Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = ethoxylated alcohols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1342 KB  
Article
Biofortification of Durum Wheat Grain: Interactions Between Micronutrients as Affected by Potential Biofortification Enhancers and Surfactants
by Despina Dimitriadi, Georgios P. Stylianidis, Ioannis Tsirogiannis, Styliani Ν. Chorianopoulou and Dimitris L. Bouranis
Plants 2025, 14(24), 3759; https://doi.org/10.3390/plants14243759 - 10 Dec 2025
Viewed by 402
Abstract
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at [...] Read more.
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at addressing EMi deficiencies in human populations that emphasize cost-effectiveness and sustainability. All EMis are usually applied foliarly as sulfates, which indicates sulfur (S)-assisted biofortification. The formation of EMi complexes provides solubility as well as protection during long-distance transport. Several small molecules are possible candidates as ligands—the S-containing amino acids cysteine and methionine among them—linking EMi homeostasis to S homeostasis, which represents another aspect of S-assisted biofortification. In this study, we delve into the S-assisted agronomic biofortification strategy by applying sulfate micronutrients coupled with a sulfur-containing amino acid and we explore the effect of the selected accompanying cation (Zn, Fe, Mn, or Cu) on the EMi metallome of the grain, along with the biofortification effectiveness, whilst the type of the incorporated surface active agent seems to affect this approach. A field experiment was conducted for two years with durum wheat cultivation subjected to various interventions at the initiation of the dough stage, aiming to biofortify the grain with EMis provided as sulfate salts coupled with cysteine or methionine as potential biofortification enhancers. The mixtures were applied alone or in combination with commercial surfactants of the organosilicon ethoxylate (SiE) type or the alcohol ethoxylate (AE) type. The performance of two relevant preparations, FytoAmino-Bo (FABo) and Phillon, has been studied, too. The interventions affected the accumulation of the EMi metallome into the grains, along with the interactions of the EMis within this metallome. Several interventions increased the EMi metallome of the grain and affected the contribution of each EMi to this metallome. Many interventions have increased Zn and Fe, while they have decreased Mn and Cu. An increase in Zn corresponded (i) to a decrease in Cu, (ii) to an increase or no increase in Fe, and (iii) to a variable change in Mn. Cys increased the metallome by 34% and Zn and Fe within it. ZnSO4 and FeSO4 increased the metallome by 5% and 9%, whilst MnSO4 and CuSO4 increased the metallome by 36% and 33%, respectively. The additives improved the contribution to increasing the metallome in most cases. Without surfactant, the efficacy ranking proved to be MnSO4 > CuSO4 > ZnSO4 > FeSO4. The use of SW7 sustained the order CuSO4 > MnSO4 > ZnSO4 > FeSO4. The use of Saldo switched the order to CuSO4 > ZnSO4 > FeSO4 > MnSO4. In the case of Phillon, the order was CuSO4 > FeSO4 > ZnSO4 > MnSO4. The effect of Cys or Met was case-specific. The differentiations in the intensity of both the agronomic performance (grain weight, grain weight per spike, and yield) and the biofortification performance (concentrations vs. accumulations of each EMi within the grain) among the various combinations of EMis and additives are depicted by adopting a grading scale, which highlighted the intensity of the acclimation reaction of the biofortified grain to the applied intervention. Full article
Show Figures

