Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (107)

Search Parameters:
Keywords = espresso

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 785 KB  
Article
Exploring the Mechanical and Thermal Properties of BaTiS3 and BaTiSe3 Chalcogenides via Density Functional Theory
by Adel Bandar Alruqi and Nicholas O. Ongwen
Coatings 2025, 15(12), 1479; https://doi.org/10.3390/coatings15121479 - 15 Dec 2025
Viewed by 234
Abstract
The exploration of chalcogenides is on the rise owing to their desirable optical, electronic, thermoelectric, and thermal properties. Chalcogenide materials have been investigated for possible applications in areas such as non-linear optics and solar cells. Among these materials are BaTiS3 and BaTiSe [...] Read more.
The exploration of chalcogenides is on the rise owing to their desirable optical, electronic, thermoelectric, and thermal properties. Chalcogenide materials have been investigated for possible applications in areas such as non-linear optics and solar cells. Among these materials are BaTiS3 and BaTiSe3. BaTiS3 has shown promise in the above-mentioned applications due to its low thermal conductivity. However, neither the thermal properties of BaTiSe3 nor the mechanical properties of both BaTiS3 and BaTiSe3 have been reported. In this work, we performed a computational study of the mechanical and thermal properties of both materials within the density functional theory using Quantum Espresso and BoltzTrap2 codes, employing generalized gradient approximation. The results showed that the computed thermal conductivity of BaTiS3 at 0.43 W/m/K is comparable to the literature values. The computed elastic constants of BaTiS3 (bulk modulus of 44.7 GPa, shear modulus of 11.2 GPa, Young’s modulus of 29.6 GPa, and Vickers hardness of 1.053 GPa) were higher than those of BaTiSe3. The calculated properties obtained in this work add to the literature on the properties of BaTiS3 and BaTiSe3. However, since the work was computational, the results can be verified by an experimental investigation. Full article
(This article belongs to the Special Issue Surface Chemistry in Science and Industry)
Show Figures

Figure 1

25 pages, 6250 KB  
Article
Influence of Brewing Methods on the Bioactive and Mineral Composition of Coffee Beverages
by Monika Sijko-Szpańska, Iwona Mystkowska and Aleksandra Dmitrowicz
Molecules 2025, 30(20), 4080; https://doi.org/10.3390/molecules30204080 - 14 Oct 2025
Cited by 2 | Viewed by 1452
Abstract
The chemical profile of coffee depends on numerous factors, the complexity of which makes it difficult to clearly assess their influence. The aim of this study was to comprehensively evaluate the impact of selected coffee brewing methods (Espresso, Simple Infusion, French Press, V60), [...] Read more.
The chemical profile of coffee depends on numerous factors, the complexity of which makes it difficult to clearly assess their influence. The aim of this study was to comprehensively evaluate the impact of selected coffee brewing methods (Espresso, Simple Infusion, French Press, V60), taking into account the coffee species (Arabica, Robusta, Blends), the degree of roasting (light, medium, dark) and the geographical origin (single-origin and multi-origin) on the chemical composition of the brew. Eighteen different types of coffee, which differ in the aforementioned characteristics, were analyzed. The caffeine content (using high-performance liquid chromatography), the total phenolic content (TPC; using a spectrophotometric method), and selected minerals (calcium, iron, potassium, magnesium, sodium, phosphorus, zinc; using Inductively Coupled Plasma–Optical Emission Spectrometry) were analyzed. The analysis showed that both the brewing method and the species had a significant influence on the chemical profile of the resulting brews, while the degree of roasting and the origin showed no significant influence. The Espresso method showed the highest caffeine, TPC, potassium, magnesium, and phosphorus content, the V60 method—calcium, iron, and sodium, and the French Press and Simple Infusion methods showed intermediate values. Robusta coffee contained more caffeine and TPC, Arabica contained more magnesium, and Blend showed medium values for both species. The results obtained may have practical implications for both consumers and the coffee industry, supporting informed decision-making and the refinement of brewing methods. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

13 pages, 3651 KB  
Article
Optical Absorption Properties of Sn- and Pd-doped ZnO: Comparative Analysis of Substitutional Metallic Impurities
by Vicente Cisternas, Pablo Díaz, Ulises Guevara, David Laroze and Eduardo Cisternas
Materials 2025, 18(19), 4613; https://doi.org/10.3390/ma18194613 - 5 Oct 2025
Viewed by 741
Abstract
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is [...] Read more.
In this article, we present density functional theory (DFT) calculations for Zn(1x)MxO, where M represents one of the following substitutional metallic impurities: Ga, Cd, Cu, Pd, Ag, In, or Sn. Our study is based on the wurtzite structure of pristine ZnO. We employ the Quantum Espresso package, using a fully unconstrained implementation of the generalized gradient approximation (GGA) with an additional U correction for exchange and correlation effects. We analyze the density of states, energy gaps, and absorption spectra for these doped systems, considering the limitations of a finite-size cell approximation. Rather than focusing on precise numerical values, we highlight the following two key aspects: the location of impurity-induced electronic states and the overall trends in optical properties across the eight systems, including pristine ZnO. Our results indicate that certain dopants introduce electronic levels within the band gap, which enhance optical absorption in the visible, near-infrared, and near-ultraviolet regions. For instance, Sn-doped ZnO shows a pronounced absorption peak at ∼2.5 eV, which is in the middle of the visible spectrum. In the case of Ag and Pd impurities, they lead to increased electromagnetic radiation absorption at the near ultra-violet spectrum. This represents a promising performance for efficient solar radiation absorption, both at the Earth’s surface and in outer space. Furthermore, Ga- and In-doped ZnO present bandgaps of ∼0.9 eV, promising an interesting performance in the near infrared region. These findings suggest potential applications in solar energy harvesting and selective sensors. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

