Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = excitatory amino acid transporter 2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1832 KiB  
Article
Increased Brain Glutathione Levels by Intranasal Insulin Administration
by Taisuke Kawashima, Wattanaporn Bhadhprasit, Nobuko Matsumura, Chisato Kinoshita and Koji Aoyama
Curr. Issues Mol. Biol. 2025, 47(4), 284; https://doi.org/10.3390/cimb47040284 - 17 Apr 2025
Viewed by 599
Abstract
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. [...] Read more.
Background: This paper investigates the effect of intranasal insulin administration on brain glutathione (GSH) levels and elucidates the potential mechanism by which insulin enhances antioxidant defenses in the brain. Methods: C57BL/6J mice were intranasally administered insulin (2 IU/day) or saline for 7 days. GSH levels were measured in the brain and liver. Blood glucose concentrations and daily food intake were also monitored. Protein levels of excitatory amino acid carrier-1 (EAAC1), its interaction with glutamate transport-associated protein 3-18(GTRAP3-18), and activated AMP-activated protein kinase (AMPK) were assessed. Results: Insulin-treated mice exhibited significantly higher GSH levels in the hippocampus and midbrain compared to saline-treated controls, while no significant differences were found in liver GSH levels, blood glucose concentrations, or food intake. EAAC1 expression increased in both the cytosolic and plasma membrane fractions of insulin-treated mouse brains. Furthermore, the interaction between EAAC1 and its negative regulator, GTRAP3-18, along with activated AMPK levels, was reduced in insulin-treated mice. Conclusions: Intranasal insulin administration enhances brain GSH levels through a mechanism involving EAAC1 upregulation and reduced AMPK activation. These findings suggest that intranasal insulin could be a promising strategy for enhancing antioxidant defenses against neurodegeneration in the brain. Full article
Show Figures

Figure 1

12 pages, 4034 KiB  
Article
Study of Intracellular Peptides of the Central Nervous System of Zebrafish (Danio rerio) in a Parkinson’s Disease Model
by Louise O. Fiametti, Camilla A. Franco, Leticia O. C. Nunes, Leandro M. de Castro and Norival A. Santos-Filho
Int. J. Mol. Sci. 2025, 26(5), 2017; https://doi.org/10.3390/ijms26052017 - 26 Feb 2025
Viewed by 665
Abstract
Although peptides have been shown to have biological functions in neurodegenerative diseases, their role in Parkinson’s disease has been understudied. A previous study by our group, which used a 6-hydroxydopamine zebrafish model, suggested that nine intracellular peptides may play a part in this [...] Read more.
Although peptides have been shown to have biological functions in neurodegenerative diseases, their role in Parkinson’s disease has been understudied. A previous study by our group, which used a 6-hydroxydopamine zebrafish model, suggested that nine intracellular peptides may play a part in this condition. In this context, our aim is to better understand the role of five of these nine peptides. The selection of peptides was made based on their precursor proteins, which are fatty acid binding protein 7, mitochondrial ribosomal protein S36, MARCKS-related protein 1-B, excitatory amino acid transporter 2 and thymosin beta-4. The peptides were chemically synthesized in solid phase and characterized by high-performance liquid chromatography and mass spectrometry. Circular dichroism was performed to determine the secondary structure of each peptide, which showed that all five peptides maintain a random structure in the aqueous solutions that were studied. Two molecules show a helical profile in trifluoroethanol, a known structuring agent. Cell viability by the MTT assay indicates that all five peptides are not cytotoxic in all concentrations tested in both mouse and human cell lines. Behavioral assay using a 6-OHDA zebrafish larvae model suggest that all peptides help in the recovery of motor function with 24 h treatment at two concentrations. Three peptides showed a complete recovery from the 6-OHDA-induced motor impairment. Further studies are needed to better understand the mechanism of action of these peptides and whether they are truly a potential ally against Parkinson’s disease. Full article
(This article belongs to the Special Issue New Challenges of Parkinson’s Disease)
Show Figures