Figure 1

24 pages, 5484 KB  
Article
Mechanistic Investigation of CO2-Soluble Compound Foaming Systems for Flow Blocking and Enhanced Oil Recovery
by Junhong Jia, Wei Fan, Chengwei Yang, Danchen Li and Xiukun Wang
Processes 2025, 13(10), 3299; https://doi.org/10.3390/pr13103299 - 15 Oct 2025
Viewed by 431
Abstract
Carbon dioxide (CO2) has been widely applied in gas flooding for reservoir development due to its remarkable oil recovery potential. However, because its viscosity is lower than that of water and most crude oils, severe channeling often occurs during the flooding [...] Read more.
Carbon dioxide (CO2) has been widely applied in gas flooding for reservoir development due to its remarkable oil recovery potential. However, because its viscosity is lower than that of water and most crude oils, severe channeling often occurs during the flooding process, resulting in a significant reduction in the sweep efficiency. To address this issue, foam flooding has attracted considerable attention as an effective method for controlling CO2 mobility. In this study, a compound foam system was developed with alpha-olefin sulfonate (AOS) as the primary foaming agent, alcohol ethoxylate (AEO) and cetyltrimethylammonium bromide (CTAB) as co-surfactants, and partially hydrolyzed polyacrylamide (HPAM) as the stabilizer. The optimal system was screened through evaluations of comprehensive foam index, salt tolerance, oil resistance, and shear resistance. Results indicate that the AOS+AEO formulation exhibits superior foaming ability, salt tolerance, and foam stability compared with the AOS+CTAB system, with the best performance achieved at a mass ratio of 2:1 (AOS:AEO), balancing both adaptability and economic feasibility. A heterogeneous reservoir model was constructed using parallel core flooding to investigate the displacement performance and blocking capability of the system. Nuclear magnetic resonance (NMR) imaging was employed to monitor in situ oil phase migration and clarify the recovery mechanisms. Experimental results show that the compound foam system demonstrates excellent conformance control performance, achieving a blocking efficiency of 84.5% and improving the overall oil recovery by 4.6%. NMR imaging further reveals that the system effectively mobilizes low-permeability zones, with T2 spectrum analysis indicating a 4.5% incremental recovery in low-permeability layers. Moreover, in reservoirs with larger permeability ratio, the system exhibits enhanced blocking efficiency (up to 86.5%), though the incremental recovery is not strictly proportional to the blocking effect. Compared with previous AOS-based CO2 foam studies that primarily relied on pressure drop and effluent analyses, this work introduces NMR imaging and T2 spectrum diagnostics to directly visualize pore-scale fluid redistribution and quantify sweep efficiency within heterogeneous cores. The NMR data provide mechanistic evidence that the enhanced recovery originates from selective foam propagation and the mobilization of residual oil in low-permeability channels, rather than merely from increased flow resistance. This integration of advanced pore-scale imaging with macroscopic displacement analysis represents a mechanistic advancement over conventional CO2 foam evaluations, offering new insights into the conformance control behavior of AOS-based foam systems in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

22 pages, 5591 KB  
Article
Morphological Acclimation of Durum Wheat Spikes in Response to Foliar Micronutrient Applications
by Despina Dimitriadi, Georgios P. Stylianidis, Ioannis Tsirogiannis, Lampros D. Bouranis, Styliani N. Chorianopoulou and Dimitris L. Bouranis
Plants 2025, 14(19), 3079; https://doi.org/10.3390/plants14193079 - 5 Oct 2025
Cited by 1 | Viewed by 711
Abstract
A cultivation of durum wheat that established in a field with soil poor in micronutrients received foliar applications at the initiation of the dough stage towards biofortifying the spikes with micronutrients. The morphology of the spike is crucial in determining grain yield, and [...] Read more.
A cultivation of durum wheat that established in a field with soil poor in micronutrients received foliar applications at the initiation of the dough stage towards biofortifying the spikes with micronutrients. The morphology of the spike is crucial in determining grain yield, and the spikelets, the components of the inflorescence, influence each other. The number and arrangement of these spike components affect spike length, spike weight, spike chaff (the non-grain biomass in the spike), grain number per spike, grain weight per spike, and spikelet number per spike, and all contribute to final grain yield per spike. The spike’s developmental program responded to the interventions regarding the morphological traits; this response was analyzed for each spike component, and an acclimation program seemed to be activated by each intervention. Cysteine or methionine has been added as a potential enhancer of the biofortification process, and the application mixtures were coupled with selected surfactants, an organosilicon ethoxylate or an alcohol ethoxylate one, while products with targeted composition for biofortification with micronutrients have also been studied. Their effect on the developmental acclimation program of the treated spike is presented and discussed. The action of this program provided grains of similar weight, regardless of the intervention. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