14 pages, 1600 KB  
Article
Development and Validation of a Method for the Determination of Caffeine in a Small Volume of Saliva Using SPE-LC-DAD
by Suhail Alghanem and Ewelina Dziurkowska
Analytica 2025, 6(4), 40; https://doi.org/10.3390/analytica6040040 - 5 Oct 2025
Viewed by 2967
Abstract
(1) Background: Caffeine is one of the most widely consumed psychoactive substances. Its safety profile and short half-life make it an ideal drug model for studying the pharmacokinetics of caffeine. This study aimed to develop a method for determination of caffeine in a [...] Read more.
(1) Background: Caffeine is one of the most widely consumed psychoactive substances. Its safety profile and short half-life make it an ideal drug model for studying the pharmacokinetics of caffeine. This study aimed to develop a method for determination of caffeine in a small volume of saliva (200 µL). (2) Methods: Solid-phase extraction was employed to isolate caffeine from saliva, followed by quantitative analysis using liquid chromatography coupled with diode-array detection. Chromatographic separation was achieved on a C18 column, using a gradient mobile phase of acetonitrile and 0.1% formic acid. (3) Results: The method was validated for selectivity, linearity, precision, and accuracy. Linearity was established over the range of 10–10,000 ng/mL (R2 = 0.995). The coefficients of variation for intra- and inter-day precision for the three tested caffeine concentrations did not exceed 12.11%. Recovery from spiked saliva samples exceeded 90.53%. The developed method was applied to preliminary studies to follow the pharmacokinetics of caffeine in saliva. The concentration of the substance was studied in the saliva obtained from a volunteer after espresso consumption. (4) Conclusions: The developed method will offer a reliable approach for non-invasive caffeine monitoring in clinical and research applications. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

18 pages, 2746 KB  
Article
First-Principles Investigation of Structural, Electronic, and Optical Transitions in FexZr1−xO2 Solid Solutions
by Djelloul Nouar, Ahmed Hamdi, Ali Benghia and Mohammed ElSaid Sarhani
Appl. Sci. 2025, 15(18), 10224; https://doi.org/10.3390/app151810224 - 19 Sep 2025
Viewed by 1346
Abstract
First-principles density-functional theory (PBE, Quantum ESPRESSO) was employed to quantify how Fe substitution modulates the structural, elastic, electronic, and optical behaviour of cubic fluorite FexZr1−xO2 (x = 0.00–1.00). The fluorite FeO2 end member was treated as a [...] Read more.
First-principles density-functional theory (PBE, Quantum ESPRESSO) was employed to quantify how Fe substitution modulates the structural, elastic, electronic, and optical behaviour of cubic fluorite FexZr1−xO2 (x = 0.00–1.00). The fluorite FeO2 end member was treated as a hypothetical ambient-pressure limit to trace trends across the solid solution (experimental FeO2 being stabilized in the high-pressure pyrite phase). Mechanical stability was verified via the cubic Born criteria, and composition-dependent stiffness and anisotropy were assessed through Voigt–Reuss–Hill moduli, Pugh ratio, and elastic indices. A strong band-gap narrowing was found—from 3.41 eV (x = 0) to ≈0.02 eV (x = 0.50)—which was accompanied by a visible–NIR red-shift, large absorption (α ≈ 105 cm−1 at higher x), and enhanced refractive index and permittivity; metallic-like response was indicated at high Fe content. Spin-polarized calculations converged to zero total and absolute magnetization, indicating a non-magnetic ground state at 0 K within PBE. The effect of oxygen vacancies (V0)—expected under Fe3+ charge compensation—was explicitly considered: V0 is anticipated to influence lattice metrics, elastic moduli (B, G, G/B), and sub-gap optical activity, potentially modifying stability and optical figures of merit. Stoichiometric (formal Fe4+) predictions were distinguished from V0-rich scenarios. Absolute band gaps may be underestimated at the PBE level. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