Figure 1

19 pages, 3840 KiB  
Article
Hypoxia-Regulated CD44 and xCT Expression Contributes to Late Postoperative Epilepsy in Glioblastoma
by Kosuke Kusakabe, Akihiro Inoue, Takanori Ohnishi, Yawara Nakamura, Yoshihiro Ohtsuka, Masahiro Nishikawa, Hajime Yano, Mohammed E. Choudhury, Motoki Murata, Shirabe Matsumoto, Satoshi Suehiro, Daisuke Yamashita, Seiji Shigekawa, Hideaki Watanabe and Takeharu Kunieda
Biomedicines 2025, 13(2), 372; https://doi.org/10.3390/biomedicines13020372 - 5 Feb 2025
Viewed by 955
Abstract
Background/Objectives: Late epilepsy occurring in the late stage after glioblastoma (GBM) resection is suggested to be caused by increased extracellular glutamate (Glu). To elucidate the mechanism underlying postoperative late epilepsy, the present study aimed to investigate the expressions and relations of molecules related [...] Read more.
Background/Objectives: Late epilepsy occurring in the late stage after glioblastoma (GBM) resection is suggested to be caused by increased extracellular glutamate (Glu). To elucidate the mechanism underlying postoperative late epilepsy, the present study aimed to investigate the expressions and relations of molecules related to Glu metabolism in tumor tissues from GBM patients and cultured glioma stem-like cells (GSCs). Methods: Expressions of CD44, xCT and excitatory amino acid transporter (EAAT) 2 and extracellular Glu concentration in GBM patients with and without epilepsy were examined and their relationships were analyzed. For the study using GSCs, expressions and relationships of the same molecules were analyzed and the effects of CD44 knock-down on xCT, EAAT2, and Glu were investigated. In addition, the effects of hypoxia on the expressions of these molecules were investigated. Results: Tumor tissues highly expressed CD44 and xCT in the periphery of GBM with epilepsy, whereas no significant difference in EAAT2 expression was seen between groups with and without epilepsy. Extracellular Glu concentration was higher in patients with epilepsy than those without epilepsy. GSCs displayed reciprocal expressions of CD44 and xCT. Concentrations of extracellular Glu coincided with the degree of xCT expression, and CD44 knock-down elevated xCT expression and extracellular Glu concentrations. Hypoxia of 1% O2 elevated expression of CD44, while 5% O2 increased xCT and extracellular Glu concentration. Conclusions: Late epilepsy after GBM resection was related to extracellular Glu concentrations that were regulated by reciprocal expression of CD44 and xCT, which were stimulated by differential hypoxia for each molecule. Full article
(This article belongs to the Special Issue Glioblastoma: Pathogenetic, Diagnostic and Therapeutic Perspectives)
Show Figures

