Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = ethanol intake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 349
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

17 pages, 1693 KiB  
Article
Overcoming Challenges in the Determination of Fatty Acid Ethyl Esters in Post-Mortem Plasma Samples with the Use of Targeted Metabolomics and the Quality by Design Approach
by Joanna Dawidowska, Julia Jacyna-Gębala, Renata Wawrzyniak, Michał Kaliszan and Michał Jan Markuszewski
Biomedicines 2025, 13(7), 1688; https://doi.org/10.3390/biomedicines13071688 - 10 Jul 2025
Viewed by 331
Abstract
Background: Excessive alcohol consumption constitutes a serious cause of death worldwide. Fatty acid ethyl esters, as metabolites of the non-oxidative elimination pathway of ethanol, have been recognized as mediators of alcohol-induced organ damage. These metabolites serve as potential biomarkers for the assessment of [...] Read more.
Background: Excessive alcohol consumption constitutes a serious cause of death worldwide. Fatty acid ethyl esters, as metabolites of the non-oxidative elimination pathway of ethanol, have been recognized as mediators of alcohol-induced organ damage. These metabolites serve as potential biomarkers for the assessment of ethanol intake and might be also used in post-mortem studies. Methods: In this study, the development and optimization of a simple, fast, precise, accurate, and cost-effective method with the use of gas chromatography coupled with tandem mass spectrometry for quantitative analysis of six fatty acid ethyl esters, namely ethyl laurate, myristate, palmitate, linoleate, oleate, and stearate, were conducted. Results: The optimized method was fully validated according to ICH guidelines. Additionally, identification of critical method parameters was possible by using the quality by design approach. By carrying out analyses according to the Plackett–Burman plan (design of experiments methodology), the robustness of the analytical method developed was confirmed for four (ethyl palmitate, linoleate, oleate, and stearate) ethyl esters. In the case of ethyl myristate, the variable significantly affecting the results appeared to be the temperature of solvent evaporation after the deproteinization step. Conclusions: Biochemical interpretation of the obtained results with available medical records suggests that plasma concentrations of selected fatty acid ethyl esters are valuable indicators of pre-mortem alcohol consumption and may be one of the key factors helpful in determining the cause and mechanism of death. Full article
(This article belongs to the Special Issue Pathophysiology of Fatty Acid Metabolism)
Show Figures

Graphical abstract

17 pages, 354 KiB  
Article
Efficacy of Probiotic VITA-PB2 from Fermented Foods on Alcohol Consumption and Hangover Symptoms: A Randomized, Double-Blind, Placebo-Controlled Trial
by Chaodeng Mo, Johny Bajgai, Md. Habibur Rahman, Sofian Abdul-Nasir, Hui Ma, Thu Thao Pham, Haiyang Zhang, Buchan Cao, Seong Hoon Goh, Bomi Kim, Hongik Kim, Min Kyeong Seol, Young Geon Yu, Cheol-Su Kim, Kyu-Jae Lee and Seung-Taek Lim
Nutrients 2025, 17(14), 2276; https://doi.org/10.3390/nu17142276 - 9 Jul 2025
Viewed by 576
Abstract
Background: Modulating ethanol metabolism and attenuating alcohol-induced oxidative stress are promising therapeutic strategies for reducing the severity of hangovers and alleviating their associated physiological burden. Methods: A randomized, double-blind, placebo-controlled, crossover study was conducted to evaluate the effects of the probiotic [...] Read more.
Background: Modulating ethanol metabolism and attenuating alcohol-induced oxidative stress are promising therapeutic strategies for reducing the severity of hangovers and alleviating their associated physiological burden. Methods: A randomized, double-blind, placebo-controlled, crossover study was conducted to evaluate the effects of the probiotic strain Leuconostoc mesenteroides VITA-PB2 on ethanol metabolism, oxidative stress, and hangover-related symptoms in 28 healthy adults. The participants consumed either VITA-PB2 or a placebo before standardized alcohol intake, with a 7-day washout period and subsequent crossover. Primary outcomes included blood ethanol, acetaldehyde levels, and aldehyde dehydrogenase (ALDH) activity. Secondary outcomes measured hangover severity assessed by the Acute Hangover Scale (AHS), liver enzymes including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT), oxidative stress indicators reactive oxygen species (ROS) and nitric oxide (NO), and antioxidant responses measured by glutathione peroxidase (GPx), catalase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity. Results: VITA-PB2 supplementation led to a sustained reduction in blood ethanol concentrations beginning at 0.5 h post-ingestion compared with the placebo group, indicating more efficient ethanol clearance. Additionally, VITA-PB2 significantly reduced acetaldehyde levels at 1 h post-ingestion (p < 0.05) and increased ALDH activity by 42.15% at 30 min (p < 0.05). It also markedly reduced ROS levels at 1 h (p < 0.05), enhanced glutathione peroxidase (GPx) activity at 2 h (p < 0.01), and significantly improved the subjective hangover symptoms, particularly thirst (p < 0.05). Conclusions: No adverse effects were reported during the trial, indicating that Leuconostoc mesenteroides VITA-PB2 is a safe probiotic. These findings suggest its efficacy in mitigating alcohol-induced oxidative stress and alleviating hangover-related symptoms. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