23 pages, 6266 KB  
Article
Influence of Added Surfactants on the Rheology and Surface Activity of Polymer Solutions
by Rajinder Pal and Chung-Chi Sun
ChemEngineering 2025, 9(5), 105; https://doi.org/10.3390/chemengineering9050105 - 23 Sep 2025
Viewed by 1268
Abstract
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers [...] Read more.
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers was determined: nonionic alcohol ethoxylate, anionic sodium lauryl sulfate, cationic hexadecyltrimethylammonium bromide, and zwitterionic cetyl betaine. The interaction between cationic hydroxyethyl cellulose and anionic sodium lauryl sulfate was extraordinarily strong, resulting in dramatic changes in rheological and surface-active properties. The consistency increased initially, reached a maximum value, and then fell off with the further addition of surfactant. The surface tension of surfactant–polymer solution dropped substantially and exhibited a minimum value. Thus, the surfactant–polymer solutions were much more surface-active compared with pure surfactant solutions. The interaction between anionic xanthan gum and cationic hexadecyltrimethylammonium bromide was also strong, resulting in a substantial decrease in consistency. The surfactant–polymer solution became less surface-active compared with pure surfactant solution due to the migration of surfactant from solution to polymer. The interactions between other polymers and surfactants were weak to moderate, resulting in small to modest changes in rheological and surface-active properties. Surface activity of surfactant–polymer solutions often increased due to the formation of complexes more surface-active than pure surfactant molecules. Full article
Show Figures

Figure 1

16 pages, 3377 KB  
Article
Investigation of Key Components in Class A Foam for Synergistic Wetting and Adhesion: A Molecular Dynamics Simulation Case
by Huizhong Ma, Ao Zhao, Lan Zhang, Fei Wang, Liang Cheng and Liyang Ma
Appl. Sci. 2025, 15(18), 9888; https://doi.org/10.3390/app15189888 - 9 Sep 2025
Cited by 1 | Viewed by 926
Abstract
To enhance the fire suppression performance of Class A foam, this study identifies sodium dodecyl sulfate (SDS) as the primary foaming agent and develops a high-efficiency foam system comprising primary and auxiliary foaming agents, wetting agents, and foam stabilizers. It interprets these macroscopic [...] Read more.
To enhance the fire suppression performance of Class A foam, this study identifies sodium dodecyl sulfate (SDS) as the primary foaming agent and develops a high-efficiency foam system comprising primary and auxiliary foaming agents, wetting agents, and foam stabilizers. It interprets these macroscopic findings at the molecular level through molecular dynamics simulations. Sixteen formulations were designed using orthogonal experiments and evaluated in terms of surface tension, viscosity, wetting performance, and foam expansion ratio. The results demonstrated that the formulated systems exhibited superior foaming characteristics compared to conventional aqueous film-forming foam (AFFF), while other physicochemical properties were inferior. Two high-performing foam systems were further investigated using molecular dynamics simulations. Analysis of the spatial concentration distributions, diffusion coefficients, and the hydrogen-bonding networks of water molecules revealed 14.3% and 14.2% increases in the peak values of the radial distribution function (RDF) for the two systems modified with auxiliary foaming agents, respectively. The auxiliary foaming agents exhibited synergistic effects with SDS, enhancing its water activation capability. The incorporation of wetting agents reduced the water diffusion coefficients by 4.7% and 21.9%, indicating that sodium bis(2-ethylhexyl) succinate sulphonate (T) interferes less with the primary foaming agent than alcohol ethoxylate (AEO). The selected formulations also demonstrated 4.4% and 3.5% reductions in water hydrogen bonding compared to SDS-only solutions, indicating decreased molecular cohesion and improved water activation. By integrating physicochemical evaluation with molecular simulation, the optimized formulation was determined to be SDS (primary foaming agent), sodium fatty alcohol ether sulfate (auxiliary foaming agent), alcohol ethoxylate (wetting agent), lauryl hydroxysultaine (foam stabilizer), and ethylene glycol butyl ether (cosolvent). Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

