Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia
Abstract
:1. Introduction
2. Regional Settings
3. Materials and Methods
3.1. High-Resolution Acoustic Survey
3.2. MBES Data Analyses
3.3. Ground-Truth Survey and Video Survey
3.4. Sediment Characterization
3.5. Object-Based Image Analysis
4. Results
4.1. Seabed Morphology Determined with Geophysical Acoustic Methods
4.2. MBES Bathymetry Analyses Results
4.3. Sub-Bottom Profiler Survey
4.4. Sediment Characterization
4.4.1. Sediment Particle Size Fractions
4.4.2. Mineral Composition
4.4.3. Magnetic Susceptibility
4.4.4. Carbon and Nitrogen Analyses
4.4.5. Seabed Classifications Based on MBES Bathymetry Analyses
5. Discussion
5.1. Sediment Composition and Dynamics
5.2. Origin of Major Geomorphological Features
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellec, V.K.; Bøe, R.; Rise, L.; Lepland, A.; Thorsnes, T.; Bjarnadóttir, L.R. Seabed Sediments (Grain Size) of Nordland VI, Offshore North Norway. J. Maps 2017, 13, 608–620. [Google Scholar] [CrossRef]
- Buhl-Mortensen, L.; Buhl-Mortensen, P.; Dolan, M.F.J.; Holte, B. The MAREANO Programme—A Full Coverage Mapping of the Norwegian off-Shore Benthic Environment and Fauna. Mar. Biol. Res. 2015, 11, 4–17. [Google Scholar] [CrossRef]
- Deiana, G.; Lecca, L.; Melis, R.T.; Soldati, M.; Demurtas, V.; Orrù, P.E. Submarine Geomorphology of the Southwestern Sardinian Continental Shelf (Mediterranean Sea): Insights into the Last Glacial Maximum Sea-Level Changes and Related Environments. Water 2021, 13, 155. [Google Scholar] [CrossRef]
- Erdey-Heydorn, M. An ArcGIS Seabed Characterization Toolbox Developed for Investigating Benthic Habitats. Mar. Geod. 2008, 31, 318–358. [Google Scholar] [CrossRef]
- Deering, R.; Bell, T.; Forbes, D.L.; Campbell, C.; Edinger, E. Morphological Characterization of Submarine Slope Failures in a Semi-Enclosed Fjord, Frobisher Bay, Eastern Canadian Arctic. Geol. Soc. Lond. Spec. Publ. 2018, 477, 367–376. [Google Scholar] [CrossRef]
- Zhi, H.; Siwabessy, J.; Nichol, S.L.; Brooke, B.P. Predictive Mapping of Seabed Substrata Using High-Resolution Multibeam Sonar Data: A Case Study from a Shelf with Complex Geomorphology. Mar. Geol. 2014, 357, 37–52. [Google Scholar] [CrossRef]
- Pillay, T.; Cawthra, H.C.; Lombard, A.T. Characterisation of Seafloor Substrate Using Advanced Processing of Multibeam Bathymetry, Backscatter, and Sidescan Sonar in Table Bay, South Africa. Mar. Geol. 2020, 429, 106332. [Google Scholar] [CrossRef]
- Runya, R.M.; McGonigle, C.; Quinn, R.; Howe, J.; Collier, J.; Fox, C.; Dooley, J.; O’loughlin, R.; Calvert, J.; Scott, L.; et al. Examining the Links between Multi-Frequency Multibeam Backscatter Data and Sediment Grain Size. Remote Sens. 2021, 13, 1539. [Google Scholar] [CrossRef]
- Hunt, C.; Demšar, U.; Dove, D.; Smeaton, C.; Cooper, R.; Austin, W.E.N. Quantifying Marine Sedimentary Carbon: A New Spatial Analysis Approach Using Seafloor Acoustics, Imagery, and Ground-Truthing Data in Scotland. Front. Mar. Sci. 2020, 7, 588. [Google Scholar] [CrossRef]
- Craven, K.F.; McCarron, S.; Monteys, X.; Dove, D. Interaction of Multiple Ice Streams on the Malin Shelf during Deglaciation of the Last British–Irish Ice Sheet. J. Quat. Sci. 2021, 36, 153–168. [Google Scholar] [CrossRef]
- Trottier, A.P.; Lajeunesse, P.; Gagnon-Poiré, A.; Francus, P. Morphological Signatures of Deglaciation and Postglacial Sedimentary Processes in a Deep Fjord-Lake (Grand Lake, Labrador). Earth Surf. Process. Landf. 2020, 45, 928–947. [Google Scholar] [CrossRef]