27 pages, 3169 KiB  
Review
Alcohol Consumption and Liver Metabolism in the Era of MASLD: Integrating Nutritional and Pathophysiological Insights
by Carlo Acierno, Fannia Barletta, Alfredo Caturano, Riccardo Nevola, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Luca Rinaldi
Nutrients 2025, 17(13), 2229; https://doi.org/10.3390/nu17132229 - 5 Jul 2025
Viewed by 885
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the leading cause of chronic liver disease worldwide, driven by the global epidemics of obesity, type 2 diabetes, and metabolic syndrome. In this evolving nosological landscape, alcohol consumption—traditionally excluded from the diagnostic criteria of [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the leading cause of chronic liver disease worldwide, driven by the global epidemics of obesity, type 2 diabetes, and metabolic syndrome. In this evolving nosological landscape, alcohol consumption—traditionally excluded from the diagnostic criteria of non-alcoholic fatty liver disease (NAFLD)—has regained central clinical importance. The recently defined MetALD phenotype acknowledges the co-existence of metabolic dysfunction and a significant alcohol intake, highlighting the synergistic nature of their pathogenic interactions. This narrative review provides a comprehensive analysis of the biochemical, mitochondrial, immunometabolic, and nutritional mechanisms through which alcohol exacerbates liver injury in MASLD. Central to this interaction is cytochrome P450 2E1 (CYP2E1), whose induction by both ethanol and insulin resistance enhances oxidative stress, lipid peroxidation, and fibrogenesis. Alcohol also promotes mitochondrial dysfunction, intestinal barrier disruption, and micronutrient depletion, thereby aggravating metabolic and inflammatory derangements. Furthermore, alcohol contributes to sarcopenia and insulin resistance, establishing a bidirectional link between hepatic and muscular impairment. While some observational studies have suggested a cardiometabolic benefit of a moderate alcohol intake, emerging evidence challenges the safety of any threshold in patients with MASLD. Accordingly, current international guidelines recommend alcohol restriction or abstinence in all individuals with steatotic liver disease and metabolic risk. The review concludes by proposing an integrative clinical model and a visual cascade framework for the assessment and management of alcohol consumption in MASLD, integrating counseling, non-invasive fibrosis screening, and personalized lifestyle interventions. Future research should aim to define safe thresholds, validate MetALD-specific biomarkers, and explore the efficacy of multidisciplinary interventions targeting both metabolic and alcohol-related liver injury. Full article
(This article belongs to the Special Issue Alcohol Consumption and Human Health)
Show Figures