14 pages, 1454 KB  
Article
HPLC-MS Detection of Nonylphenol Ethoxylates and Lauryl Ethoxylates in Foodstuffs and the Inner Coatings of High-Barrier Pouches
by Monika Beszterda-Buszczak, Magdalena Frańska and Rafał Frański
Foods 2025, 14(16), 2842; https://doi.org/10.3390/foods14162842 - 16 Aug 2025
Viewed by 1292
Abstract
The widespread use of non-ionic surfactants, e.g., nonylphenol ethoxylates or dodecyl ethoxylates, may result in their occurrence in foodstuffs. In this paper, extracts from the coatings and from the contents of high-barrier food pouches were analyzed by high-pressure liquid chromatography–mass spectrometry. These flexible [...] Read more.
The widespread use of non-ionic surfactants, e.g., nonylphenol ethoxylates or dodecyl ethoxylates, may result in their occurrence in foodstuffs. In this paper, extracts from the coatings and from the contents of high-barrier food pouches were analyzed by high-pressure liquid chromatography–mass spectrometry. These flexible pouches are an alternative package format of growing interest which can replace traditional cans. In almost all samples, nonylphenol ethoxylates and dodecyl ethoxylates were detected. The identified nonylphenol ethoxylates usually contained 4–10 oxyethylene units, while the identified dodecyl ethoxylates contained 3–13 oxyethylene units. However, in a few samples, longer fractions of dodecyl ethoxylates were detected, namely those containing >15 oxyethylene units. A comparison of the non-ionic surfactant concentrations in the coating extracts with their concentrations in the content extracts indicated that the coating materials were not the main sources of the contents’ contamination. Other contaminants, namely BADGE conjugates and cyclic cooligoesters, which are common contaminants of canned foodstuffs, were found to rarely occur in high-barrier food pouches. Unexpectedly, in one sample polypropylene glycol was detected at a low concentration; this compound has not been previously identified as a potential food contaminant. Full article
Show Figures

Figure 1

17 pages, 2732 KB  
Article
Influence of Cellulose Nanocrystals and Surfactants on Catastrophic Phase Inversion and Stability of Emulsions
by Daniel Kim and Rajinder Pal
Colloids Interfaces 2025, 9(4), 46; https://doi.org/10.3390/colloids9040046 - 11 Jul 2025
Viewed by 1257
Abstract
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), [...] Read more.
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), nonionic (C12–14 alcohol ethoxylate referred to as Alfonic), and zwitterionic (cetyl betaine referred to as Amphosol). By using conductivity measurements under controlled mixing and pendant drop tensiometry, this study shows that NCC markedly delays catastrophic phase inversion through interfacial jamming, whereas surfactant-stabilized systems exhibit concentration-dependent inversion driven by interfacial saturation. Specifically, NCC-stabilized emulsions exhibited a nonlinear increase in the critical aqueous phase volume fraction required for inversion, ranging from 0.253 (0 wt% NCC) to 0.545 (1.5 wt% NCC), consistent with enhanced resistance to inversion typically associated with the formation of rigid interfacial layers in Pickering emulsions. In contrast, surfactant-stabilized systems exhibited a concentration-dependent inversion trend with opposing effects. At low concentrations, limited interfacial coverage delayed inversion, while at higher concentrations, increased surfactant availability and interfacial saturation promoted earlier inversion and favored the formation of oil-in-water structures. Pendant drop tensiometry confirmed negligible surface activity for NCC, while all surfactants significantly lowered interfacial tension. Despite its weak surface activity, NCC imparted strong coalescence resistance above 0.2 wt%, attributed to steric stabilization. These findings establish distinct mechanisms for governing phase inversion in particle- versus surfactant-stabilized systems. To our knowledge, this is the first study to quantitively characterize the catastrophic phase inversion behavior of water-in-oil emulsions using NCC. This work supports the use of NCC as an effective stabilizer for emulsions with high internal phase volume. Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces: 2nd Edition)
Show Figures