Figure 1

24 pages, 6984 KiB  
Article
Effects of Dietary Callicarpa nudiflora Aqueous Extract Supplementation on Growth Performance, Growth Hormone, Antioxidant and Immune Function, and Intestinal Health of Broilers
by Mengjie Liu, Gengxiong Huang, Yulin Lin, Yiwen Huang, Zhaoying Xuan, Jianchi Lun, Shiqi He, Jing Zhou, Xiaoli Chen, Qian Qu, Weijie Lv and Shining Guo
Antioxidants 2024, 13(5), 572; https://doi.org/10.3390/antiox13050572 - 6 May 2024
Cited by 2 | Viewed by 2576
Abstract
C. nudiflora is notably rich in flavonoids and phenylethanoid glycosides, making it a significant natural source of antioxidants. We examined the effects of C. nudiflora aqueous extract (CNE) on growth performance, antioxidant function, immunity, intestinal barrier function, nutrient transporters, and microbiota of broilers. [...] Read more.
C. nudiflora is notably rich in flavonoids and phenylethanoid glycosides, making it a significant natural source of antioxidants. We examined the effects of C. nudiflora aqueous extract (CNE) on growth performance, antioxidant function, immunity, intestinal barrier function, nutrient transporters, and microbiota of broilers. A total of 360 one-day-old broilers were randomly assigned to four treatment groups: a basal diet with 0 (control, CON), 300 mg/kg (CNEL), 500 mg/kg (CNEM), and 700 mg/kg (CNEH) CNE for 42 days. CNEL and CNEM groups quadratically increased body weight and average daily gain but decreased feed-to-gain ratios during the starter and whole phases. Regarding the immune response of broilers, CNE treatment linearly down-regulated jejunal myeloid differentiation factor 88 (MyD88) expression and interleukin-1β (IL-1β) and interferon-γ expression in the liver (d 21), while decreasing jejunal IL-1β expression and the concentration of serum tumor necrosis factor-α and interleukin-6 (d 42). The CNEM and CNEH groups had lower MyD88 and nuclear factor kappa B expression in the liver (d 21) compared to the CON group. Broilers in the CNEL and CNEM groups had higher spleen index and thymus index (d 21) and interleukin-10 expression from the liver and jejunal mucosa (d 42) than that in the CON group. For the antioxidant capacity of broilers, CNE treatment linearly decreased the content of malonaldehyde and increased the activity of total antioxidant capacity in serum (d 42). CNEM and CNEH groups linearly increased the activity of superoxide dismutase in serum and heme oxygenase-1 expression in the liver, while increasing the activity of glutathione peroxidase in serum, jejunal nuclear factor E2-related factor 2 expression, and NAD(P)H quinone oxidoreductase 1 expression in the liver (d 42). As for the growth hormone of broilers, CNEM group increased the level of serum insulin-like growth factor 1 and up-regulated jejunal glucagon-like peptide 2 (GLP-2) expression (d 21). Broilers in the CNEM and CNEH groups had higher jejunal GLP-2 expression and growth hormone (GH) expression in the liver and the level of serum GH (d 42) than that in the CON group. Additionally, the villus height and jejunal Occludin and Claudin-1 expression in the CNEM group increased. CNE-containing diets resulted in a linear increase in the expression of jejunal zonula occluden-1 (d 21), villus height to crypt depth ratio, jejunal Occludin, excitatory amino acid transporters-3, and peptide-transporter 1 (d 42). The regulation of Oscillospira, Ruminococcaceae_Ruminococcus, and Butyricicoccus genera indicated that CNEH altered the composition of the cecal microbiota. In general, supplementing broilers with C. nudiflora aqueous extract could boost hormones, immune and antioxidant function, and gut health, improving their growth performance. Hence, CNE was a promising poultry feed additive, with 500 mg/kg appearing to be the optimal dose. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Animal Nutrition)
Show Figures

Figure 1

17 pages, 2370 KiB  
Article
Aging-Related Changes in Expression and Function of Glutamate Transporters in Rat Spinal Cord Astrocytes
by Shiksha Sharan, Bhanu Prakash Tewari and Preeti G. Joshi
Neuroglia 2023, 4(4), 290-306; https://doi.org/10.3390/neuroglia4040020 - 24 Nov 2023
Viewed by 2420
Abstract
Astrocytes make up the predominant cell population among glial cells in the mammalian brain, and they play a vital role in ensuring its optimal functioning. They promote neuronal health and survival and protect neurons from glutamate-induced excitotoxicity. In the spinal cord’s dorsal horn [...] Read more.
Astrocytes make up the predominant cell population among glial cells in the mammalian brain, and they play a vital role in ensuring its optimal functioning. They promote neuronal health and survival and protect neurons from glutamate-induced excitotoxicity. In the spinal cord’s dorsal horn (DH) and ventral horn (VH) regions, astrocytes serve crucial roles. Notably, VH motor neurons exhibit a heightened sensitivity to glutamate-induced damage. It is posited that this selective sensitivity could be related to their localized presence within the VH, where astrocytes possess a distinct set of mechanisms for managing glutamate. As organisms age, the risk of damage from glutamate increases, indicating a potential decline in the efficiency of astrocytic glutamate regulation. Our research involved an analysis of astrocytic structure, glutamate transporter levels, and glutamate uptake capabilities within the DH and VH through immunohistochemical methods, protein analysis via Western blot, and patch-clamp studies in electrophysiology. The investigations revealed a decrease in both the number and coverage of astroglia in the spinal cord, more so within the VH as aging progressed. Notably, levels of the excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) also decreased with age, particularly within the VH. Patch-clamp analyses of astrocytes from both spinal regions confirmed a significant reduction in glutamate uptake activity as age advanced, indicating an age-related impairment in glutamate processing. The findings indicate aging leads to distinct changes in DH and VH astrocytes, impairing their glutamate management abilities, which could contribute significantly to the development of late-onset neurodegenerative conditions. Full article
Show Figures

