Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder
Abstract
:1. Background
2. Materials and Methods
2.1. Patient and Control Groups Profile
2.2. SNP Choice and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Comparison of Genotype and Allele Distribution of the Studied Polymorphisms between Patients and Controls
3.2. Correlation between Gender, Genotype, and Clinical Variables of MDD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid |
CNS | central nervous system |
DLPFC | dorsolateral prefrontal cortex |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
EAAT | excitatory amino acid transporter |
GABA | gamma-aminobutyric acid |
GlyT | glycine transporter |
HDRS | Hamilton Depression Rating Scale |
HWE | Hardy–Weinberg equilibrium |
KA | kainate |
LD | linkage disequilibrium |
MDD | major depressive disorder |
NMDA | N-methyl-D-aspartate |
PCR-RLFP | polymerase chain reaction-restriction fragment length polymorphism |
SLC | solute carrier |
SNP | single nucleotide polymorphism |
VGLUT | vesicular glutamate transporter |
References
- Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [Green Version]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 Diseases and Injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Geschwind, D.H.; Flint, J. Genetics and genomics of psychiatric disease. Science 2015, 349, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, A.M.; Sullivan, P.F.; Lewis, C.M. Uncovering the Genetic Architecture of Major Depression. Neuron 2019, 102, 91–103. [Google Scholar] [CrossRef]
- Border, R.; Johnson, E.C.; Evans, L.M.; Smolen, A.; Berley, N.; Sullivan, P.F.; Keller, M.C. No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. Am. J. Psychiatry 2019, 176, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.E.; Ostacher, M.; Ballon, J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology 2019, 44, 1518. [Google Scholar] [CrossRef]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independentvariants and highlights the importance of the prefrontal brainregions. Nat. Neurosci. 2019, 22, 343. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.D.; Baker, G.B. An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr. Scand. 2010, 122, 192–210. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Alexander, R.; Smith, M.A.; Pathak, S.; Kanes, S.; Lee, C.M.; Sanacora, G. Glutamate-based depression GBD. Med. Hypotheses 2012, 78, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Deutschenbaur, L.; Beck, J.; Kiyhankhadiv, A.; Mühlhauser, M.; Borgwardt, S.; Walter, M.; Hasler, G.; Sollberger, D.; Lang, U.E. Role of calcium, glutamate and NMDA in major depression and therapeutic ap-plication. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 325–333. [Google Scholar] [CrossRef]
- Lener, M.S.; Niciu, M.J.; Ballard, E.D.; Park, M.; Park, L.T.; Nugent, A.C.; Zarate, C.A., Jr. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol. Psychiatry 2017, 81, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Chawla, J.M.; Hagi, K.; Zarate, C.A.; Kane, J.M.; Bauer, M.; Correll, C.U. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: A meta-analysis of efficacy, safety and time trajectories. Psychol. Med. 2016, 46, 1459–1472. [Google Scholar] [CrossRef] [Green Version]
- Petroff, O.A.C. GABA and glutamate in the human brain. Neuroscientist 2002, 8, 562–573. [Google Scholar] [CrossRef]
- Shen, J.; Petersen, K.F.; Behar, K.L.; Brown, P.; Nixon, T.W.; Mason, G.F.; Petroff, O.A.C.; Shulman, G.I.; Shulman, R.G.; Rothman, D.L. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc. Natl. Acad. Sci. USA 1999, 96, 8235–8240. [Google Scholar] [CrossRef] [Green Version]
- Takamori, S. VGLUTs: “Exciting” times for glutamatergic research? Neurosci. Res. 2006, 55, 343–351. [Google Scholar] [CrossRef]