Figure 1

23 pages, 4426 KB  
Article
Laser Microinterferometry for API Solubility and Phase Equilibria: Darunavir as a Case Example
by Veronika Makarova, Mark Mandrik and Sergey Antonov
Pharmaceutics 2025, 17(7), 875; https://doi.org/10.3390/pharmaceutics17070875 - 3 Jul 2025
Viewed by 1007
Abstract
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: [...] Read more.
Background: The solubility and phase behavior of APIs are crucial for the development of medicines and ensuring their stability. However, conventional experimental approaches often do not allow for the precise determination of phase transitions and solubility limits, especially for poorly soluble compounds. Purpose: The aim of this study was to demonstrate the possibility of using the laser microinterferometry method, traditionally used to define the phase equilibria of polymer systems, to determine the thermodynamic solubility of the APIs. Methods: Using laser microinterferometry, the thermodynamic solubility and phase behavior of amorphous darunavir were determined in various pharmaceutical solvents, including vaseline and olive oils, water, glycerol, alcohols (methanol, ethanol, isopropanol), glycols (propylene glycol, polyethylene glycol 400, polypropylene glycol 425, polyethylene glycol 4000), and ethoxylated polyethylene glycol ether obtained from castor oil in the temperature range of 25–130 °C. Dissolution kinetics was estimated at 25 °C. Hansen solubility parameter calculations were also performed for comparison. Results: Darunavir is practically insoluble in olive and vaseline oils. In water and glycerol, an amorphous equilibrium with an upper critical solution temperature was observed, and phase diagrams were constructed for the first time. In alcohols, glycols, and ethoxylated polyethylene glycol ether obtained from castor oil, darunavir showed high solubility, accompanied by the formation of crystalline solvates. Kinetic evaluation showed that the dissolution rate of darunavir in methanol is four times faster than in ethanol and thirty times faster than in isopropanol. Comparison of the obtained data with previously published and calculated values of solubility parameters demonstrates a good correlation. Conclusions: Laser microinterferometry has been demonstrated as a potential tool for determining the thermodynamic solubility of APIs. This method allows for directly observing the dissolution process, determining the solubility limits, and detecting phase transitions. These studies are necessary for selecting appropriate excipients, preventing the formation of undesirable solvates and predicting formulation stability, which are all critical factors in early-stage drug development and pharmaceutical formulation design. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

17 pages, 2381 KB  
Article
Wettability of the Plant Growth Regulator 28-HB on Pepper Leaves at Different Developmental Stages
by Xiaoya Dong, Kaiyuan Wang, Zhouming Gao, Cuicui Zhu, Xianping Guan and Baijing Qiu
Horticulturae 2025, 11(6), 661; https://doi.org/10.3390/horticulturae11060661 - 10 Jun 2025
Cited by 1 | Viewed by 827
Abstract
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of [...] Read more.
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of pepper leaves at the seedling, early flowering, and fruiting stages. The microstructure of the leaf surface was characterized using an ultra-depth field microscope. The surface free energy (SFE) of the leaves was calculated using the Owens-Wendt-Rabel-Kaelble (OWRK) method. Additionally, the surface tension of the 28-HB solutions containing various surfactants, as well as the contact angles on pepper leaves at different growth stages, were measured. The experimental results indicate that the surface free energy (SFE) of pepper leaves significantly decreases with plant maturation. Specifically, the SFE of the adaxial leaf surface declined from 43.4 mJ/m2 at the seedling stage to 26.6 mJ/m2 at the fruiting stage, while the abaxial surface decreased from 27.5 mJ/m2 to 22.5 mJ/m2. At all growth stages, the relative polar component (RP) of the adaxial surface was consistently higher than that of the abaxial surface and showed a gradual decline from 94.70% to 57.34% as development progressed. The contact angle measurement showed that the addition of surfactant decreased the contact angle of 28-HB on the leaf surface and increased the wetting area. Among the tested formulations, the addition of fatty alcohol ethoxylates (AEO-9) significantly reduced the contact angle to below 45°, and resulted in an adhesion tension below 30 mN/m and adhesion work lower than 105 mJ/m2. These values indicate superior wetting performance compared to formulations containing sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). This study integrates the surface free energy characteristics of pepper leaves at different growth stages with the wetting performance of various surfactant systems, providing a quantitative basis for the selection and optimization of surfactants in agricultural spray formulations. The findings offer theoretical support for precise pesticide application strategies, enhancing pesticide adhesion and absorption on leaf surfaces, thereby improving pesticide utilization efficiency throughout the crop growth cycle. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