Figure 1

15 pages, 5376 KiB  
Article
Prolonged Alprazolam Treatment Alters Components of Glutamatergic Neurotransmission in the Hippocampus of Male Wistar Rats—The Neuroadaptive Changes following Long-Term Benzodiazepine (Mis)Use
by Marina Zaric Kontic, Milorad Dragic, Jelena Martinovic, Katarina Mihajlovic, Zeljka Brkic, Natasa Mitrovic and Ivana Grkovic
Pharmaceuticals 2023, 16(3), 331; https://doi.org/10.3390/ph16030331 - 21 Feb 2023
Cited by 6 | Viewed by 4500
Abstract
Alprazolam (ALP), a benzodiazepine (BDZ) used to treat anxiety, panic, and sleep disorders, is one of the most prescribed psychotropic drugs worldwide. The side effects associated with long-term (mis)use of ALP have become a major challenge in pharmacotherapy, emphasizing the unmet need to [...] Read more.
Alprazolam (ALP), a benzodiazepine (BDZ) used to treat anxiety, panic, and sleep disorders, is one of the most prescribed psychotropic drugs worldwide. The side effects associated with long-term (mis)use of ALP have become a major challenge in pharmacotherapy, emphasizing the unmet need to further investigate their underlying molecular mechanisms. Prolonged BDZ exposure may induce adaptive changes in the function of several receptors, including the primary target, gammaaminobutyric acid receptor type A (GABAAR), but also other neurotransmitter receptors such as glutamatergic. The present study investigated the potential effects of prolonged ALP treatment on components of glutamatergic neurotransmission, with special emphasis on N-Methyl-D-aspartate receptor (NMDAR) in the hippocampus of adult male Wistar rats. The study revealed behavioral changes consistent with potential onset of tolerance and involvement of the glutamatergic system in its development. Specifically, an increase in NMDAR subunits (NR1, NR2A, NR2B), a decrease in vesicular glutamate transporter 1 (vGlut1), and differential modulation of excitatory amino acid transporters 1 and 2 (EAAT1/2, in vivo and in vitro) were observed, alongside a decrease in α1-containing GABAAR following the treatment. By describing the development of compensatory actions in the glutamatergic system, the present study provides valuable information on neuroadaptive mechanisms following prolonged ALP intake. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 265 KiB  
Article
SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis
by Dayang Nooreffazleen Yahya, Rhanye Mac Guad, Yuan-Seng Wu, Siew Hua Gan, Subash C. B. Gopinath, Hasif Adli Zakariah, Rusdi Abdul Rashid and Maw Shin Sim
J. Pers. Med. 2023, 13(2), 270; https://doi.org/10.3390/jpm13020270 - 31 Jan 2023
Cited by 3 | Viewed by 2662
Abstract
SLC1A2 is a gene encoded for the excitatory amino acid transporter 2 which is responsible for glutamate reuptake from the synaptic cleft in the central nervous system. Recent studies have suggested that polymorphisms on glutamate transporters can affect drug dependence, leading to the [...] Read more.
SLC1A2 is a gene encoded for the excitatory amino acid transporter 2 which is responsible for glutamate reuptake from the synaptic cleft in the central nervous system. Recent studies have suggested that polymorphisms on glutamate transporters can affect drug dependence, leading to the development of neurological diseases and psychiatric disorders. Our study investigated the association of rs4755404 single nucleotide polymorphism (SNP) of the SLC1A2 gene with methamphetamine (METH) dependence and METH-induced psychosis and mania in a Malaysian population. The rs4755404 gene polymorphism was genotyped in METH-dependent male subjects (n = 285) and male control subjects (n = 251). The subjects consisted of the four ethnic groups in Malaysia (Malay, Chinese, Kadazan-Dusun, and Bajau). Interestingly, there was a significant association between rs4755404 polymorphism and METH-induced psychosis in the pooled METH-dependent subjects in terms of genotype frequency (p = 0.041). However, there was no significant association between rs4755404 polymorphism and METH dependence. Also, the rs455404 polymorphism was not significantly associated with METH-induced mania for both genotype frequencies and allele frequencies in the METH-dependent subjects, regardless of stratification into the different ethnicities. Our study suggests that the SLC1A2 rs4755404 gene polymorphism confers some susceptibility to METH-induced psychosis, especially for those who carry the GG homozygous genotype. Full article
