Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = estuarine sediment classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 16374 KiB  
Article
Anthropogenic Forcing on the Coevolution of Tidal Creeks and Vegetation in the Dongtan Wetland, Changjiang Estuary
by Yi Sun, Daidu Fan, Yunfei Du and Bing Li
Remote Sens. 2025, 17(10), 1692; https://doi.org/10.3390/rs17101692 - 12 May 2025
Viewed by 572
Abstract
Multi-driver interactions shape estuarine wetland evolution, yet the intricate evolution patterns and their controlling factors their spatiotemporal dynamics remain inadequately understood. This study employs high-resolution satellite data (1985–2020) and 3S technology (overall classification accuracy: 92.44%, Kappa coefficient: 0.9132) to reveal the development of [...] Read more.
Multi-driver interactions shape estuarine wetland evolution, yet the intricate evolution patterns and their controlling factors their spatiotemporal dynamics remain inadequately understood. This study employs high-resolution satellite data (1985–2020) and 3S technology (overall classification accuracy: 92.44%, Kappa coefficient: 0.9132) to reveal the development of tidal creeks and vegetation evolution patterns of the Dongtan wetland. Our findings indicate a transition in the development of tidal creeks and vegetation from a natural stage to an artificial intervention stage. Northern regions exhibited severe degradation of both vegetation and tidal creeks influenced by reclamation, contrasting with southern recovery post-restoration. This disparity highlights the varied responses to human activities across different areas of the Dongtan wetland. Notably, the introduction of the invasive species Spartina alterniflora has negatively impacted the habitat of native vegetation. The interaction mechanism between vegetation and tidal creeks manifest as: vegetation constrains tidal creek development through substrate stabilization, wave dissipation, and sediment retention, while tidal creeks modulate physicochemical properties of the substrate hydrological connectivity and seed dispersal, affecting vegetation zonation and community structures. Human activities exert dual modulation effects on the Dongtan wetland, driving its phase transition from natural to artificial landscapes, with artificial landscapes exhibiting the most dynamic landscape type through reclamation and ecological restoration projects. Our findings enhance the understanding of the mechanisms underlying estuarine wetland development and inform strategies for restoring healthy estuarine wetland ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing of Coastal, Wetland, and Intertidal Zones)
Show Figures

Figure 1

28 pages, 75722 KiB  
Article
An Integrated Approach to Riverbed Morphodynamic Modeling Using Remote Sensing Data
by Matteo Bozzano, Francesco Varni, Monica De Martino, Alfonso Quarati, Nicoletta Tambroni and Bianca Federici
J. Mar. Sci. Eng. 2024, 12(11), 2055; https://doi.org/10.3390/jmse12112055 - 13 Nov 2024
Cited by 2 | Viewed by 1443
Abstract
River inlets, deltas, and estuaries represent delicate ecosystems highly susceptible to climate change impacts. While significant progress has been made in understanding the morphodynamics of these environments in recent decades, the development of models still requires thorough testing and data integration. In this [...] Read more.
River inlets, deltas, and estuaries represent delicate ecosystems highly susceptible to climate change impacts. While significant progress has been made in understanding the morphodynamics of these environments in recent decades, the development of models still requires thorough testing and data integration. In this context, remote sensing emerges as a potent tool, providing crucial data and the ability to monitor temporal changes. In this paper, an integrated approach combining remote sensing and morphodynamic modeling is proposed to assess river systems comprehensively. By utilizing multispectral or RGB optical imagery from satellites or UAVs for river classification and remotely derived bathymetry, echo sounder data for ground truth, and photogrammetric modeling of emerged areas, we outline a procedure to create an integrated and continuous digital terrain model (DTM) of a riverbed, paying particular attention to the wet–dry interface. This method enables us to identify the river centerline, its width, and its slope variations. Additionally, by applying a linear morphodynamic model that considers the spatial variability of river morphology commonly found in estuarine environments, it is possible to predict the wavelength and migration rate of sediment bars. This approach has been successfully applied to recreate the DTM and monitor the morphodynamics of the seaward reach of the Roya River (Italy). Full article
(This article belongs to the Special Issue Remote Sensing and GIS Applications for Coastal Morphodynamic Systems)
Show Figures