- Hasan, O.; Miko, S.; Brunović, D.; Papatheodorou, G.; Christodolou, D.; Ilijanić, N.; Geraga, M. Geomorphology of Canyon Outlets in Zrmanja River Estuary and Its Effect on the Holocene Flooding of Semi-Enclosed Basins (The Novigrad and Karin Seas, Eastern Adriatic). Water 2020, 12, 2807. [Google Scholar] [CrossRef]
- Manoutsoglou, E.; Hasiotis, T.; Kyriakoudi, D.; Velegrakis, A.; Lowag, J. Puzzling Micro-Relief (Mounds) of a Soft-Bottomed, Semi-Enclosed Shallow Marine Environment. Geo-Mar. Lett. 2018, 38, 359–370. [Google Scholar] [CrossRef]
- Bendixen, C.; Boldreel, L.O.; Jensen, J.B.; Bennike, O.; Hübscher, C.; Clausen, O.R. Early Holocene Estuary Development of the Hesselø Bay Area, Southern Kattegat, Denmark and Its Implication for Ancylus Lake Drainage. Geo-Mar. Lett. 2017, 37, 579–591. [Google Scholar] [CrossRef]
- Rucińska-Zjadacz, M.; Wróblewski, R. The Complex Geomorphology of a Barrier Spit Prograding into Deep Water, Hel Peninsula, Poland. Geo-Mar. Lett. 2018, 38, 513–525. [Google Scholar] [CrossRef]
- Moreira-Turcq, P.; Martin, J.M.; Fleury, A. Chemical and Biological Characterization of Particles by Flow Cytometry in the Krka Estuary, Croatia. Mar. Chem. 1993, 43, 115–126. [Google Scholar] [CrossRef]
- Korlević, M.; Šupraha, L.; Ljubešić, Z.; Henderiks, J.; Ciglenečki, I.; Dautović, J.; Orlić, S. Bacterial Diversity across a Highly Stratified Ecosystem: A Salt-Wedge Mediterranean Estuary. Syst. Appl. Microbiol. 2016, 39, 398–408. [Google Scholar] [CrossRef]
- Gligora Udovič, M.; Kralj Borojević, K.; Žutinić, P.; Šipoš, L.; Anđelka, P.-M. Net-Phytoplankton Species Dominance in a Travertine Riverine Lake Visovac, NP Krka. Nat. Croat. 2011, 20, 411–424. [Google Scholar]
- Bužančić, M.; Ninčević Gladan, Ž.; Marasović, I.; Kušpilić, G.; Grbec, B.; Matijević, S. Population Structure and Abundance of Phytoplankton in Three Bays on the Eastern Adriatic Coast: Šibenik Bay, Kaštela Bay and Mali Ston Bay. Acta Adriat. 2012, 53, 413–434. [Google Scholar]
- Cetinić, I.; Viličić, D.; Burić, Z.; Olujić, G. Phytoplankton Seasonality in a Highly Stratified Karstic Estuary (Krka, Adriatic Sea). Hydrobiologia 2006, 555, 31–40. [Google Scholar] [CrossRef]
- Fuks, D.; Devescovi, M.; Precali, R.; Krstulović, N.; Šolić, M. Bacterial Abundance and Activity in the Highly Stratified Estuary of the Krka River. Mar. Chem. 1991, 32, 333–346. [Google Scholar] [CrossRef]
- Žutinić, P.; Kulaš, A.; Levkov, Z.; Šušnjara, M.; Orlić, S.; Kukić, S.; Goreta, G.; Valić, D.; Udovič, M.G. Ecological Status Assessment Using Periphytic Diatom Communites—Case Study Krka River. Maced. J. Ecol. Environ. 2020, 22, 29–44. [Google Scholar] [CrossRef]
- Viličić, D.; Legović, T.; Žutić, V. Vertical Distribution of Phytoplankton in a Stratified Estuary. Aquat. Sci. 1989, 51, 31–46. [Google Scholar] [CrossRef]
- Kralj, K.; Plenković-Moraj, A.; Gligora, M.; Primc-Habdija, B.; Šipoš, L. Structure of Periphytic Community on Artificial Substrata: Influence of Depth, Slide Orientation and Colonization Time in Karstic Lake Visovačko, Croatia. Hydrobiologia 2006, 560, 249–258. [Google Scholar] [CrossRef]
- Domínguez-Villar, D.; Cukrov, N.; Krklec, K. Temperature as a Tracer of Hydrological Dynamics in an Anchialine Cave System with a Submarine Spring. Hydrogeol. J. 2018, 26, 1249–1262. [Google Scholar] [CrossRef]