(This article belongs to the Section Mechanisms of Diseases)
15 pages, 322 KiB  
Article
Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder
by Patryk Rodek, Małgorzata Kowalczyk, Jan Kowalski, Aleksander Owczarek, Piotr Choręza and Krzysztof Kucia
J. Clin. Med. 2022, 11(19), 5914; https://doi.org/10.3390/jcm11195914 - 7 Oct 2022
Cited by 2 | Viewed by 2046
Abstract
The membrane excitatory amino acid transporter 2 (EAAT2), encoded by SLC1A2, is responsible for the uptake and redistribution of synaptic glutamate. Glycine modulates excitatory neurotransmission. The clearance of synaptic glycine is performed by glycine transporters encoded by SLC6A9 and SLC6A5. Higher synaptic [...] Read more.
The membrane excitatory amino acid transporter 2 (EAAT2), encoded by SLC1A2, is responsible for the uptake and redistribution of synaptic glutamate. Glycine modulates excitatory neurotransmission. The clearance of synaptic glycine is performed by glycine transporters encoded by SLC6A9 and SLC6A5. Higher synaptic glycine and glutamate levels could enhance the activation of NMDA receptors and counteract the hypofunction of glutamate neurotransmission described in major depressive disorder (MDD). The aim of the study was to assess whether polymorphisms of SCL1A2 (rs4354668), SCL6A5 (rs2000959), and SCL6A9 (rs2486001) play a role in the development of MDD and its clinical picture in the Polish population. The study group consisted of 161 unrelated Caucasian patients with MDD and 462 healthy unrelated individuals for control. Polymorphisms were genotyped with PCR-RLFP assay. We observed that the frequency of genotype CC and allele C of the SLC1A2 polymorphism rs4354668 was twice as high in the MDD group as in control. Such differences were not detected in SLC6A5 and SLC6A9 polymorphisms. No statistically significant association of the studied SNPs (Single Nucleotide Polymorphisms) on clinical variables of the MDD was observed. The current study indicates an association of polymorphism rs4354668 in SCL1A2 with depression occurrence in the Polish population; however, further studies with larger samples should be performed to clarify these findings. Full article
(This article belongs to the Section Mental Health)
14 pages, 4774 KiB  
Article
Glutamate Uptake Is Not Impaired by Hypoxia in a Culture Model of Human Fetal Neural Stem Cell-Derived Astrocytes
by Vadanya Shrivastava, Devanjan Dey, Chitra Mohinder Singh Singal, Paritosh Jaiswal, Ankit Singh, Jai Bhagwan Sharma, Parthaprasad Chattopadhyay, Nihar Ranjan Nayak, Jayanth Kumar Palanichamy, Subrata Sinha, Pankaj Seth and Sudip Sen
Genes 2022, 13(3), 506; https://doi.org/10.3390/genes13030506 - 12 Mar 2022
Cited by 5 | Viewed by 3674
Abstract
Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various [...] Read more.
Hypoxic ischemic injury to the fetal and neonatal brain is a leading cause of death and disability worldwide. Although animal and culture studies suggest that glutamate excitotoxicity is a primary contributor to neuronal death following hypoxia, the molecular mechanisms, and roles of various neural cells in the development of glutamate excitotoxicity in humans, is not fully understood. In this study, we developed a culture model of human fetal neural stem cell (FNSC)-derived astrocytes and examined their glutamate uptake in response to hypoxia. We isolated, established, and characterized cultures of FNSCs from aborted fetal brains and differentiated them into astrocytes, characterized by increased expression of the astrocyte markers glial fibrillary acidic protein (GFAP), excitatory amino acid transporter 1 (EAAT1) and EAAT2, and decreased expression of neural stem cell marker Nestin. Differentiated astrocytes were exposed to various oxygen concentrations mimicking normoxia (20% and 6%), moderate and severe hypoxia (2% and 0.2%, respectively). Interestingly, no change was observed in the expression of the glutamate transporter EAAT2 or glutamate uptake by astrocytes, even after exposure to severe hypoxia for 48 h. These results together suggest that human FNSC-derived astrocytes can maintain glutamate uptake after hypoxic injury and thus provide evidence for the possible neuroprotective role of astrocytes in hypoxic conditions. Full article
Show Figures