Figure 1

24 pages, 348 KiB  
Review
Knowledge Gaps in the Nutrient Requirements of Beef Cattle
by Michael L. Galyean, Karen A. Beauchemin, Joel S. Caton, N. Andy Cole, Joan H. Eisemann, Terry E. Engle, Galen E. Erickson, Clint R. Krehbiel, Ronald P. Lemenager and Luis O. Tedeschi
Ruminants 2025, 5(3), 29; https://doi.org/10.3390/ruminants5030029 - 29 Jun 2025
Viewed by 648
Abstract
The 8th revised edition of the Nutrient Requirements of Beef Cattle was released in 2016, with the recommendations provided in the publication being used extensively in both research and production settings. In the context of research needs identified in that publication, our objective [...] Read more.
The 8th revised edition of the Nutrient Requirements of Beef Cattle was released in 2016, with the recommendations provided in the publication being used extensively in both research and production settings. In the context of research needs identified in that publication, our objective was to review research on beef cattle nutrient requirements published since 2016 and identify knowledge gaps that should be addressed. Relative to energy requirements, the effects of environmental temperature and grazing activity, along with stress and disease, on maintenance requirements are inadequately characterized or defined. In addition, relationships between retained energy and protein should be more fully elucidated, and additional guidance on body weight at a target compositional endpoint is needed. Areas of continuing concern include accurately and precisely predicting microbial protein supply, predicting N recycling, and the metabolizable protein requirements for maintenance. Mineral and vitamin requirements are often challenging because of a lack of consistency in models used to determine requirements and potential effects of unique production settings on requirements. Based on recent research with feedlot cattle, zinc and chromium requirements should be examined more closely. Because predictions of dry matter intake are critical to supplying nutrients, additional development of prediction equations is needed, especially for beef cows and grazing beef cattle in general. Given considerable research in prediction of greenhouse gases, reevaluation of 2016 recommendations is warranted, along with a need for the updating of equations to predict excretions of N and P. Composition of feeds, particularly byproducts from ethanol production or other industrial streams, represents a knowledge gap, with obtaining reliable energy values of these feeds being a notable challenge. Nutritional models provide the means to integrate nutrient requirement recommendations into practice, and moving towards mechanistic models that take advantage of artificial intelligence and precision livestock farming technologies will be critical to developing future modeling systems. Full article
15 pages, 270 KiB  
Article
Performance, Metabolism, and Economic Implications of Replacing Soybean Meal with Dried Distillers Grains with Solubles in Feedlot Cattle Diets
by Andrei L. R. Brunetto, Guilherme L. Deolindo, Ana Luiza de F. dos Santos, Luisa Nora, Maksuel Gatto de Vitt, Renato S. de Jesus, Bruna Klein, Luiz Eduardo Lobo e Silva, Roger Wagner, Gilberto V. Kozloski and Aleksandro S. da Silva
Fermentation 2025, 11(7), 363; https://doi.org/10.3390/fermentation11070363 - 23 Jun 2025
Viewed by 611
Abstract
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing [...] Read more.
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing traditional sources like soybean meal while maintaining productive performance and reducing costs. This study evaluated the total replacement of soybean meal with DDGS in the diet of confined Holstein cattle, focusing on weight gain, feed intake, digestibility, feed efficiency, animal health, meat quality, and economic viability. The 24 animals received diets with 80% concentrate, containing either DDGS or soybean meal, and no significant differences were observed in terms of body weight (p = 0.92), feed intake (p = 0.98), or feed efficiency (p = 0.97) between the two treatments. The average daily gain was 1.25 and 1.28 kg for cattle in the DDGS and soybean meal groups, respectively (p = 0.92). Regarding metabolic and digestive parameters, no relevant changes were found in blood levels, except for higher serum cholesterol (p = 0.03) levels in animals fed DDGS. The digestibility of neutral detergent fiber (NDF) (p = 0.03) and acid detergent fiber (ADF) (p = 0.05) was lower in the DDGS group, while the digestibility of ether extract was higher (p = 0.02). Rumen fluid analysis revealed an increase in the production of short-chain fatty acids (p = 0.01), such as acetic and butyric acids (p = 0.01), in the DDG-fed animals. In terms of meat quality, animals fed DDGS produced meat with lower levels of saturated fatty acids (SFA) (p = 0.05) and higher levels of unsaturated fatty acids (UFA) (p = 0.02), especially oleic acid (p = 0.05). This resulted in a healthier lipid profile, with a higher UFA/SFA ratio (p = 0.01). In terms of economic viability, DDGS-based diets were 10.5% cheaper, reducing the cost of production per animal by 7.67%. Profitability increased by 110% with DDGS compared to soybean meal, despite the high transportation costs. Therefore, replacing soybean meal with DDGS is an efficient and economical alternative for feeding confined cattle, maintaining zootechnical performance, increasing meat lipid content and improving fatty acid profile, and promoting higher profitability. This alternative is particularly advantageous in regions with easy access to the product. Full article
15 pages, 2461 KiB  
Article
Development of Ethosomes for the Topical Treatment of Androgenic Alopecia: Ethanol Effect on Dutasteride Targeting to the Hair Follicles
by Jayanaraian F. M. Andrade, Rafael V. Rocho, Breno N. Matos, Geisa N. Barbalho, Kariane M. Nunes, Marcilio Cunha-Filho, Guilherme M. Gelfuso and Tais Gratieri
Pharmaceutics 2025, 17(6), 786; https://doi.org/10.3390/pharmaceutics17060786 - 17 Jun 2025
Viewed by 676
Abstract
Background/Objectives: Treatment options for androgenic alopecia are still very limited and lack long-term efficacy. Dutasteride (DUT) has gained interest as a potent inhibitor of 5α-reductase, allowing for spaced applications, but DUT oral intake can cause serious adverse effects. Herein, we developed, characterized, and [...] Read more.
Background/Objectives: Treatment options for androgenic alopecia are still very limited and lack long-term efficacy. Dutasteride (DUT) has gained interest as a potent inhibitor of 5α-reductase, allowing for spaced applications, but DUT oral intake can cause serious adverse effects. Herein, we developed, characterized, and assessed the potential of DUT-loaded ethosomes with increasing ethanolic concentrations for hair follicle (HF) targeting to treat androgenic alopecia, hypothesizing that ethanol’s interaction with HFs’ sebum might increase DUT targeting to the HFs. Methods: Ethosomes were obtained using the water-dropping method. After a hydrodynamic size screening, a 30% ethanol concentration was fixed. Ethosomes with 30% ethanol were also prepared and had their ethanolic content removed by rotary evaporation for the evaluation of ethanol in targeting DUT to the HFs. The targeting factor (Tf) was calculated as the ratio between the DUT amount in HFs and the total DUT amount recovered from all skin layers after in vitro porcine skin penetration tests for 12 and 24 h. Results: The ethanolic concentration affected the vesicles’ size and the targeting potential. While the dried ethosomes could not increase DUT accumulation in the HFs at both time points (Tf: 0.27 in 12 h and Tf: 0.28 in 24 h), the presence of 30% ethanol in the vesicles increased the Tf from 0.28 (12 h) to 0.34 (24 h), significantly superior (p < 0.05) than the dried ethosome and control (Tf: 0.24) in 24 h. Conclusion: Ethosomes with a 30% ethanolic concentration were slightly more efficient in targeting HFs for dutasteride delivery. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