17 pages, 916 KB  
Article
Optimization of Toxicity, Biodegradability, and Skin Irritation in Formulations Containing Mixtures of Anionic and Nonionic Surfactants Combined with Silica Nanoparticles
by Manuela Lechuga, Mercedes Fernández-Serrano, Josefa Núñez-Olea, Juan Francisco Martínez-Gallegos and Francisco Ríos
Toxics 2025, 13(1), 43; https://doi.org/10.3390/toxics13010043 - 8 Jan 2025
Cited by 10 | Viewed by 5692
Abstract
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life [...] Read more.
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles. Toxicity assessments were conducted using bacteria Vibrio fischeri for aquatic toxicity and Lepidium sativum seeds for terrestrial plant effects, revealing that individual surfactants like the anionic alkyl ether carboxylic acid EC-R12–14E3 exhibit high toxicity levels, while the nonionic fatty-alcohol ethoxylate FAE-R12–14E11 shows comparatively lower environmental impact. The toxicity of surfactant mixtures was analysed, revealing both antagonistic and synergistic effects depending on the surfactants used. The addition of silica nanoparticles generally mitigates the overall toxicity of surfactants, whether used individually or in mixtures. Biodegradation studies followed OECD 301E and 301F guidelines, indicating that individual surfactants generally meet or approach the mineralization threshold, whereas the addition of nanoparticles reduced biodegradation efficacy. Potential skin irritation was predicted through the zein number (ZN), finding that some surfactant combinations with silica nanoparticles reduce irritation levels, highlighting their potential for safer formulation in products that come into direct contact with the skin. Overall, the findings emphasize the need for careful selection of surfactant mixtures and nanoparticle integration to minimize environmental toxicity and potential skin irritation and increase their biodegradability. Full article
Show Figures

Figure 1

21 pages, 5031 KB  
Article
Interaction Between Nonionic Surfactants and Alkyl Amidoamine Cationic Collector in the Reverse Flotation of Iron Ore
by José Tadeu Gouvêa Junior, Flávia Paulucci Cianga Silvas, Christian Lariguet Taques Bittencourt, Vantuir Jorge de Morais, Ali Asimi Neisiani and Laurindo de Salles Leal Filho
Minerals 2024, 14(12), 1298; https://doi.org/10.3390/min14121298 - 22 Dec 2024
Cited by 2 | Viewed by 2116
Abstract
This paper evaluates the performance of four ethoxylated nonionic surfactants (nonyl phenol vs. C13 alcohols) to act as ancillary collectors with Alkyl Amidoamine (AAA) in the reverse flotation of quartz at pH8 to concentrate iron ores. Compared to 100% AAA, the blend [...] Read more.
This paper evaluates the performance of four ethoxylated nonionic surfactants (nonyl phenol vs. C13 alcohols) to act as ancillary collectors with Alkyl Amidoamine (AAA) in the reverse flotation of quartz at pH8 to concentrate iron ores. Compared to 100% AAA, the blend composed of 80% AAA (Flotinor®5530) plus 20% of isotridecyl alcohol ethoxylated with five groups of ethylene oxide (DP-210 RO) improved quartz recovery (from 54% to 63%, p < 0.05) by increasing contact angle (from 55° to 56°, p < 0.05) and decreasing induction time (26 ms to 23 ms, p < 0.05). Compared to 100% AAA (200 g/t), the blend (160 g/t of AAA + 40 g/t of DP-210 RO) improved the flotation performance of iron ore, yielding richer hematite concentrate (65.3% Fe × 61.4% Fe) and less contaminated with quartz (4% SiO2 × 10.2% SiO2), coupled with an increase in Fe recovery from 79.8% × 81.6% in the sunken product as well as SiO2 recovery from 91.7% to 96.9% in the froth. Results from zeta potential, the hydrodynamic diameter of reagent droplets, and the surface tension of the solution provide insights into the synergism between AAA and DP-210 RO. Full article
Show Figures