Graphical abstract

17 pages, 3981 KiB  
Article
Dysfunction of EAAT3 Aggravates LPS-Induced Post-Operative Cognitive Dysfunction
by Xiao-Yan Wang, Wen-Gang Liu, Ai-Sheng Hou, Yu-Xiang Song, Yu-Long Ma, Xiao-Dong Wu, Jiang-Bei Cao and Wei-Dong Mi
Membranes 2022, 12(3), 317; https://doi.org/10.3390/membranes12030317 - 11 Mar 2022
Cited by 5 | Viewed by 3176
Abstract
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this [...] Read more.
Numerous results have revealed an association between inhibited function of excitatory amino acid transporter 3 (EAAT3) and several neurodegenerative diseases. This was also corroborated by our previous studies which showed that the EAAT3 function was intimately linked to learning and memory. With this premise, we examined the role of EAAT3 in post-operative cognitive dysfunction (POCD) and explored the potential benefit of riluzole in countering POCD in the present study. We first established a recombinant adeno-associated-viral (rAAV)-mediated shRNA to knockdown SLC1A1/EAAT3 expression in the hippocampus of adult male mice. The mice then received an intracerebroventricular microinjection of 2 μg lipopolysaccharide (LPS) to construct the POCD model. In addition, for old male mice, 4 mg/kg of riluzole was intraperitoneally injected for three consecutive days, with the last injection administered 2 h before the LPS microinjection. Cognitive function was assessed using the Morris water maze 24 h following the LPS microinjection. Animal behavioral tests, as well as pathological and biochemical assays, were performed to clarify the role of EAAT3 function in POCD and evaluate the effect of activating the EAAT3 function by riluzole. In the present study, we established a mouse model with hippocampal SLC1A1/EAAT3 knockdown and found that hippocampal SLC1A1/EAAT3 knockdown aggravated LPS-induced learning and memory deficits in adult male mice. Meanwhile, LPS significantly inhibited the expression of EAAT3 membrane protein and the phosphorylation level of GluA1 protein in the hippocampus of adult male mice. Moreover, riluzole pretreatment significantly increased the expression of hippocampal EAAT3 membrane protein and also ameliorated LPS-induced cognitive impairment in elderly male mice. Taken together, our results demonstrated that the dysfunction of EAAT3 is an important risk factor for POCD susceptibility and therefore, it may become a promising target for POCD treatment. Full article
Show Figures