- Niciu, M.J.; Kelmendi, B.; Sanacora, G. Overview of glutamatergic neurotransmission in the nervous system. Pharmacol. Biochem. Behav. 2012, 100, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Divito, C.B.; Underhill, S.M. Excitatory amino acid transporters: Roles in glutamatergic neurotransmission. Neurochem. Int. 2014, 73, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Gegelashvili, G.; Dehnes, Y.; Danbolt, N.C.; Schousboe, A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem. Int. 2000, 37, 163–170. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Martin, L.; Levey, A.I.; Dykes-Hoberg, M.; Jin, L.; Wu, D.; Nash, N.; Kuncl, R.W. Localization of neuronal and glial glutamate transporters. Neuron 1994, 13, 713–725. [Google Scholar] [CrossRef]
- Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol. Psychiatry 2000, 48, 766–777. [Google Scholar] [CrossRef]
- Rajkowska, G.; Stockmeier, C. Astrocyte Pathology in Major Depressive Disorder: Insights from Human Postmortem Brain Tissue. Curr. Drug Targets 2013, 14, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Vollmayr, B.; Gebicke-Haerter, P.J.; Henn, F.A. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 2010, 58, 465–473. [Google Scholar] [CrossRef]
- John, C.S.; Smith, K.L.; Van’T Veer, A.; Gompf, H.S.; Carlezon, W.A.; Cohen, B.M.; Ngür, D.; Bechtholt-Gompf, A.J. Blockade of astrocytic glutamate uptake in the prefrontal cortex induces anhedonia. Neuropsychopharmacology 2012, 37, 2467–2475. [Google Scholar] [CrossRef] [Green Version]
- Bechtholt-Gompf, A.J.; Walther, H.V.; Adams, M.A.; Carlezon, W.A.; Ngür, D.; Cohen, B.M. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 2010, 35, 2049–2059. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Burke, S.; Thompson, R.C.; Bunney, W.; Myers, R.M.; Schatzberg, A.; Akil, H.; Watson, S.J. Glutamate transporters: A key piece in the glutamate puzzle of major depressive disorder. J. Psychiatr. Res. 2013, 47, 1150–1156. [Google Scholar] [CrossRef]
- Choudary, P.V.; Molnar, M.; Evans, S.J.; Tomita, H.; Li, J.Z.; Vawter, M.P.; Myers, R.M.; Bunney, W.E.; Akil, H.; Watson, S.J.; et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc. Natl. Acad. Sci. USA 2005, 102, 15653–15658. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.H.; Oh, D.; Son, H.; Webster, M.J.; Weickert, C.S.; Kim, S.H. An association between the reduced levels of SLC1A2 and GAD1 in the dorsolateral prefrontal cortex in major depressive disorder: Possible involvement of an attenuated RAF/MEK/ERK signaling pathway. J. Neural Transm. 2014, 121, 783–792. [Google Scholar] [CrossRef]
- Chandley, M.J.; Szebeni, K.; Szebeni, A.; Crawford, J.; Stockmeier, C.A.; Turecki, G.; Miguel-Hidalgo, J.J.; Ordway, G.A. Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J. Psychiatry Neurosci. 2013, 38, 276–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1, 623–634. [Google Scholar] [CrossRef]
- Lau, A.; Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflug. Arch. Eur. J. Physiol. 2010, 460, 525–542. [Google Scholar] [CrossRef]
- Hashimoto, K.; Sawa, A.; Iyo, M. Increased Levels of Glutamate in Brains from Patients with Mood Disorders. Biol. Psychiatry 2007, 62, 1310–1316. [Google Scholar] [CrossRef]
- Liao, J.W.; Wang, S.S.; Yang, H.H.; Ma, P.; Li, C.R.; Pan, J.Y. Comparative analysis of serum glutamate and gamma-aminobutyric acid levels in patients with bipolar depressive disorder and major depression disorder. Zhonghua Yi Xue Za Zhi 2020, 100, 1800–1804. [Google Scholar] [CrossRef]
- Sanacora, G.; Gueorguieva, R.; Epperson, C.N.; Wu, Y.T.; Appel, M.; Rothman, D.L.; Krystal, J.H.; Mason, G.F. Subtype-specific alterations of γ-aminobutyric acid and glutamate in patients with major depression. Arch. Gen. Psychiatry 2004, 61, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Krystal, J.H.; Sanacora, G.; Blumberg, H.; Anand, A.; Charney, D.S.; Marek, G.; Epperson, C.N.; Goddard, A.; Mason, G.F. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol. Psychiatry 2002, 7, S71–S80. [Google Scholar] [CrossRef] [Green Version]