Figure 1

27 pages, 11597 KiB  
Article
Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia
by Ozren Hasan, Natalia Smrkulj, Slobodan Miko, Dea Brunović, Nikolina Ilijanić and Martina Šparica Miko
Remote Sens. 2023, 15(10), 2588; https://doi.org/10.3390/rs15102588 - 16 May 2023
Cited by 9 | Viewed by 2418
Abstract
The upper part of the Krka River estuary and Prokljan Lake are a specific example of a well-stratified estuarine environment in a submerged river canyon. Here, we reconstructed the geomorphological evolution of the area and classified the data gathered in the study, integrating [...] Read more.
The upper part of the Krka River estuary and Prokljan Lake are a specific example of a well-stratified estuarine environment in a submerged river canyon. Here, we reconstructed the geomorphological evolution of the area and classified the data gathered in the study, integrating multibeam echosounder data, backscatter echosounder data, side-scan sonar morpho-bathymetric surveys, and acoustic sub-bottom profiling, with the addition of ground-truthing and sediment analyses. This led to the successful classification of the bottom sediments using the object-based image analysis method. Additional inputs to the multibeam echosounder data improved the segmentation of the seafloor classification, geology, and morphology of the surveyed area. This study uncovered and precisely defined distinct geomorphological features, specifically submerged tufa barriers and carbonate mounds active during the Holocene warm periods, analogous to recent tufa barriers that still exist and grow in the upstream part of the Krka River. Fine-grained sediments, classified as estuarine sediments, hold more organic carbon than coarse-grained sediments sampled on barriers. A good correlation of organic carbon with silt sediments allowed the construction of a prediction map for marine sedimentary carbon in this estuarine/lake environment using multibeam echosounder data. Our findings highlight the importance of additional inputs to multibeam echosounder data to achieve the most accurate results. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

26 pages, 4870 KiB  
Article
Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach
by Anirban Mukhopadhyay, Rituparna Acharyya, Michał Habel, Indrajit Pal, Niloy Pramanick, Jyoti Prakash Hati, Manas Kumar Sanyal and Tuhin Ghosh
Water 2023, 15(7), 1285; https://doi.org/10.3390/w15071285 - 24 Mar 2023
Cited by 3 | Viewed by 5300
Abstract
Satellite data shows that the Bhagirathi-Hugli River’s riverbank has faced severe erosion during the last decades (1990 to 2020), with the middle stretch of the river being more prone to erosion. This huge sediment load derived from upstream erosion is coming to the [...] Read more.
Satellite data shows that the Bhagirathi-Hugli River’s riverbank has faced severe erosion during the last decades (1990 to 2020), with the middle stretch of the river being more prone to erosion. This huge sediment load derived from upstream erosion is coming to the estuary. The suspended sediment concentration dynamics of the Hugli estuary were calculated using in-situ data and remote sensing reflectance by establishing a linear regression. A continuous huge sediment load is found in the estuarine water. The sediment concentration was higher pre-monsoon than post-monsoon as the region is highly influenced by monsoonal rainfall and runoff. The sediment concentration was also higher in the estuary’s southwestern section than in the northern part. The impact of this high sediment load contributes to the deposition. This depositional area assessment was performed using an object-based classification approach called Support Vector Machine utilizing Grey Level Co-occurrence Matrix to create cluster textural indices. Despite the impact of continuous sea level rise in the estuary, the result shows that effective island and Chars areas have increased in the past decade due to the upstream erosion-driven sediments. Full article
(This article belongs to the Special Issue Sediment Transport, Budgets and Quality in Riverine Environments)
Show Figures

Figure 1

29 pages, 4628 KiB  
Review
Historical Global Review of Acid-Volatile Sulfide Sediment Monitoring Data
by Lenwood W. Hall and Ronald D. Anderson
Soil Syst. 2022, 6(3), 71; https://doi.org/10.3390/soilsystems6030071 - 17 Sep 2022
Cited by 1 | Viewed by 2575
Abstract
Acid-volatile sulfides (AVS) are strongly associated with the bioavailability of some divalent metals such as cadmium, copper, lead, nickel and zinc. However, the global spatial variability of AVS for aquatic systems is unknown. The specific goals of this study were to: (1) summarize [...] Read more.
Acid-volatile sulfides (AVS) are strongly associated with the bioavailability of some divalent metals such as cadmium, copper, lead, nickel and zinc. However, the global spatial variability of AVS for aquatic systems is unknown. The specific goals of this study were to: (1) summarize all available AVS monitoring data from all types of freshwater and saltwater waterbodies (streams/creeks, rivers, lakes/ponds/reservoirs and estuarine/marine areas) and (2) compare AVS concentrations from these various types of waterbodies considering both soil type classification and biomes. AVS measurements were reported from 21 different countries. A total of 17 different soil types were reported for all waterbody types and both podzols and luvisols were found in all waterbody types. Nine different biomes were sampled for all waterbody types. The temperate broadleaf and mixed forest biome was sampled for AVS in all waterbody types. Mean AVS concentrations ranged from 0.01 to 503 µmoles/g for 140 different waterbody types and the 90th centile for all these waterbodies was 49.4 µmoles/g. A ranking of waterbody type means from low to high AVS measurements showed the lowest mean value was reported for streams/creeks (5.12 µmoles/g; range from 0.1 to 39.8 µmoles/g) followed by lakes/ponds/reservoirs (11.3 µmoles/g; range from 0.79 to 127 µmoles/g); estuarine/marine areas (27.2 µmoles/g; range from 0.06 to 503 µmoles/g) and rivers (27.7 µmoles/g; range from 1.13 to 197 µmoles/g). The data provided in this study are compelling as it showed that the high variability of AVS measurements within each waterbody type as well as the variability of AVS within specific locations were often multiple orders of magnitude differences for concentration ranges. Therefore, a comprehensive spatial and temporal scale sampling of AVS in concert with divalent metals analysis is critical to avoid possible errors when evaluating the potential ecological risk of divalent metals in sediment. Full article
Show Figures