- Legović, T.; Gržetić, Z.; Smirčić, A. Effects of Wind on a Stratified Estuary. Mar. Chem. 1991, 32, 153–161. [Google Scholar] [CrossRef]
- Orlić, M.; Ferenčak, M.; Gržetić, Z.; Limić, N.; Pasarić, Z.; Smirčić, A. High-Frequency Oscillations Observed in the Krka Estuary. Mar. Chem. 1991, 32, 137–151. [Google Scholar] [CrossRef]
- Žutić, V.; Legović, T. A Film of Organic Matter at the Fresh-Water/Sea-Water Interface of an Estuary. Nature 1987, 328, 612–614. [Google Scholar] [CrossRef]
- Cindrić, A.-M.; Garnier, C.; Oursel, B.; Pižeta, I.; Omanović, D. Evidencing the Natural and Anthropogenic Processes Controlling Trace Metals Dynamic in a Highly Stratified Estuary: The Krka River Estuary (Adriatic, Croatia). Mar. Pollut. Bull. 2015, 94, 199–216. [Google Scholar] [CrossRef]
- Cukrov, N.; Barišić, D. Spatial Distribution of 40K And232Th in Recent Sediments of the Krka River Estuary. Croat. Chem. Acta 2006, 79, 115–118. [Google Scholar]
- Horvatinčić, N.; Čalić, R.; Geyh, M.A. Interglacial Growth of Tufa in Croatia. Quat. Res. 2000, 53, 185–195. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Barišić, D.; Vertačnik, A.; Bilinski, H.; Prohić, E. Characterization of Tufa from the Dinaric Karst of Croatia: Mineralogy, Geochemistry and Discussion of Climate Conditions. Facies 2004, 50, 183–193. [Google Scholar] [CrossRef]
- Lojen, S.; Dolenec, T.; Vokal, B.; Cukrov, N.; Mihelčić, G.; Papesch, W. C and O Stable Isotope Variability in Recent Freshwater Carbonates (River Krka, Croatia). Sedimentology 2004, 51, 361–375. [Google Scholar] [CrossRef]
- Bonacci, O.; Andrić, I.; Roje-Bonacci, T. Hydrological Analysis of Skradinski Buk Tufa Waterfall (Krka River, Dinaric Karst, Croatia). Environ. Earth Sci. 2017, 76, 669. [Google Scholar] [CrossRef]
- Bonacci, O.; Jukić, D.; Ljubenkov, I. Definition of Catchment Area in Karst: Case of the Rivers Krčić and Krka, Croatia. Hydrol. Sci. J. 2006, 51, 682–699. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Srdoc, D.; Horvatincic, N. Early Diagenesis of Plitvice Lakes Waterfall and Barrier Treavertine Deposits. Géographie Phys. Quat. 2007, 48, 247–255. [Google Scholar] [CrossRef]
- Fairbanks, R.G. A 17,000-Year Glacio-Eustatic Sea Level Record: Influence of Glacial Melting Rates on the Younger Dryas Event and Deep-Ocean Circulation. Nature 1989, 342, 637–642. [Google Scholar] [CrossRef]
- Lambeck, K. Sea Level Change from Mid Holocene to Recent Time: An Australian Example with Global Implications; American Geophysical Union: Washington, DC, USA, 2011; pp. 33–50. [Google Scholar] [CrossRef]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy Assessment of Holocene Relative Sea-Level Changes in the Western Mediterranean: Sea-Level Variability and Improvements in the Definition of the Isostatic Signal. Earth-Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef]
- Juračić, M.; Prohić, E. Mineralogy, Sources of Particles and Sedimentation in the Krka River Estuary (Croatia). Geološki Vjesn. 1991, 44, 195–200. [Google Scholar]
- Burić, Z.; Cetinić, I.; Viličić, D.; Mihalić, K.C.; Carić, M.; Olujić, G. Spatial and Temporal Distribution of Phytoplankton in a Highly Stratified Estuary (Zrmanja, Adriatic Sea). Mar. Ecol. 2007, 28, 169–177. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Zaitlin, B.A.; Boyd, R. Estuarine Facies Models: Conceptual Basis and Stratigraphic Implications. J. Sediment. Petrol. 1992, 62, 1130–1146. [Google Scholar] [CrossRef]