- Mallolas, J.; Hurtado, O.; Castellanos, M.; Blanco, M.; Sobrino, T.; Serena, J.; Vivancos, J.; Castillo, J.; Lizasoain, I.; Moro, M.A.; et al. A polymorphism in the EAAT2 promoter is associated with higher glutamate concentrations and higher frequency of progressing stroke. J. Exp. Med. 2006, 203, 711–717. [Google Scholar] [CrossRef]
- Johnson, J.W.; Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 1987, 325, 529–531. [Google Scholar] [CrossRef]
- Kirsch, J. Glycinergic transmission. Cell Tissue Res. 2006, 326, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.L.; Oliveira-Lima, O.C.; Carvalho, G.A.; de Almeida Chiarelli, R.; Ribeiro, R.I.; Parreira, R.C.; da Madeira Freitas, E.M.; Resende, R.R.; Klempin, F.; Ulrich, H.; et al. Neurobiology of glycine transporters: From molecules to behavior. Neurosci. Biobehav. Rev. 2020, 118, 97–110. [Google Scholar] [CrossRef]
- Cubelos, B.; Giménez, C.; Zafra, F. Localization of the GLYT1 glycine transporter at glutamatergic synapses in the rat brain. Cereb. Cortex 2005, 15, 448–459. [Google Scholar] [CrossRef]
- Aroeira, R.I.; Sebastião, A.M.; Valente, C.A. BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 2015, 63, 2181–2197. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.M.C.; Fernald, A.; Bell, G.I.; Le Beau, M.M. Assignment of SLC6A9 to human chromosome band 1p33 by in situ hybridization. Cytogenet. Cell Genet. 1995, 71, 211. [Google Scholar] [CrossRef]
- Morrow, J.A.; Collie, I.T.; Dunbar, D.R.; Walker, G.B.; Shahid, M.; Hill, D.R. Molecular cloning and functional expression of the human glycine transporter GlyT2 and chromosomal localisation of the gene in the human genome. FEBS Lett. 1998, 439, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Wei, I.H.; Huang, C.L.; Chen, K.T.; Tsai, M.H.; Tsai, P.; Tun, R.; Huang, K.H.; Chang, Y.C.; Lane, H.Y.; et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol. Psychiatry 2013, 74, 734–741. [Google Scholar] [CrossRef]
- Hirschfeld, R.M.; Williams, J.B.; Spitzer, R.L.; Calabrese, J.R.; Flynn, L.; Keck, P.E., Jr.; Lewis, L.; McElroy, S.L.; Post, R.M.; Rapport, D.J.; et al. Development and validation of a screening instrument for bipolar spectrum disorder: The Mood Disorder Questionnaire. Am. J. Psychiatry 2000, 157, 1873–1875. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Ko, J.Y.; Goodwin, F.K. The bipolar spectrum and the antidepressant view of the world. J. Psychiatr. Pract. 2001, 7, 287–297. [Google Scholar] [CrossRef]
- Mansournia, M.A.; Jewell, N.P.; Greenland, S. Case–control matching: Effects, misconceptions, and recommendations. Eur. J. Epidemiol. 2018, 33, 5–14. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 3 October 2022).
- Morita, Y.; Ujike, H.; Tanaka, Y.; Kishimoto, M.; Okahisa, Y.; Kotaka, T.; Harano, M.; Inada, T.; Komiyama, T.; Hori, T.; et al. The glycine transporter 1 gene (GLYT1) is associated with methamphetamine-use disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147, 54–58. [Google Scholar] [CrossRef]
- Merk, W.; Kucia, K.; Mȩdrala, T.; Kowalczyk, M.; Owczarek, A.; Kowalski, J. Association study of the excitatory amino acid transporter 2 (EAAT2) and glycine transporter 1 (GlyT1) gene polymorphism with schizophrenia in a Polish population. Neuropsychiatr. Dis. Treat. 2019, 15, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Sagata, N.; Takeuchi, N.; Tanaka, M.; Ninomiya, H.; Iwata, N.; Ozaki, N.; Shibata, H.; Fukumaki, Y. Association study of polymorphisms in the neutral amino acid transporter genes SLC1A4, SLC1A5 and the glycine transporter genes SLC6A5, SLC6A9 with schizophrenia. BMC Psychiatry 2008, 8, 58. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Suzuki, A.; Ishii, G.; Oshino, S.; Otani, K.; Goto, K. The -181 A/C polymorphism in the excitatory amino acid transporter-2 gene promoter affects the personality trait of reward dependence in healthy subjects. Neurosci. Lett. 2007, 427, 99–102. [Google Scholar] [CrossRef]
- Available online: https://www.r-project.org/ (accessed on 3 October 2022).
