accurate and reproducible outcomes. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

Back to TopTop