- Dladla, N.N.; Green, A.N.; Cooper, J.A.G.; Humphries, M.S. Geological Inheritance and Its Role in the Geomorphological and Sedimentological Evolution of Bedrock-Hosted Incised Valleys, Lake St Lucia, South Africa. Estuar. Coast. Shelf Sci. 2019, 222, 154–167. [Google Scholar] [CrossRef]
- De Falco, G.; Carannante, A.; Del Vais, C.; Gasperini, L.; Pascucci, V.; Sanna, I.; Simeone, S.; Conforti, A. Evolution of a Single Incised Valley Related to Inherited Geology, Sea Level Rise and Climate Changes during the Holocene (Tirso River, Sardinia, Western Mediterranean Sea). Mar. Geol. 2022, 451, 106885. [Google Scholar] [CrossRef]
- Goudie, A.S. Waterfalls: Forms, Distribution, Processes and Rates of Recession. Quaest. Geogr. 2020, 39, 59–77. [Google Scholar] [CrossRef]
- Scheingross, J.S.; Lamb, M.P. Sediment Transport through Self-adjusting, Bedrock-walled Waterfall Plunge Pools. J. Geophys. Res. Earth Surf. 2016, 121, 939–963. [Google Scholar] [CrossRef]
- Scheingross, J.S.; Lo, D.Y.; Lamb, M.P. Self-formed Waterfall Plunge Pools in Homogeneous Rock. Geophys. Res. Lett. 2017, 44, 200–208. [Google Scholar] [CrossRef]
- Lamb, M.P.; Howard, A.D.; Dietrich, W.E.; Perron, J.T. Formation of Amphitheater-Headed Valleys by Waterfall Erosion after Large-Scale Slumping on Hawai’i. Geol. Soc. Am. Bull. 2007, 119, 805–822. [Google Scholar] [CrossRef]
- Gordon, N.D.; McMahon, T.A.; Finlayson, B.L.; Gippel, C.J.; Nathan, R.J. Stream Hydrology: An Introduction for Ecologists, 2nd ed.; John Wiley and Sons: Chichester, UK, 2004; ISBN 0470843578. [Google Scholar]
- Babazadeh, H.; Ashourian, M.; Shafai-Bajestan, M. Experimental Study of Headcut Erosion in Cohesive Soils under Different Consolidation Types and Hydraulic Parameters. Environ. Earth Sci. 2017, 76, 438. [Google Scholar] [CrossRef]
- Haviv, I.; Enzel, Y.; Whipple, K.X.; Zilberman, E.; Matmon, A.; Stone, J.; Fifield, K.L. Evolution of Vertical Knickpoints (Waterfalls) with Resistant Caprock: Insights from Numerical Modeling. J. Geophys. Res. 2010, 115, F03028. [Google Scholar] [CrossRef]
- Diesing, M.; Kröger, S.; Parker, R.; Jenkins, C.; Mason, C.; Weston, K. Predicting the Standing Stock of Organic Carbon in Surface Sediments of the North–West European Continental Shelf. Biogeochemistry 2017, 135, 183–200. [Google Scholar] [CrossRef]
- Kemp, A.L.W. Organic Carbon and Nitrogen in the Surface Sediments of Lakes Ontario, Erie and Huron. J. Sediment. Petrol. 1971, 41, 537–548. [Google Scholar]
- Meyers, P.A. Preservation of Elemental and Isotopic Source Identification of Sedimentary Organic Matter. Chem. Geol. 1994, 114, 289–302. [Google Scholar] [CrossRef]
- Gao, X.; Yang, Y.; Wang, C. Geochemistry of Organic Carbon and Nitrogen in Surface Sediments of Coastal Bohai Bay Inferred from Their Ratios and Stable Isotopic Signatures. Mar. Pollut. Bull. 2012, 64, 1148–1155. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Ouyang, J.; Ning, J.-J.; Wang, Z.-H. Distribution and Sources of Organic Carbon, Nitrogen and Their Isotopes in Surface Sediments from the Largest Mariculture Zone of the Eastern Guangdong Coast, South China. Mar. Pollut. Bull. 2017, 120, 286–291. [Google Scholar] [CrossRef]
- Stephens, D.; Diesing, M. A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-Size Data. PLoS ONE 2014, 9, e93950. [Google Scholar] [CrossRef]