- Dallaspezia, S.; Poletti, S.; Lorenzi, C.; Pirovano, A.; Colombo, C.; Benedetti, F. Influence of an interaction between lithium salts and a functional polymorphism in SLC1A2 on the history of illness in bipolar disorder. Mol. Diagn. Ther. 2012, 16, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poletti, S.; Locatelli, C.; Radaelli, D.; Lorenzi, C.; Smeraldi, E.; Colombo, C.; Benedetti, F. Effect of early stress on hippocampal gray matter is influenced by a func-tional polymorphism in EAAT2 in bipolar disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 51, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Veldic, M.; Millischer, V.; Port, J.D.; Ho, A.M.; Jia, Y.F.; Geske, J.R.; Biernacka, J.M.; Backlund, L.; McElroy, S.L.; Bond, D.J.; et al. Genetic variant in SLC1A2 is associated with elevated anterior cingulate cortex glutamate and lifetime history of rapid cycling. Transl. Psychiatry 2019, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, A.; Sharp, S.I.; McQuillin, A. Association of rare variation in the glutamate receptor gene SLC1A2 with susceptibility to bipolar disorder and schizophrenia. Eur. J. Hum. Genet. 2015, 23, 1200–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spangaro, M.; Bosia, M.; Zanoletti, A.; Bechi, M.; Mariachiara, B.; Pirovano, A.; Lorenzi, C.; Bramanti, P.; Smeraldi, E.; Cavallaro, R. Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 2014, 15, 925–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Guan, F.; Chen, G.; Lin, H.; Zhang, T.; Feng, J.; Li, L.; Fu, D. Common variants in SLC1A2 and schizophrenia: Association and cognitive function in patients with schizophrenia and healthy individuals. Schizophr. Res. 2015, 169, 128–134. [Google Scholar] [CrossRef]
- Thaweethee, B.; Suttajit, S.; Thanoi, S.; Dalton, C.F.; Reynolds, G.P.; Nudmamud-Thanoi, S. Association of SLC1A2 and SLC17A7 polymorphisms with major depressive disorder in a Thai population. Asian Biomed Res. Rev. News 2019, 12, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Rybakowski, J.K.; Suwalska, A.; Lojko, D.; Rymaszewska, J.; Kiejna, A. Types of Depression More Frequent in Bipolar than in Unipolar Affective Illness: Results of the Polish DEP-BI Study. Psychopathology 2007, 40, 153–158. [Google Scholar] [CrossRef]
- Ghaemi, S.N.; Dalley, S. The bipolar spectrum: Conceptions and misconceptions. Aust. N. Z. J. Psychiatry 2014, 48, 314–324. [Google Scholar] [CrossRef]
- Pinares-Garcia, P.; Stratikopoulos, M.; Zagato, A.; Loke, H.; Lee, J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci. 2018, 8, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.J.; Park, Y.; Yoo, K.H.; Kim, K.T.; Kim, E.S.; Kim, J.W.; Kim, S.W.; Shin, I.S.; Yoon, J.S.; Kim, J.H.; et al. Sex differences in the genetic architecture of depression. Sci. Rep. 2020, 10, 9927. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Barrientos, F.A.; Méndez-Ruette, M.; Ortloff, A.; Luz-Crawford, P.; Rivera, F.J.; Figueroa, C.D.; Molina, L.; Bátiz, L.F. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front. Cell. Neurosci. 2021, 15, 52. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Gruenbaum, B.F.; Mohar, B.; Kuts, R.; Gruenbaum, S.E.; Ohayon, S.; Boyko, M.; Klin, Y.; Sheiner, E.; Shaked, G.; et al. The effects of estrogen and progesterone on blood glutamate levels: Evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol. Reprod. 2011, 84, 581–586. [Google Scholar] [CrossRef]
- Pawlak, J.; Brito, V.; Küppers, E.; Beyer, C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Mol. Brain Res. 2005, 138, 1–7. [Google Scholar] [CrossRef]
- Redlich, R.; Almeida, J.R.; Grotegerd, D.; Opel, N.; Kugel, H.; Heindel, W.; Arolt, V.; Phillips, M.L.; Dannlowski, U. Brain morphometric biomarkers distinguishing unipolar and bipolar depression: A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 2014, 71, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Poletti, S.; Radaelli, D.; Bosia, M.; Buonocore, M.; Pirovano, A.; Lorenzi, C.; Cavallaro, R.; Smeraldi, E.; Benedetti, F. Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur. Psychiatry 2014, 29, 219–225. [Google Scholar] [CrossRef]
- Spangaro, M.; Bosia, M.; Zanoletti, A.; Bechi, M.; Cocchi, F.; Pirovano, A.; Lorenzi, C.; Bramanti, P.; Benedetti, F.; Smeraldi, E.; et al. Cognitive dysfunction and glutamate reuptake: Effect of EAAT2 polymorphism in schizophrenia. Neurosci. Lett. 2012, 522, 151–155. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Pfennig, A.; Severus, E.; Whybrow, P.C.; Angst, J.; Möller, H.J.; Adli, M.; Benkert, O.; Bschor, T.; Tadić, A.; et al. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Update 2013 on the acute and continuation treatment of unipolar depressive disorders. World J. Biol. Psychiatry 2013, 14, 334–385. [Google Scholar] [CrossRef]
- Strawbridge, R.; Carter, B.; Marwood, L.; Bandelow, B.; Tsapekos, D.; Nikolova, V.L.; Taylor, R.; Mantingh, T.; de Angel, V.; Patrick, F.; et al. Augmentation therapies for treatment-resistant depression: Systematic review and meta-analysis. Br. J. Psychiatry 2019, 214, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, T.M.; Ryan, M.; Foster, T.; Kelly, C.; McClelland, R.; O’Grady, J.; Corcoran, E.; Brady, J.; Reilly, M.; Jeffers, A.; et al. Risk and protective genetic variants in suicidal behaviour: Association with SLC1A2, SLC1A3, 5-HTR1B &NTRK2 polymorphisms. Behav. Brain Funct. 2011, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.Y.; Kim, G.E.; Kong, K.A.; Lee, Y.J.; Lim, W.J.; Park, S.H.; Ha, S.H.; Kim, S.I. Psychological and genetic risk factors associated with suicidal behavior in Korean patients with mood disorders. J. Affect. Disord. 2018, 235, 489–498. [Google Scholar] [CrossRef]