Figure 1

14 pages, 2014 KB  
Article
Using Static Multiple Light Scattering to Develop Microplastic-Free Seed Film-Coating Formulations
by Rozenn Langlet, Romain Valentin, Marie Morard and Christine Delgado Raynaud
Molecules 2024, 29(23), 5750; https://doi.org/10.3390/molecules29235750 - 5 Dec 2024
Viewed by 1429
Abstract
Seed film-coatings used for seed treatment often contain microplastics which must be replaced. The objective of this study is to analyze the influence of substitutes (maltodextrin, waxy maize glucose syrup (WMGS), methylcellulose, tragacanth gum (TG), arabic gum (AG), polyvinyl alcohol (PVA), ethoxylated rapeseed [...] Read more.
Seed film-coatings used for seed treatment often contain microplastics which must be replaced. The objective of this study is to analyze the influence of substitutes (maltodextrin, waxy maize glucose syrup (WMGS), methylcellulose, tragacanth gum (TG), arabic gum (AG), polyvinyl alcohol (PVA), ethoxylated rapeseed oil (ERO)), and xanthan gum as a thickener on the stability of a seed film-coating via Static Multiple Light Scattering (SMLS) technology. The results demonstrate that the incorporation of each polymer results in an increase in the quantity of particles migrating from the supernatant phase, but a concomitant decrease in their sedimentation rate and in the thickness of the supernatant phase (ec). Furthermore, the redispersion capacity (Cd) of the particles in the seed film-coating is also decreased after the introduction of each polymer, potentially due to their adsorption to the particles. The impact of the thickener is contingent upon the specific polymer employed. Its incorporation reduces the number of particles migrating from the supernatant phase and their sedimentation rate for all of the polymers studied except AG and ERO. However, it reduces ec for all seed film-coatings. Depending on the substitutes, thickener incorporation either improves (WMGS, maltodextrin, AG) or deteriorates (TG, PVA, ERO) Cd. The formulation containing tragacanth gum shows a redispersing capacity with Cd ≤ 1. This study introduces a novel analytical criterion, the redispersion capacity Cd, which can be employed to characterize dispersed systems. Full article
Show Figures

Figure 1

17 pages, 2796 KB  
Article
The Effect of Dicarboxylic Acid Structure on the Plasticizing Ability of Its Ester
by Irina N. Vikhareva, Polina Kruchinina and Dragan Manojlović
Polymers 2024, 16(23), 3372; https://doi.org/10.3390/polym16233372 - 29 Nov 2024
Cited by 5 | Viewed by 1976
Abstract
Polyvinyl chloride (PVC) belongs to the most widely used group of thermoplastics. Most of the market for PVC products belongs to plasticized compositions. Plasticizers are the most demanded additives in the polymer industry. Environmental problems and the identified toxicity of the plasticizer di(2-ethylhexyl) [...] Read more.
Polyvinyl chloride (PVC) belongs to the most widely used group of thermoplastics. Most of the market for PVC products belongs to plasticized compositions. Plasticizers are the most demanded additives in the polymer industry. Environmental problems and the identified toxicity of the plasticizer di(2-ethylhexyl) phthalate (DEHP) stimulate the restriction of its use and contribute to the development of alternative plasticizers. As a possible replacement for phthalates, esters of dicarboxylic acids are known to provide reduced toxicity and high frost resistance to the resulting compositions. In this regard, esters of dicarboxylic acids and ethoxylated alcohols were obtained and their compatibility with polyvinyl chloride was investigated. The plasticizing effect of the esters obtained was evaluated. The thermomechanical characteristics of PVC compositions containing the developed plasticizers were studied, the glass transition temperature was determined, and the areas of the glassy and highly elastic state of the plastics were identified. It was shown that the chemical structure of dicarboxylate used as a plasticizer determines the important technological and operational characteristics of the PVC plastics obtained. Dibutoxyethyl sebacate (DBES) has the best plasticizing effect among the synthesized esters. The expansion of the highly elastic state area for PVC samples containing this ester exceeded the industrial plasticizers DEHP and di(2-ethylhexyl) adipate (DOA). The indicators of the critical temperature of dissolution of PVC in the esters under study suggest ensuring their low migration from PVC plastics. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