- Montereale Gavazzi, G.; Madricardo, F.; Janowski, L.; Kruss, A.; Blondel, P.; Sigovini, M.; Foglini, F. Evaluation of Seabed Mapping Methods for Fine-Scale Classification of Extremely Shallow Benthic Habitats—Application to the Venice Lagoon, Italy. Estuar. Coast. Shelf Sci. 2016, 170, 45–60. [Google Scholar] [CrossRef]
- Janowski, Ł.; Tęgowski, J.; Nowak, J. Seafloor Mapping Based on Multibeam Echosounder Bathymetry and Backscatter Data Using Object-Based Image Analysis: A Case Study from the Rewal Site, the Southern Baltic. Oceanol. Hydrobiol. Stud. 2018, 47, 248–259. [Google Scholar] [CrossRef]
- Innangi, S.; Tonielli, R.; Romagnoli, C.; Budillon, F.; Di Martino, G.; Innangi, M.; Laterza, R.; Le Bas, T.; Lo Iacono, C. Seabed Mapping in the Pelagie Islands Marine Protected Area (Sicily Channel, Southern Mediterranean) Using Remote Sensing Object Based Image Analysis (RSOBIA). Mar. Geophys. Res. 2019, 40, 333–355. [Google Scholar] [CrossRef]
- Biondo, M.; Bartholomä, A. A Multivariate Analytical Method to Characterize Sediment Attributes from High-Frequency Acoustic Backscatter and Ground-Truthing Data (Jade Bay, German North Sea Coast). Cont. Shelf Res. 2017, 138, 65–80. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Mamužić, P. Tumač Za Osnovnu Geološku Kartu 1: 100 000 List Šibenik K 33-8 (Basic geological map of the Republic of Croatia 1: 100 00. Explanatory notes for sheet Mohač); Institut za Geološka Istražicanja: Zagreb, Croatia, 1975; p. 37. [Google Scholar]
- Liu, J.; Hrustić, E.; Du, J.; Gašparović, B.; Čanković, M.; Cukrov, N.; Zhu, Z.; Zhang, R. Net Submarine Groundwater-Derived Dissolved Inorganic Nutrients and Carbon Input to the Oligotrophic Stratified Karstic Estuary of the Krka River (Adriatic Sea, Croatia). J. Geophys. Res. Ocean. 2019, 124, 4334–4349. [Google Scholar] [CrossRef]
- Legović, T.; Žutić, V.; Gržetić, Z.; Cauwet, G.; Precali, R.; Viličić, D. Eutrophication in the Krka Estuary. Mar. Chem. 1994, 46, 203–215. [Google Scholar] [CrossRef]
- Buljan, M. Neka Hidrografska Svojstva Estuarnih Područja Rijeka Krke i Zrmanje. Krš Jugoslavije 1969, 20, 303–326. [Google Scholar]
- Prohić, E.; Juračić, M. Heavy Metals in Sediments-Problems Concerning Determination of the Anthropogenic Influence. Study in the Krka River Estuary, Eastern Adriatic Coast, Yugoslavia. Environ. Geol. Water Sci. 1989, 13, 145–151. [Google Scholar] [CrossRef]
- Svensen, C.; Viličić, D.; Wassmann, P.; Arashkevich, E.; Ratkova, T. Plankton Distribution and Vertical Flux of Biogenic Matter during High Summer Stratification in the Krka Estuary (Eastern Adriatic). Estuar. Coast. Shelf Sci. 2007, 71, 381–390. [Google Scholar] [CrossRef]
- Cukrov, N.; Barišić, D.; Juračić, M. Calculated Sedimentation Rate in the Krka River Estruary Using Vertical Diostribution of 137Cs. In 38th CIESM Congress Proceedings; Frédéric, B., Dimitris, S., Jordi, F., Nicholas, F., Eds.; CIESM: Istanbul, Turkey, 2007; p. 81. [Google Scholar]
- Cukrov, N.; Doumandji, N.; Garnier, C.; Tucaković, I.; Dang, D.H.; Omanović, D.; Cukrov, N. Anthropogenic Mercury Contamination in Sediments of Krka River Estuary (Croatia). Environ. Sci. Pollut. Res. 2020, 27, 7628–7638. [Google Scholar] [CrossRef]
- Winton, T. Quantifying Depth of Burial and Composition of Shallow Buried Archaeological Material: Integrated Sub-Bottom Profiling and 3D Survey Approaches. In 3D Recording and Interpretation for Maritime Archaeology; Springer: Cham, Switzerland, 2019; Volume 37, pp. 155–174. [Google Scholar]