20 pages, 3969 KiB  
Article
Analysis of Novel DNA Adducts Derived from Acetaldehyde
by Yuuki Betsuyaku, Mina Motohashi, Akira Sassa, Takeji Takamura-Enya and Yukari Totsuka
Biomolecules 2025, 15(6), 878; https://doi.org/10.3390/biom15060878 - 16 Jun 2025
Viewed by 520
Abstract
Alcohol consumption is a known risk factor for esophageal and liver cancers. Recently, it was reported that mutation signatures characterized by T:A to C:G mutations (SBS16), which are suggested to be associated with alcohol intake, are frequently detected in esophageal, liver, and stomach [...] Read more.
Alcohol consumption is a known risk factor for esophageal and liver cancers. Recently, it was reported that mutation signatures characterized by T:A to C:G mutations (SBS16), which are suggested to be associated with alcohol intake, are frequently detected in esophageal, liver, and stomach cancers among the Japanese population. However, the scientific evidence linking alcohol consumption to SBS16 remains lacking. Acetaldehyde (AA), a carcinogenic metabolite of alcohol, is considered a key contributor to alcohol-related cancer development. Although the guanine adducts associated with alcohol exposure have been reported as part of its carcinogenic mechanism, an adenine adduct, N6-ethyl-deoxyadenosine (N6-ethyl-dA), a potential contributor to the SBS16 mutation pattern, was recently identified using a mass spectrometry-based DNA adductome approach. However, the mutagenicity assessment of N6-ethyl-dA using primer extension assays and the supF gene mutation test showed that this adenine adduct is not mutagenic. To identify another candidate as a driver adduct for SBS16, a DNA adductome approach was conducted, leading to the identification of a novel adenine adduct, 3-(2′-deoxyribos-1′-yl)-7,9-dimethyl-3,9-dihydro-7H-[1,3,5]oxadiazino[4,3-i]purine (N1-oxydiethylidene-dA), in which two AA molecules are bound to an adenine base. Moreover, N1-oxydiethylidene-dA was detected in mouse livers, and its levels increased following ethanol administration, suggesting that alcohol may contribute to SBS16 induction via the formation of N1-oxydiethylidene-dA. Full article
(This article belongs to the Special Issue Recent Advances in Adduct Science)
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
Risk for Recurrence After Liver Resection in Patients with Hepatitis C Virus-Related Hepatocellular Carcinoma Detected After Sustained Virological Response by Direct-Acting Antivirals: A Retrospective Multicenter Study
by Shogo Tanaka, Takehiro Noda, Koji Komeda, Satoshi Yasuda, Masaki Ueno, Haruki Mori, Hisashi Kosaka, Ryo Morimura, Hiroji Shinkawa, Naoko Sekiguchi, Hisashi Ikoma, Takeaki Ishizawa and Masaki Kaibori
Cancers 2025, 17(12), 1946; https://doi.org/10.3390/cancers17121946 - 11 Jun 2025
Viewed by 441
Abstract
Backgrounds: Direct-acting antiviral (DAA) therapy, which achieves a high sustained virological response (SVR) rate, has been established as a standard treatment for patients with hepatitis C virus (HCV) infection. However, the risk factors for postoperative recurrence in patients with HCV-related hepatocellular carcinoma [...] Read more.
Backgrounds: Direct-acting antiviral (DAA) therapy, which achieves a high sustained virological response (SVR) rate, has been established as a standard treatment for patients with hepatitis C virus (HCV) infection. However, the risk factors for postoperative recurrence in patients with HCV-related hepatocellular carcinoma (HCC) detected after the achievement of an SVR by DAAs are unknown. Methods: The clinical records of 95 patients with initial HCV-related HCC detected after DAA-SVR achievement, who underwent liver resection between September 2014 and December 2020, were retrospectively reviewed. Patients with major vascular invasion and/or SVR achievement induced by interferon-based therapy were excluded. In this study, the patients were divided into two groups according to their alcohol intake status: without alcohol abuse (<80 g of ethanol each day for at least 5 years, n = 85) and with (continuous) alcohol abuse (n = 10). The risk factors for recurrence after liver resection were investigated, with special reference to the alcohol intake status. Results: The 3- and 5-year disease-free survival (DFS) rates after liver resection were 68.7% and 55.3%, respectively. Univariate and multivariate analyses identified alcohol abuse [hazard ratio (HR) 3.36, p = 0.004] and tumor size (HR 2.53, p = 0.010) as independent risk factors for postoperative recurrence. The 3- and 5-year postoperative DFS rates were 72.2% and 61.5% for patients without alcohol abuse and 40.0% and 13.3% for those with alcohol abuse (p = 0.001). Conclusions: Continuous alcohol abuse is a risk factor for recurrence after surgery of HCC detected after the achievement of DAA-SVR. Full article
(This article belongs to the Special Issue Surgical Treatment of Hepatocellular Carcinoma)
Show Figures