Figure 1

22 pages, 48666 KiB  
Article
Multi-Scale Influence of Flexible Submerged Aquatic Vegetation (SAV) on Estuarine Hydrodynamics
by Elizabeth R. Holzenthal, David F. Hill and Meagan E. Wengrove
J. Mar. Sci. Eng. 2022, 10(4), 554; https://doi.org/10.3390/jmse10040554 - 18 Apr 2022
Cited by 3 | Viewed by 2618
Abstract
Bottom friction is an important process in coastal and estuarine environments because it can reduce wave heights and moderate tidal currents. When modeling large systems with spatially varying hydraulic properties, bottom friction values are commonly derived from land use classification products. However, estimation [...] Read more.
Bottom friction is an important process in coastal and estuarine environments because it can reduce wave heights and moderate tidal currents. When modeling large systems with spatially varying hydraulic properties, bottom friction values are commonly derived from land use classification products. However, estimation of bottom friction for vegetated areas can be more challenging due to the complicated and time-varying geometry of the roughness elements. This is particularly true of flexible, buoyant submerged aquatic vegetation (SAV) species, such as seagrasses and kelps, that deform under waves and currents. In this study we incorporate a dynamic friction model that includes the temporal variation in SAV drag forces into a depth-integrated coupled circulation-wave model. In vegetated areas, the bottom friction is continuously updated based on plant geometry, water depth, and combined wave-current velocities. Taking a multi-scale approach, we use the model to investigate the impact of SAV dynamics on both the localized and the integrated bay-wide hydrodynamics of a riverine and tidally influenced estuary. First, we investigate SAV modification of velocity fields and its implications for sediment transport and circulation pathways. Then, we show how SAV can modify tidal behavior throughout the estuary. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

31 pages, 11621 KiB  
Article
Geochemistry of Sub-Depositional Environments in Estuarine Sediments: Development of an Approach to Predict Palaeo-Environments from Holocene Cores
by Dahiru D. Muhammed, Naboth Simon, James E. P. Utley, Iris T. E. Verhagen, Robert A. Duller, Joshua Griffiths, Luke J. Wooldridge and Richard H. Worden
Geosciences 2022, 12(1), 23; https://doi.org/10.3390/geosciences12010023 - 5 Jan 2022
Cited by 6 | Viewed by 3637
Abstract
In the quest to use modern analogues to understand clay mineral distribution patterns to better predict clay mineral occurrence in ancient and deeply buried sandstones, it has been necessary to define palaeo sub-environments from cores through modern sediment successions. Holocene cores from Ravenglass [...] Read more.
In the quest to use modern analogues to understand clay mineral distribution patterns to better predict clay mineral occurrence in ancient and deeply buried sandstones, it has been necessary to define palaeo sub-environments from cores through modern sediment successions. Holocene cores from Ravenglass in the NW of England, United Kingdom, contained metre-thick successions of massive sand that could not be unequivocally interpreted in terms of palaeo sub-environments using conventional descriptive logging facies analysis. We have therefore explored the use of geochemical data from portable X-ray fluorescence analyses, from whole-sediment samples, to develop a tool to uniquely define the palaeo sub-environment based on geochemical data. This work was carried out through mapping and defining sub-depositional environments in the Ravenglass Estuary and collecting 497 surface samples for analysis. Using R statistical software, we produced a classification tree based on surface geochemical data from Ravenglass that can take compositional data for any sediment sample from the core or the surface and define the sub-depositional environment. The classification tree allowed us to geochemically define ten out of eleven of the sub-depositional environments from the Ravenglass Estuary surface sediments. We applied the classification tree to a core drilled through the Holocene succession at Ravenglass, which allowed us to identify the dominant paleo sub-depositional environments. A texturally featureless (massive) metre-thick succession, that had defied interpretation based on core description, was successfully related to a palaeo sub-depositional environment using the geochemical classification approach. Calibrated geochemical classification models may prove to be widely applicable to the interpretation of sub-depositional environments from other marginal marine environments and even from ancient and deeply buried estuarine sandstones. Full article
(This article belongs to the Collection Early Career Scientists’ (ECS) Contributions to Geosciences)
Show Figures