- Wunderlich, J.; Müller, S. High-Resolution Sub-Bottom Profiling Using Parametric Acoustics. Int. Ocean Syst. 2003, 7, 6–11. [Google Scholar]
- Wang, F.; Dong, L.; Ding, J.; Zhou, X.; Tao, C.; Lin, X.; Liang, G. An Experiment of the Actual Vertical Resolution of the Sub-Bottom Profiler in an Anechoic Tank. Arch. Acoust. 2019, 44, 185–194. [Google Scholar] [CrossRef]
- Horn, B.K.P. Hill Shading and the Reflectance Map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef]
- Dolan, M.F.J. Calculation of Slope Angle from Bathymetry Data Using GIS—Effects of Computation Algorithm, Data Resolution and Analysis Scale. In Geology for Society; Geological Survey of Norway: Trondheim, Norway, 2012; p. 44. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Minár, J.; Evans, I.S.; Jenčo, M. A Comprehensive System of Definitions of Land Surface (Topographic) Curvatures, with Implications for Their Application in Geoscience Modelling and Prediction. Earth-Sci. Rev. 2020, 211, 103414. [Google Scholar] [CrossRef]
- Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D.J. Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94. [Google Scholar] [CrossRef]
- Allen, J.R.L.; Thornley, D.M. Laser Granulometry of Holocene Estuarine Silts: Effects of Hydrogen Peroxide Treatment. Holocene 2004, 14, 290–295. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. Earth Surf. Process. Landforms 2001, 26, 1237–1248. [Google Scholar] [CrossRef]
- Folk, R.L.; Ward, W.C. Brazos River Bar: A Study in the Significance of Grain Size Parameter. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping Seabed Sediments: Comparison of Manual, Geostatistical, Object-Based Image Analysis and Machine Learning Approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef]
- Hasan, R.C.; Ierodiaconou, D.; Laurenson, L.; Schimel, A. Integrating Multibeam Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Mapping. PLoS ONE 2014, 9, e97339. [Google Scholar] [CrossRef]
- Demirović, D. An Implementation of the Mean Shift Algorithm. Image Process. Line 2019, 9, 251–268. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Bosch, A.; Zisserman, A.; Munoz, X. Image Classification Using Random Forests and Ferns. In Proceedings of the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8. [Google Scholar]
- Dearing, J.A.; Dann, R.J.L.; Hay, K.; Lees, J.A.; Loveland, P.J.; Maher, B.A.; O’Grady, K. Frequency-Dependent Susceptibility Measurements of Environmental Materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef]
- Mayer, L.M. Surface Area Control of Organic Carbon Accumulation in Continental Shelf Sediments. Geochim. Cosmochim. Acta 1994, 58, 1271–1284. [Google Scholar] [CrossRef]
- Tyson, R.V. Sedimentary Organic Matter; Springer: Dordrecht, The Netherlands, 1995; ISBN 978-94-010-4318-2. [Google Scholar]
- Cowie, G.L.; Hedges, J.I. Organic Carbon and Nitrogen Geochemistry of Black Sea Surface Sediments from Stations Spanning the Oxic:Anoxic Boundary. In Black Sea Oceanography; Izdar, E., Murray, J.W., Eds.; Kluwer Academic Publishers: Norwell, MA, USA, 1991; pp. 343–359. [Google Scholar]
- Faust, J.C.; Knies, J. Organic Matter Sources in North Atlantic Fjord Sediments. Geochem. Geophys. Geosyst. 2019, 20, 2872–2885. [Google Scholar] [CrossRef]