Figure 1

23 pages, 6851 KiB  
Article
Omega-3 Fatty Acids Mitigate Long-Lasting Disruption of the Endocannabinoid System in the Adult Mouse Hippocampus Following Adolescent Binge Drinking
by Maitane Serrano, Miquel Saumell-Esnaola, Garazi Ocerin, Gontzal García del Caño, Edgar Soria-Gómez, Amaia Mimenza, Nagore Puente, Itziar Bonilla-Del Río, Almudena Ramos-Uriarte, Leire Reguero, Brian R. Christie, Fernando Rodríguez de Fonseca, Marta Rodríguez-Arias, Inmaculada Gerrikagoitia and Pedro Grandes
Int. J. Mol. Sci. 2025, 26(12), 5507; https://doi.org/10.3390/ijms26125507 - 9 Jun 2025
Viewed by 840
Abstract
Adolescent binge drinking has lasting behavioral consequences by disrupting the endocannabinoid system (ECS) and depleting brain omega-3. The natural accumulation of omega-3 fatty acids in cell membranes is crucial for maintaining the membrane structure, supporting interactions with the ECS, and restoring synaptic plasticity [...] Read more.
Adolescent binge drinking has lasting behavioral consequences by disrupting the endocannabinoid system (ECS) and depleting brain omega-3. The natural accumulation of omega-3 fatty acids in cell membranes is crucial for maintaining the membrane structure, supporting interactions with the ECS, and restoring synaptic plasticity and cognition impaired by prenatal ethanol (EtOH) exposure. However, it remains unclear whether omega-3 supplementation can mitigate the long-term effects on the ECS, endocannabinoid-dependent synaptic plasticity, and cognition following adolescent binge drinking. Here, we demonstrated that omega-3 supplementation during EtOH withdrawal increases CB1 receptors in hippocampal presynaptic terminals of male mice, along with the recovery of receptor-stimulated [35S]GTPγS binding to Gαi/o proteins. These changes are associated with long-term potentiation (LTP) at excitatory medial perforant path (MPP) synapses in the dentate gyrus (DG), which depends on anandamide (AEA), transient receptor potential vanilloid 1 (TRPV1), and N-methyl-D-aspartate (NMDA) receptors. Finally, omega-3 intake following binge drinking reduced the time and number of errors required to locate the escape box in the Barnes maze test. Collectively, these findings suggest that omega-3 supplementation restores Barnes maze performance to levels comparable to those of control mice after adolescent binge drinking. This recovery is likely mediated by modulation of the hippocampal ECS, enhancing endocannabinoid-dependent excitatory synaptic plasticity. Full article
Show Figures