- Tsai, S.J.; Cheng, C.Y.; Hong, C.J.; Liao, D.L.; Hou, S.J.; Yen, F.C.; Liou, Y.J. Association study of polymorphisms in glycine transporter with schizophrenia. J. Neural Transm. 2006, 113, 1545–1549. [Google Scholar] [CrossRef]
- Koller, G.; Zill, P.; Fehr, C.; Pogarell, O.; Bondy, B.; Soyka, M.; Preuss, U.W. No association of alcohol dependence with SLC6A5 and SLC6A9 glycine transporter polymorphisms. Addict. Biol. 2009, 14, 506–508. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Tabara, Y.; Fukuda, N.; Tahira, K.; Matsumoto, T.; Kosuge, K.; Haketa, A.; Matsumoto, K.; Sato, Y.; Nakayama, T.; et al. Association of SLC6A9 gene variants with human essential hypertension. J. Atheroscler. Thromb. 2009, 16, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Alfadhel, M.; Nashabat, M.; Qahtani, H.A.; Alfares, A.; Mutairi, F.A.; Shaalan, H.A.; Douglas, G.V.; Wierenga, K.; Juusola, J.; Alrifai, M.T.; et al. Mutation in SLC6A9 encoding a glycine transporter causes a novel form of non-ketotic hyperglycinemia in humans. Hum. Genet. 2016, 135, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
Variable | Total Group | Females | Males | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean (±SD) | Median (Q1–Q3) | Range | Mean (±SD) | Median (Q1–Q3) | Range | Mean (±SD) | Median (Q1–Q3) | Range | |
Number of episodes | 5.6 ± 6 | 4 (3–6) | 1–50 | 6 ± 5 | 4 (3–7) | 2–35 | 6 ± 7 | 4 (3–5) | 1–50 |
Duration of the disease (years) | 12 ± 10 | 10 (5–17) | 0.5–47 | 13 ± 10 | 10 (6–18) | 1–47 | 10 ± 8 | 7 (3–15) | 0.5–30 |
Total HDRS score | 14.8 ± 9 | 13 (7–21) | 0–42 | 14.1 ± 8.7 | 13 (7–20) | 0–40 | 16.5 ± 9.8 | 15 (9–23) | 2–42 |
Age of onset | 45 ± 12 | 45 (36–53) | 14–70 | 44 ± 12 | 43 (35–52) | 14–70 | 47 ± 12 | 48 (40–55) | 21–68 |
SNP | Total Group | χ2 | p-Value | Females | χ2 | p-Value | Males | χ2 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patients | Controls | Patients | Controls | Patients | Controls | ||||||||
Genotypes | |||||||||||||
rs4354668 | A/A | 41 (25.47%) | 154 (33.33%) | 15.98 | <0.001 | 30 (25.86%) | 73 (30.67%) | 12.58 | <0.01 | 11 (24.44%) | 81 (36.16%) | 4.80 | 0.09 |
A/C | 71 (44.10%) | 234 (50.65%) | 51 (43.97%) | 131 (55.04%) | 20 (44.45%) | 103 (45.98%) | |||||||
C/C | 49 (30.43%) | 74 (16.02%) | 35 (30.17%) | 34 (14.29%) | 14 (31.11%) | 40 (17.86%) | |||||||
Alleles | |||||||||||||
rs4354668 | A | 153 (47.52%) | 542 (58.66%) | 12.02 | <0.001 | 111 (47.84%) | 277 (58.19%) | 6.74 | <0.01 | 42 (46.67%) | 265 (59.15%) | 4.77 | <0.05 |
C | 169 (52.48%) | 382 (41.34%) | 121 (52.16%) | 199 (41.81%) | 48 (53.33%) | 183 (40.85%) |
SNP | Total Group | χ2 | p-Value | Females | χ2 | p-Value | Males | χ2 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patients | Controls | Patients | Controls | Patients | Controls | ||||||||
Genotypes | |||||||||||||
rs2486001 | A/A | 2 (1.24%) | 13 (2.81%) | 1.26 | 0.53 | 1 (0.86%) | 9 (3.78%) | 3.05 | 0.22 | 1 (2.22%) | 4 (1.79%) | 0.71 | 0.97 |