- Lamb, A.L.; Wilson, G.P.; Leng, M.J. A Review of Coastal Palaeoclimate and Relative Sea-Level Reconstructions Using Δ13C and C/N Ratios in Organic Material. Earth-Sci. Rev. 2006, 75, 29–57. [Google Scholar] [CrossRef]
- Saito, Y.; Nishimura, A.; Matsumoto, E. Transgressive Sand Sheet Covering the Shelf and Upper Slope off Sendai, Northeast Japan. Mar. Geol. 1989, 89, 245–258. [Google Scholar] [CrossRef]
- Carlotto, M.J. Effect of Errors in Ground Truth on Classification Accuracy. Int. J. Remote Sens. 2009, 30, 4831–4849. [Google Scholar] [CrossRef]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The Submerged Paleolandscape of the Maltese Islands: Morphology, Evolution and Relation to Quaternary Environmental Change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Brown, C.J.; Beaudoin, J.; Brissette, M.; Gazzola, V. Multispectral Multibeam Echo Sounder Backscatter as a Tool for Improved Seafloor Characterization. Geosciences 2019, 9, 126. [Google Scholar] [CrossRef]
- Lojen, S.; Cukrov, N.; Papesch, W.; Mihelčić, G. Precipitation of Tufa Barriers from Krka River, Croatia. In Proceedings of the International Symposium on Isotope Hydrology and Integrated Water Resources Management. Book of Extended Synopses, Vienna, Austria, 19–23 May 2003; p. 366. [Google Scholar]
- Scheingross, J.S.; Lamb, M.P.; Fuller, B.M. Self-Formed Bedrock Waterfalls. Nature 2019, 567, 229–233. [Google Scholar] [CrossRef]
- Alexandrowicz, Z. Geologically Controlled Waterfall Types in the Outer Carpathians. Geomorphology 1994, 9, 155–165. [Google Scholar] [CrossRef]
- Hayakawa, Y.S.; Yokoyama, S.; Matsukura, Y. Erosion Rates of Waterfalls in Post-Volcanic Fluvial Systems around Aso Volcano, Southwestern Japan. Earth Surf. Process. Landf. 2008, 33, 801–812. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea Level Change along the Italian Coast during the Holocene and Projections for the Future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Barešić, J.; Faivre, S.; Sironić, A.; Borković, D.; Lovrenčić Mikelić, I.; Drysdale, R.N.; Krajcar Bronić, I. The Potential of Tufa as a Tool for Paleoenvironmental Research—A Study of Tufa from the Zrmanja River Canyon, Croatia. Geosciences 2021, 11, 376. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Baker, P.A.; Bartlein, P.J.; Brewer, S.; Brook, E.; Carlson, A.E.; Cheng, H.; Kaufman, D.S.; Liu, Z.; et al. Global Climate Evolution during the Last Deglaciation. Proc. Natl. Acad. Sci. USA 2012, 109, E1134–E1142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, O.; Smrkulj, N.; Miko, S.; Brunović, D.; Ilijanić, N.; Šparica Miko, M. Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia. Remote Sens. 2023, 15, 2588. https://doi.org/10.3390/rs15102588
Hasan O, Smrkulj N, Miko S, Brunović D, Ilijanić N, Šparica Miko M. Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia. Remote Sensing. 2023; 15(10):2588. https://doi.org/10.3390/rs15102588
Chicago/Turabian StyleHasan, Ozren, Natalia Smrkulj, Slobodan Miko, Dea Brunović, Nikolina Ilijanić, and Martina Šparica Miko. 2023. "Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia" Remote Sensing 15, no. 10: 2588. https://doi.org/10.3390/rs15102588
APA StyleHasan, O., Smrkulj, N., Miko, S., Brunović, D., Ilijanić, N., & Šparica Miko, M. (2023). Integrated Reconstruction of Late Quaternary Geomorphology and Sediment Dynamics of Prokljan Lake and Krka River Estuary, Croatia. Remote Sensing, 15(10), 2588. https://doi.org/10.3390/rs15102588