Figure 1

14 pages, 608 KiB  
Article
Sodium Oxybate (SMO) as Part of Agonist Opioid Treatment in Alcohol–Heroin-Addicted Patients
by Angelo G. I. Maremmani, Filippo Della Rocca, Matteo Pacini, Silvia Bacciardi, Silvia Cimino, Luca Cerniglia, Mario Miccoli and Icro Maremmani
J. Clin. Med. 2025, 14(12), 4016; https://doi.org/10.3390/jcm14124016 - 6 Jun 2025
Viewed by 734
Abstract
Background: Alcohol use disorder in the context of heroin addiction presents a significant challenge for clinicians, particularly in selecting the most appropriate pharmacological treatment. Methods: The present study aimed to retrospectively evaluate the efficacy of a six-month methadone maintenance (MM)/sodium oxybate (SMO) combination [...] Read more.
Background: Alcohol use disorder in the context of heroin addiction presents a significant challenge for clinicians, particularly in selecting the most appropriate pharmacological treatment. Methods: The present study aimed to retrospectively evaluate the efficacy of a six-month methadone maintenance (MM)/sodium oxybate (SMO) combination treatment in reducing ethanol intake among chronic alcohol-dependent patients with heroin use disorder (HUD). Specifically, we compared outcomes between those who continued SMO treatment after alcohol detoxification (MM/SMO-Maintained) and those who discontinued it (MM/SMO-Detoxified). Data were recruited using the ‘Pisa Addiction Database’ through a retrospective, naturalistic, cross-sectional comparative design involving a single patient assessment. Results: Our results indicate that treatment retention was higher in the MM/SMO-Maintained group. Conversely, discontinuing SMO treatment after alcohol detoxification was associated with a higher likelihood of dropout. At the endpoint, the MM/SMO-Maintained group showed significant improvement and was considered less severely ill. Conclusions: Long-term SMO treatment has proven to be well tolerated and effective in preventing relapse in individuals with both alcohol and HUD undergoing agonist opioid treatment. SMO may be considered the closest pharmacological option to substitution therapy for alcohol use disorder, and ongoing agonist opioid treatment should not preclude its co-administration. Full article
(This article belongs to the Section Mental Health)
Show Figures