A/C | 43 (26.71%) | 121 (26.19%) | 31 (26.72%) | 58 (24.37%) | 12 (26.67%) | 63 (28.13%) | |||||||
C/C | 116 (72.05%) | 328 (71.00%) | 84 (72.41%) | 171 (71.85%) | 32 (71.11%) | 157 (70.09%) | |||||||
Alleles | |||||||||||||
rs2486001 | A | 51 (4.08%) | 147 (11.76%) | 0.01 | 0.91 | 33 (12.28%) | 76 (43.50%) | 0.36 | 0.55 | 14 (7.81%) | 71 (49.26%) | 0.00 | 0.94 |
C | 275 (26.08%) | 777 (73.92%) | 199 (13.56%) | 400 (30.66%) | 76 (8.92%) | 377 (34.01%) |
SNP | Total Group | χ2 | p-Value | Females | χ2 | p-Value | Males | χ2 | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Patients | Controls | Patients | Controls | Patients | Controls | ||||||||
Genotypes | |||||||||||||
rs2000959 | A/A | 20 (12.42%) | 47 (10.17%) | 0.69 | 0.71 | 16 (13.79%) | 20 (8.40%) | 2.48 | 0.29 | 4 (8.89%) | 27 (12.05%) | 0.69 | 0.71 |
A/C | 67 (41.46%) | 202 (43.72%) | 49 (42.24%) | 106 (44.54%) | 18 (40.00%) | 96 (42.86%) | |||||||
C/C | 74 (45.96%) | 213 (46.10% | 51 (43.97%) | 112 (47.06%) | 23 (51.11%) | 101 (45.09%) | |||||||
Alleles | |||||||||||||
rs2000959 | A | 107 (8.59%) | 296 (23.76%) | 0.16 | 0.69 | 81 (12.28%) | 146 (43.50%) | 0.72 | 0.40 | 26 (4.83%) | 150 (27.88%) | 0.72 | 0.40 |
C | 215 (17.26%) | 628 (50.40%) | 151 (13.56%) | 330 (30.66%) | 64 (11.90%) | 298 (55.39%) |
Model | Genotype | Total Group (n = 623) | Females (n = 354) | Males (n = 269) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Depression | Control | OR (95% CI) | p- Value | BIC | Depression | Control | OR (95% CI) | p-Value | BIC | Depression | Control | OR (95% CI) | p-Value | BIC | ||
Codominant | A/A | 41 (25.5%) | 154 (33.3%) | 1.00 | <0.001 | 700.9 | 30 (25.9%) | 73 (30.7%) | 1.00 | <0.01 | 453.4 | 11 (24.4%) | 81 (36.2%) | 1.00 | 0.10 | 255.2 |
A/C | 71 (44.1%) | 234 (50.6%) | 1.08 (0.69–1.67) | 51 (44%) | 131 (55%) | 0.94 (0.56–1.61) | 20 (44.4%) | 103 (46%) | 1.43 (0.65–3.13) | |||||||
C/C | 49 (30.4%) | 74 (16.0%) | 2.50 (1.52–4.17) | 35 (30.2%) | 34 (14.3%) | 2.50 (1.33–4.76) | 14 (31.1%) | 40 (17.9%) | 2.56 (1.08–6.25) | |||||||
Dominant | A/A | 41 (25.2%) | 154 (33.3%) | 1.00 | 0.10 | 707.3 | 30 (25.9%) | 73 (30.7%) | 1.00 | 0.35 | 458.7 | 11 (24.4%) | 81 (36.2%) | 1.00 | 0.12 | 251.7 |
A/C-C/C | 120 (74.5%) | 308 (66.7%) | 1.41 (0.93–2.13) | 86 (74.1%) | 165 (69.3%) | 1.27 (0.77–2.08) | 34 (75.6%) | 143 (63.8%) | 1.75 (0.84–3.70) | |||||||
Recessive | A/A-A/C | 112 (69.6%) | 388 (84.0%) | 1.00 | <0.001 | 694.6 | 81 (69.8%) | 204 (85.7%) | 1.00 | <0.001 | 447.6 | 31 (68.9%) | 184 (82.1%) | 1.00 | 0.052 | 250.4 |
C/C | 49 (30.4%) | 74 (16%) | 2.38 (1.56–3.70) | 35 (30.2%) | 34 (14.3%) | 2.56 (1.52–4.35) | 14 (31.1%) | 40 (17.9%) | 2.08 (1.01–4.35) | |||||||
Overdominant | A/A-C/C | 90 (55.9%) | 228 (49.4%) | 1.00 | 0.09 | 707.1 | 65 (56%) | 107 (45%) | 1.00 | 0.05 | 455.7 | 25 (55.6%) | 121 (54%) | 1.00 | 0.85 | 254.1 |