12 pages, 1558 KB  
Article
Biological and Synthetic Surfactants Increase Class I Integron Prevalence in Ex Situ Biofilms
by Ralf Lucassen, Nicole van Leuven and Dirk Bockmühl
Microorganisms 2024, 12(4), 712; https://doi.org/10.3390/microorganisms12040712 - 31 Mar 2024
Cited by 4 | Viewed by 2219
Abstract
The role of biocides in the spread of antimicrobial resistance (AMR) has been addressed but only a few studies focus on the impact of surfactants on microbial diversity and AMR, although they are common constituents of cleaners, disinfectants, and personal care products and [...] Read more.
The role of biocides in the spread of antimicrobial resistance (AMR) has been addressed but only a few studies focus on the impact of surfactants on microbial diversity and AMR, although they are common constituents of cleaners, disinfectants, and personal care products and are thus released into the environment in large quantities. In this study, we used a static ex situ biofilm model to examine the development of four biofilms exposed to surfactants and analyzed the biofilms for their prevalence of class I integrons as a proxy for the overall abundance of AMR in a sample. We furthermore determined the shift in bacterial community composition by high-resolution melt analysis and 16S ribosomal RNA (16S rRNA) gene sequencing. Depending on the initial intrinsic prevalence of class I integrons in the respective ex situ biofilm, benzalkonium chloride, alkylbenzene sulfonate, and cocamidopropyl betaine increased its prevalence by up to 6.5× on average. For fatty alcohol ethoxylate and the biosurfactants sophorolipid and rhamnolipid, the mean increase did not exceed 2.5-fold. Across all surfactants, the increase in class I integrons was accompanied by a shift in bacterial community composition. Especially benzalkonium chloride, cocamidopropyl betaine, and alkylbenzene sulfonate changed the communities, while fatty alcohol ethoxylate, sophorolipid, and rhamnolipid had a lower effect on the bacterial biofilm composition. Full article
Show Figures

Figure 1

20 pages, 5602 KB  
Article
Adsorption Properties and Wettability of Ethoxy- and Propoxy- Derivatives of 2-Ethylhexanol as Sterically Specific Surfactant Structures
by Wiesław Hreczuch, Beata Konopczyńska, Marcin Stasiak, Adam Andrzejewski and Krystyna Prochaska
Molecules 2024, 29(3), 690; https://doi.org/10.3390/molecules29030690 - 2 Feb 2024
Cited by 1 | Viewed by 2719
Abstract
2-ethylhexanol, an oxo alcohol competitively priced on the global market, has not been explored intensively as a raw material for surfactants, due to its weak hydrophobic character. However, its sequenced propoxylation and ethoxylation yield an innovative amphiphilic structure, which exhibits unique interfacial activity. [...] Read more.
2-ethylhexanol, an oxo alcohol competitively priced on the global market, has not been explored intensively as a raw material for surfactants, due to its weak hydrophobic character. However, its sequenced propoxylation and ethoxylation yield an innovative amphiphilic structure, which exhibits unique interfacial activity. The paper presents the differences in the fractional composition of innovative surfactants derived from 2-EH alcohol prepared using alkali and dimetalcyanide catalysts, as well as examples of excellent adsorption and interfacial properties of the latter. The adsorption behavior of the synthesized compounds was explored using equilibrium surface tension (the du Noüy ring method), dynamic surface tension (the maximum gas bubble pressure method) and static/dynamic contact angle (the sessile drop method). The results from the adsorption tests conducted at the air/aqueous surfactant solution interface underwent comprehensive qualitative and quantitative analyses. Moreover, based on the experimentally obtained dynamic surface tension isotherms and the developed algorithm, the diffusion coefficients for these preparations were estimated, and it was shown that the diffusivity of these surfactants is higher compared to the commercial formulations. The study’s outcomes in the testing of wettability indicate that new synthesized nonionic and anionic surfactants constitute an interesting group of amphiphiles with a wide application potential as effective wetting agents, especially in relation to the polymer surface. It should therefore be emphasized that the innovative surfactants described in this article, derived from 2-EH alcohol and prepared using dimetalcyanide catalysts, can successfully compete with conventional preparations such as ABS (Dodecylbenzenesulfonic Acid) or AES (Alcohol Ethoxysulphate) acid salts. Full article
Show Figures

Graphical abstract

Back to TopTop