Figure 1

24 pages, 7814 KiB  
Article
MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium–Pilocarpine Model of Epilepsy
by Alexandra V. Dyomina, Anna A. Kovalenko, Maria V. Zakharova, Tatiana Yu. Postnikova, Alexandra V. Griflyuk, Ilya V. Smolensky, Irina V. Antonova and Aleksey V. Zaitsev
Int. J. Mol. Sci. 2022, 23(1), 497; https://doi.org/10.3390/ijms23010497 - 2 Jan 2022
Cited by 15 | Viewed by 3692
Abstract
Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. [...] Read more.
Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium–pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy. Full article
(This article belongs to the Special Issue Advances in Epilepsy and Antiepileptic Drugs)
Show Figures

Figure 1

17 pages, 3400 KiB  
Article
Enmein Decreases Synaptic Glutamate Release and Protects against Kainic Acid-Induced Brain Injury in Rats
by Cheng-Wei Lu, Yu-Chen Huang, Kuan-Ming Chiu, Ming-Yi Lee, Tzu-Yu Lin and Su-Jane Wang
Int. J. Mol. Sci. 2021, 22(23), 12966; https://doi.org/10.3390/ijms222312966 - 30 Nov 2021
Cited by 6 | Viewed by 2531
Abstract
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, [...] Read more.
This study investigated the effects of enmein, an active constituent of Isodon japonicus Hara, on glutamate release in rat cerebrocortical nerve terminals (synaptosomes) and evaluated its neuroprotective potential in a rat model of kainic acid (KA)-induced glutamate excitotoxicity. Enmein inhibited depolarization-induced glutamate release, FM1-43 release, and Ca2+ elevation in cortical nerve terminals but had no effect on the membrane potential. Removing extracellular Ca2+ and blocking vesicular glutamate transporters, N- and P/Q-type Ca2+ channels, or protein kinase C (PKC) prevented the inhibition of glutamate release by enmein. Enmein also decreased the phosphorylation of PKC, PKC-α, and myristoylated alanine-rich C kinase substrates in synaptosomes. In the KA rat model, intraperitoneal administration of enmein 30 min before intraperitoneal injection of KA reduced neuronal cell death, glial cell activation, and glutamate elevation in the hippocampus. Furthermore, in the hippocampi of KA rats, enmein increased the expression of synaptic markers (synaptophysin and postsynaptic density protein 95) and excitatory amino acid transporters 2 and 3, which are responsible for glutamate clearance, whereas enmein decreased the expression of glial fibrillary acidic protein (GFAP) and CD11b. These results indicate that enmein not only inhibited glutamate release from cortical synaptosomes by suppressing Ca2+ influx and PKC but also increased KA-induced hippocampal neuronal death by suppressing gliosis and decreasing glutamate levels by increasing glutamate uptake. Full article
Show Figures

Figure 1

13 pages, 2394 KiB  
Review
Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment
by Chung-Chieh Hung, Chieh-Hsin Lin and Hsien-Yuan Lane
Int. J. Mol. Sci. 2021, 22(18), 9718; https://doi.org/10.3390/ijms22189718 - 8 Sep 2021
Cited by 31 | Viewed by 8514
Abstract
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc is related to glutamate-release regulation. Patients with [...] Read more.
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