Figure 1

16 pages, 5540 KiB  
Article
L-Theanine Mitigates Chronic Alcoholic Intestinal Injury by Regulating Intestinal Alcohol and Linoleic-Arachidonic Acid Metabolism in Rats
by Jiayou Gu, Simin Tan, Jiahao Yang, Xuhui Dang, Kehong Liu, Zhihua Gong and Wenjun Xiao
Nutrients 2025, 17(11), 1943; https://doi.org/10.3390/nu17111943 - 5 Jun 2025
Viewed by 1017
Abstract
Background: Chronic alcohol intake impairs intestinal function, while L-theanine (LTA) may support intestinal health. However, the protective effects of LTA to chronic alcoholic intestinal injuries remain unclear. Methods: SD rats were administered LTA for 8 weeks and then co-administered Lieber–DeCarli liquid [...] Read more.
Background: Chronic alcohol intake impairs intestinal function, while L-theanine (LTA) may support intestinal health. However, the protective effects of LTA to chronic alcoholic intestinal injuries remain unclear. Methods: SD rats were administered LTA for 8 weeks and then co-administered Lieber–DeCarli liquid alcohol feed and LTA for 4 weeks to establish a chronic alcoholic intestinal injury model and investigate the mitigating influence of LTA on chronic alcoholic intestinal injury. Results: LTA alleviated duodenal pathology and intestinal permeability injury and reduced intestinal oxidative stress and inflammatory response, thereby mitigating chronic alcoholic intestinal injury. Additionally, LTA ameliorated disturbances in the gut microbiota induced by chronic alcohol intake by increasing the beneficial bacteria abundance (Ruminococcus and Odoribacter) and decreasing the harmful bacteria abundance (Enterococcus). Moreover, LTA altered the metabolic profiles associated with ethanol and linoleic (LA) and arachidonic acid (AA) metabolism. ADH6, ALDH2, and ACSS1 mRNA and protein levels were upregulated by LTA, whereas those for CYP2E1, FADS2, ALOX-5, and COX-1 were downregulated. Concurrently, LTA increased the levels of metabolites, such as acetyl-CoA, and decreased the levels of ethanol, acetaldehyde, acetic acid, LA, AA, PGE2, 13-HPODE, and LTB4. Conclusions: L-theanine mitigates chronic alcoholic intestinal injury by regulating intestinal alcohol and LA-AA metabolism. Our findings support the functional potential of the dietary supplement LTA and highlight its potential for addressing chronic intestinal injury caused by chronic alcohol intake. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

19 pages, 4623 KiB  
Article
Lactobacillus fermentum LF31 Supplementation Reversed Atrophy Fibers in a Model of Myopathy Through the Modulation of IL-6, TNF-α, and Hsp60 Levels Enhancing Muscle Regeneration
by Martina Sausa, Letizia Paladino, Federica Scalia, Francesco Paolo Zummo, Giuseppe Vergilio, Francesca Rappa, Francesco Cappello, Melania Ionelia Gratie, Patrizia Proia, Valentina Di Felice, Antonella Marino Gammazza, Filippo Macaluso and Rosario Barone
Nutrients 2025, 17(9), 1550; https://doi.org/10.3390/nu17091550 - 30 Apr 2025
Viewed by 687
Abstract
Background/Objectives: Recent studies have highlighted the role of the gut–muscle axis, suggesting that modulation of the gut microbiota may indirectly benefit skeletal muscle. This study aimed to evaluate the effects of Lactobacillus fermentum (L. fermentum) supplementation in a model of [...] Read more.
Background/Objectives: Recent studies have highlighted the role of the gut–muscle axis, suggesting that modulation of the gut microbiota may indirectly benefit skeletal muscle. This study aimed to evaluate the effects of Lactobacillus fermentum (L. fermentum) supplementation in a model of muscle atrophy induced by chronic ethanol (EtOH) intake, focusing on inflammatory and antioxidant mechanisms. Methods: Sixty 12-month-old female Balb/c mice were divided randomly into three groups (n = 20/group): (1) Ethanol (EtOH) group, receiving ethanol daily for 8 and 12 weeks to induce systemic oxidative stress and inflammation; (2) Ethanol + Probiotic (EtOH + P) group, receiving both ethanol and L. fermentum supplementation for the same durations; and (3) Control (Ctrl) group, receiving only water. Muscle samples were analyzed for the fiber morphology, inflammatory markers, oxidative stress indicators, and satellite cell (SC) activity. All data were tested for normality using the Shapiro–Wilk test before applying a parametric analysis. A statistical analysis was performed using one-way ANOVA followed by a Bonferroni post-hoc test. The level of significance was set at p < 0.05. Results: EtOH exposure caused significant atrophy in all muscle fiber types (type I, IIa, and IIb), with the most pronounced effects on oxidative fibers. L. fermentum supplementation significantly reversed atrophy in type I and IIa fibers, accompanied by a significant reduction in IL-6, TNF-α, and Hsp60 expression levels, indicating the protective effect of L. fermentum against oxidative stress and inflammation. Moreover, the probiotic treatment increased MyoD expression in SCs, suggesting enhanced regenerative activity, without histological evidence of fibrosis. Conclusions: These findings suggest that L. fermentum supplementation could counteract EtOH-induced skeletal muscle damage by reducing inflammation and oxidative stress and promoting muscle repair, indicating its potential as an adjuvant, in the therapeutic strategy of models of muscle degeneration. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