A/C | 71 (44.1%) | 234 (50.6%) | 0.72 (0.50–1.05) | 51 (44%) | 131 (55%) | 0.64 (0.41–1.00) | 20 (44.4%) | 103 (46%) | 0.94 (1.49–1.79) |
Haplotype | Total Group (n = 623) | Females (n = 354) | Males (n = 269) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
rs4354668 | rs2486001 | rs2000959 | Freq (%) | OR (95% CI) | p-Value | Freq (%) | OR (95% CI) | p-Value | Freq (%) | OR (95% CI) | p-Value |
A | G | C | 33.89 | 1.00 | --- | 31.29 | 1.00 | --- | 36.65 | 1.00 | --- |
C | G | C | 24.27 | 1.75 (1.16–2.63) | <0.01 | 26.34 | 0.63 (0.37–1.05) | 0.12 | 21.97 | 0.53 (0.27–1.04) | 0.06 |
A | G | A | 13.68 | 1.23 (0.74–2.08) | 0.41 | 15.19 | 0.66 (0.36–1.21) | 0.30 | 12.44 | 1.73 (0.52–5.70) | 0.41 |
C | G | A | 12.59 | 1.28 (0.80–2.08) | 0.30 | 11.78 | 0.75 (0.41–1.35) | 0.29 | 13.14 | 0.83 (0.36–1.89) | 0.65 |
A | A | C | 5.32 | 0.52 (0.18–1.47) | 0.22 | 6.30 | 3.06 (0.63–14.76) | 0.13 | 4.28 | 1.18 (0.27–5.13) | 0.95 |
C | A | C | 4.18 | 1.54 (0.67–3.57) | 0.31 | 4.01 | 0.44 (0.15–1.24) | 0.10 | 4.39 | 1.19 (0.24–5.86) | 0.80 |
C | A | A | 3.18 | 2.04 (0.77–5.56) | 0.15 | 3.07 | 0.34 (0.09–1.26) | 0.19 | 3.44 | 0.75 (0.15–3.77) | 0.67 |
A | A | A | 2.89 | 1.32 (0.41–4.35) | 0.64 | 2.02 | 1.05 (0.18–6.00) | 0.76 | 3.70 | 0.49 (0.10–2.31) | 0.47 |
Global haplotype association p-value <0.05 |
Variable | rs4354668 | rs2486001 | rs2000959 | ||||||
---|---|---|---|---|---|---|---|---|---|
Sex | Genotype | Sex × Genotype | Sex | Genotype 1 | Sex × Genotype | Sex | Genotype | Sex × Genotype | |
Age of onset | 0.10 | 0.27 | 0.33 | 0.57 | 0.23 | 0.85 | 0.33 | 0.46 | 0.82 |
Number of episodes | 0.73 | 0.24 | 0.20 | 0.71 | 0.73 | 0.31 | 0.79 | 0.68 | 0.89 |
Duration of the disease | <0.01 | 0.40 | 0.64 | <0.05 | 0.91 | 0.51 | <0.01 | 0.45 | 0.19 |
Total HDRS score | 0.15 | 0.28 | 0.15 | <0.05 | 0.60 | 0.08 | 0.45 | 0.45 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodek, P.; Kowalczyk, M.; Kowalski, J.; Owczarek, A.; Choręza, P.; Kucia, K. Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder. J. Clin. Med. 2022, 11, 5914. https://doi.org/10.3390/jcm11195914
Rodek P, Kowalczyk M, Kowalski J, Owczarek A, Choręza P, Kucia K. Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder. Journal of Clinical Medicine. 2022; 11(19):5914. https://doi.org/10.3390/jcm11195914
Chicago/Turabian StyleRodek, Patryk, Małgorzata Kowalczyk, Jan Kowalski, Aleksander Owczarek, Piotr Choręza, and Krzysztof Kucia. 2022. "Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder" Journal of Clinical Medicine 11, no. 19: 5914. https://doi.org/10.3390/jcm11195914
APA StyleRodek, P., Kowalczyk, M., Kowalski, J., Owczarek, A., Choręza, P., & Kucia, K. (2022). Association Study of the SLC1A2 (rs4354668), SLC6A9 (rs2486001), and SLC6A5 (rs2000959) Polymorphisms in Major Depressive Disorder. Journal of Clinical Medicine, 11(19), 5914. https://doi.org/10.3390/jcm11195914