19 pages, 7114 KiB  
Article
The Amino Acid-mTORC1 Pathway Mediates APEC TW-XM-Induced Inflammation in bEnd.3 Cells
by Dong Zhang, Shu Xu, Yiting Wang, Peng Bin and Guoqiang Zhu
Int. J. Mol. Sci. 2021, 22(17), 9245; https://doi.org/10.3390/ijms22179245 - 26 Aug 2021
Cited by 2 | Viewed by 3048
Abstract
The blood–brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to [...] Read more.
The blood–brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to inflammatory response during infection and were accompanied by high expression of amino acid transporters leading to increased amino acid uptake. However, it is unclear whether amino acid uptake is changed and how to affect inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells in response to Avian Pathogenic Escherichia coli TW-XM (APEC XM) infection. Here, we firstly found that APEC XM infection could induce serine (Ser) and glutamate (Glu) transport from extracellular into intracellular in bEnd.3 cells. Meanwhile, we also shown that the expression sodium-dependent neutral amino acid transporter 2 (SNAT2) for Ser and excitatory amino acid transporter 4 (EAAT4) for Glu was also significantly elevated during infection. Then, in amino acid deficiency or supplementation medium, we found that Ser or Glu transport were involving in increasing SNAT2 or EAAT4 expression, mTORC1 (mechanistic target of rapamycin complex 1) activation and inflammation, respectively. Of note, Ser or Glu transport were inhibited after SNAT2 silencing or EAAT4 silencing, resulting in inhibition of mTORC1 pathway activation, and inflammation compared with the APEC XM infection group. Moreover, pEGFP-SNAT2 overexpression and pEGFP-EAAT4 overexpression in bEnd.3 cells all could promote amino acid uptake, activation of the mTORC1 pathway and inflammation during infection. We further found mTORC1 silencing could inhibit inflammation, the expression of SNAT2 and EAAT4, and amino acid uptake. Taken together, our results demonstrated that APEC TW-XM infection can induce Ser or Glu uptake depending on amino acid transporters transportation, and then activate amino acid-mTORC1 pathway to induce inflammation in bEnd.3 cells. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

28 pages, 7509 KiB  
Article
Utilizing an Animal Model to Identify Brain Neurodegeneration-Related Biomarkers in Aging
by Ming-Hui Yang, Yi-Ming Arthur Chen, Shan-Chen Tu, Pei-Ling Chi, Kuo-Pin Chuang, Chin-Chuan Chang, Chiang-Hsuan Lee, Yi-Ling Chen, Che-Hsin Lee, Cheng-Hui Yuan and Yu-Chang Tyan
Int. J. Mol. Sci. 2021, 22(6), 3278; https://doi.org/10.3390/ijms22063278 - 23 Mar 2021
Cited by 5 | Viewed by 4528
Abstract
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAMe), a methyl donor in methylation. Over-expressed SAMe may cause neurogenic capacity reduction and memory impairment. GNMT knockout mice (GNMT-KO) was applied as an experimental model to evaluate its effect on neurons. In this study, proteins from brain [...] Read more.
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAMe), a methyl donor in methylation. Over-expressed SAMe may cause neurogenic capacity reduction and memory impairment. GNMT knockout mice (GNMT-KO) was applied as an experimental model to evaluate its effect on neurons. In this study, proteins from brain tissues were studied using proteomic approaches, Haemotoxylin and Eosin staining, immunohistochemistry, Western blotting, and ingenuity pathway analysis. The expression of Receptor-interacting protein 1(RIPK1) and Caspase 3 were up-regulated and activity-dependent neuroprotective protein (ADNP) was down-regulated in GNMT-KO mice regardless of the age. Besides, proteins related to neuropathology, such as excitatory amino acid transporter 2, calcium/calmodulin-dependent protein kinase type II subunit alpha, and Cu-Zn superoxide dismutase were found only in the group of aged wild-type mice; 4-aminobutyrate amino transferase, limbic system-associated membrane protein, sodium- and chloride-dependent GABA transporter 3 and ProSAAS were found only in the group of young GNMT-KO mice and are related to function of neurons; serum albumin and Rho GDP dissociation inhibitor 1 were found only in the group of aged GNMT-KO mice and are connected to neurodegenerative disorders. With proteomic analyses, a pathway involving Gonadotropin-releasing hormone (GnRH) signal was found to be associated with aging. The GnRH pathway could provide additional information on the mechanism of aging and non-aging related neurodegeneration, and these protein markers may be served in developing future therapeutic treatments to ameliorate aging and prevent diseases. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Back to TopTop