15 pages, 261 KiB  
Article
High-Resolution Mass Spectrometry for Identification, Quantification, and Risk Assessment of 40 PFAS Migrating from Microwave Popcorn Bags
by Jen-Yi Hsu, Huei-Jie Jiang, Chih-Wei Chang, Yuan-Chih Chen and Pao-Chi Liao
Molecules 2025, 30(9), 1989; https://doi.org/10.3390/molecules30091989 - 29 Apr 2025
Viewed by 975
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely utilized in food contact materials (FCMs) due to their water- and oil-repellent properties, yet their potential migration into food raises significant health concerns. This study employs high-resolution mass spectrometry (HRMS) to quantify the migration of 40 [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are widely utilized in food contact materials (FCMs) due to their water- and oil-repellent properties, yet their potential migration into food raises significant health concerns. This study employs high-resolution mass spectrometry (HRMS) to quantify the migration of 40 PFAS from microwave popcorn bags and assess the associated health risks. HRMS offers high mass accuracy and resolution, enabling precise detection of a broad spectrum of PFASs, including those with low migration levels. Migration experiments were conducted using 10% ethanol and 50% ethanol as food simulants at 70 °C for 2 h. The results indicate that when risk assessment is based solely on the European Food Safety Authority’s (EFSA) tolerable weekly intake (TWI) for four PFAS, hazard ratio (HR) values range from 0.01 to 0.8, suggesting minimal risk. However, when all PFAS are converted into perfluorooctanoic acid equivalents (PEQs) and compared against the U.S. Environmental Protection Agency’s (EPA’s) reference dose (RfD), HR values range from 0.3 to 142.3, indicating a significantly elevated health risk. These findings emphasize the necessity of comprehensive risk assessments incorporating the cumulative effects of all PFAS to better understand potential human exposure and inform regulatory policies. Full article
Show Figures

Graphical abstract

11 pages, 2729 KiB  
Article
Impact of Alcohol Intake on Body Composition in Patients with Steatotic Liver Disease
by Masahiro Matsui, Akira Fukuda, Saori Onishi, Kosuke Ushiro, Tomohiro Nishikawa, Akira Asai, Soo Ki Kim and Hiroki Nishikawa
Nutrients 2025, 17(6), 1092; https://doi.org/10.3390/nu17061092 - 20 Mar 2025
Viewed by 868
Abstract
Objectives: To examine the effect of alcohol intake on body composition in patients with steatotic liver disease (SLD). Methods: In men, group A (n = 819) was defined as non-drinkers, group B (n = 1147) as <30 g of ethanol equivalent per [...] Read more.
Objectives: To examine the effect of alcohol intake on body composition in patients with steatotic liver disease (SLD). Methods: In men, group A (n = 819) was defined as non-drinkers, group B (n = 1147) as <30 g of ethanol equivalent per day, group C (n = 125) as between 30 and 60 g/day, and group D (n = 344) as >60 g/day. In women, group A (n = 749) was defined as non-drinkers, group B (n = 354) as <20 g/day, group C (n = 36) as between 20 and 50 g/day, and group D (n = 68) as >50 g/day. The fat-free (FF) index and fat (F) index were defined as FF mass and F mass divided by height squared (kg/m2). Results: The average FF index and F index in groups A, B, C, and D in men were 19.01, 19.29, 18.50, and 18.55 kg/m2 (overall p < 0.0001), and 6.28, 6.71, 5.66, and 6.03 kg/m2 (overall p < 0.0001). The average FF index and F index in groups A, B, C, and D in women were 16.03, 15.96, 15.62, and 15.07 kg/m2 (overall p < 0.0001), and 9.89, 9.02, 9.32, and 7.53 kg/m2 (overall p < 0.0001). Conclusions: Heavy drinking has a negative effect on skeletal muscle and fat, but complete abstinence from alcohol may not be necessary in SLD patients. Full article
(This article belongs to the Special Issue Alcohol Consumption and Human Health)
Show Figures

Figure 1

Back to TopTop