Figure 1

25 pages, 7359 KiB  
Article
Estuarine Mapping and Eco-Geomorphological Characterization for Potential Application in Conservation and Management: Three Study Cases along the Iberian Coast
by María Aranda, Francisco Javier Gracia and Gloria Peralta
Appl. Sci. 2020, 10(13), 4429; https://doi.org/10.3390/app10134429 - 27 Jun 2020
Cited by 9 | Viewed by 3952
Abstract
Geomorphological changes in recent decades in three estuaries along the Iberian coast were analysed using aerial orthophotographs. A hierarchical classification scheme, based on a literature review representing 26 estuarine eco-geomorphological features relevant to estuarine dynamics and functioning, is described. The estuaries selected were [...] Read more.
Geomorphological changes in recent decades in three estuaries along the Iberian coast were analysed using aerial orthophotographs. A hierarchical classification scheme, based on a literature review representing 26 estuarine eco-geomorphological features relevant to estuarine dynamics and functioning, is described. The estuaries selected were San Vicente de la Barquera (N Spain), Guadiana River (SW border between Spain and Portugal) and the Ebro River Delta mouth (NE Spain). For these systems, a 60-year time series of high-resolution maps was developed, analysing the changes in feature surfaces. The main subsystems analysed were beach, dunes, saltmarshes and the drainage network. The results of the cartographies showed general behaviour common to all transitional systems, relationships among main subsystems and processes inherent to each one. This work illustrates how beaches and dunes serve as a protective barrier for the tidal flats, acting as a sediment buffer for the entire system. The subsystems are connected by the drainage network responsible for the exchange of matter and energy between them. Furthermore, an accuracy assessment was performed in one of the study zones to identify the limitations of mapping with aerial photographs. The results explain the changes with time but also the processes and relationships between the estuarine features at a long-term scale. This work adds an important perspective towards a general understanding of their dependence on intrinsic and boundary conditions. Full article
(This article belongs to the Special Issue Application in Coastal Ecosystems of Remote Sensing and GIS)
Show Figures

Graphical abstract

21 pages, 33676 KiB  
Article
Submerged and Emergent Land Cover and Bathymetric Mapping of Estuarine Habitats Using WorldView-2 and LiDAR Imagery
by Joanne Halls and Kaitlyn Costin
Remote Sens. 2016, 8(9), 718; https://doi.org/10.3390/rs8090718 - 31 Aug 2016
Cited by 34 | Viewed by 9601
Abstract
Tidal creeks are small estuarine watersheds characterized by low freshwater input, marine to brackish salinity, and subtidal, intertidal, and supratidal habitats. Most people are familiar with large rivers and estuaries, but the smaller tidal watersheds comprise a greater percentage of the coastline. As [...] Read more.
Tidal creeks are small estuarine watersheds characterized by low freshwater input, marine to brackish salinity, and subtidal, intertidal, and supratidal habitats. Most people are familiar with large rivers and estuaries, but the smaller tidal watersheds comprise a greater percentage of the coastline. As the population along coasts rises there is growing concern about water quality and increased sedimentation rates. Therefore, these smaller tidal creek watersheds are at risk to pollution, decreased environmental health, and deterioration of protective salt marshes. The purpose of this study was to test methods for high spatial resolution mapping of benthic (submerged) and emergent habitats as well as the derivation of bathymetry using DigitalGlobe’s WorldView-2 imagery. An intensive field effort was conducted to test and assess several image processing techniques. Results concluded that: (1) supervised habitat classification produced the highest map accuracy (95%); (2) sand, water, scrub/shrub, and docks/rubble were mapped the most accurately at greater than 95%; (3) saltmarsh habitats (high and low density cordgrass, Spartina alterniflora, and black needlerush, Juncus roemerianus), mud, and oyster beds were between 80 and 85% accurate; (4) pan-sharpening and atmospheric correction did not improve map accuracy; (5) LiDAR (light detection and ranging) data increased habitat map accuracy; and (6) WorldView-2 imagery was capable of deriving water depth and these data increased the map accuracy of benthic habitats. The project produced habitat maps for benthic and emergent species at high spatial resolution (4 m2) which will be useful for studying the dynamic processes in this tidal environment. The data and methods developed here could be used by state and local government planning agencies to assess potential long-term changes and develop appropriate management strategies. Full article
(This article belongs to the Special Issue What can Remote Sensing Do for the Conservation of Wetlands?)
Show Figures

Graphical abstract

Back to TopTop