55 pages, 2972 KB  
Review
The Impact of Brewing Methods on the Quality of a Cup of Coffee
by Alessandro Genovese, Nicola Caporaso and Antonietta Baiano
Beverages 2025, 11(5), 125; https://doi.org/10.3390/beverages11050125 - 25 Aug 2025
Cited by 1 | Viewed by 11847
Abstract
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean [...] Read more.
A comprehensive overview is provided on factors and processes influencing the final quality of a cup of coffee, with an emphasis on the brewing method’s central role. Coffee quality assessment, both at the bean and cup level, combines objective parameters (color, moisture, bean defects, density) with a notable degree of subjectivity, as consumer sensory perception is ultimately decisive. The brewing technique is described as a critical determinant of the final chemical, physical, and sensory attributes. Key parameters such as aroma profile, pH, titratable acidity, total and filtered solids, lipid and fatty acid content, viscosity, foam (crema), and colorimetric indices are detailed as essential metrics in coffee quality evaluation. Roasting creates most of coffee’s key aroma compounds. The brewing method further shapes the extraction of both volatile and other bioactive compounds like caffeine, chlorogenic acids, and lipids. Brewing methods significantly affect acidity, “body,” and crema stability, while water quality, temperature, and pressure are shown to impact extraction results and sensory properties. Attention is paid to how methods such as Espresso, filter, French press, and cold brew yield distinct physicochemical and sensory profiles in the cup. Overall, the review highlights the multifaceted nature of coffee cup quality and the interplay between raw material, processing, and preparation, ultimately shaping the coffee sensory experience and market value. Full article
Show Figures

Graphical abstract

17 pages, 2479 KB  
Article
Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
by Bojana Nedić Vasiljević, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang and Danica Bajuk-Bogdanović
Molecules 2025, 30(15), 3267; https://doi.org/10.3390/molecules30153267 - 4 Aug 2025
Viewed by 957
Abstract
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, [...] Read more.
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (−2.2 eV), with thiamethoxam having a lower binding energy of −1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids’ adsorption and can help with the design of future adsorbents. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

17 pages, 661 KB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Cited by 1 | Viewed by 1589
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

19 pages, 5003 KB  
Article
Coffees Brewed from Standard Capsules Help to Compare Different Aroma Fingerprinting Technologies—A Comparison of an Electronic Tongue and Electronic Noses
by Biborka Gillay, Zoltan Gillay, Zoltan Kovacs, Viktoria Eles, Tamas Toth, Haruna Gado Yakubu, Iyas Aldib and George Bazar
Chemosensors 2025, 13(7), 261; https://doi.org/10.3390/chemosensors13070261 - 18 Jul 2025
Cited by 1 | Viewed by 1548
Abstract
With the development of various new types of instrumental aroma sensing technologies, there is a need for methodologies that help developers and users evaluate the performance of the different devices. This study introduces a simple method that uses standard coffee beverages, reproducible worldwide, [...] Read more.
With the development of various new types of instrumental aroma sensing technologies, there is a need for methodologies that help developers and users evaluate the performance of the different devices. This study introduces a simple method that uses standard coffee beverages, reproducible worldwide, thus allowing users to compare aroma sensing devices and technologies globally. Eight different variations of commercial coffee capsules were used to brew espresso coffees (40 mL), consisting of either Arabica coffee or a blend of Robusta and Arabica coffee, covering a wide range of sensory attributes. The AlphaMOS Astree electronic tongue (equipped with sensors based on chemically modified field-effect transistor technology) and the AlphaMOS Heracles NEO and the Volatile Scout3 electronic noses (both using separation technology based on gas chromatography) were used to describe the taste and odor profiles of the freshly brewed coffee samples and also to compare them to the various sensory characteristics declared on the original packaging, such as intensity, roasting, acidity, bitterness, and body. Linear discriminant analysis (LDA) results showed that these technologies were able to classify the samples similarly to the pattern of the coffees based on the human sensory characteristics. In general, the arrangement of the different coffee types in the LDA results—i.e., the similarities and dissimilarities in the types based on their taste or smell—was the same in the case of the Astree electronic tongue and the Heracles electronic nose, while slightly different arrangements were found for the Scout3 electronic nose. The results of the Astree electronic tongue and those of the Heracles electronic nose showed the taste and smell profiles of the decaffeinated coffees to be different from their caffeinated counterparts. The Heracles and Scout3 electronic noses provided high accuracies in classifying the samples based on their odor into the sensory classes presented on the coffee capsules’ packaging. Despite the technological differences in the investigated devices, the introduced coffee test could assess the similarities in the taste and odor profiling capacities of the aroma fingerprinting technologies. Since the coffee capsules used for the test can be purchased all over the world in the same quality, these coffees can be used as global standard samples during the comparison of different devices applying different measurement technologies. The test can be used to evaluate instrumentational and data analytical developments worldwide and to assess the potential of novel, cost-effective, accurate, and rapid solutions for quality assessments in the food and beverage industry. Full article
(This article belongs to the Special Issue Electronic Nose and Electronic Tongue for Substance Analysis)
Show Figures

Graphical abstract

14 pages, 5810 KB  
Article
CO2 Absorption on Cu-Doped Graphene, a DFT Study
by Juan Oseas López Fuentes, Roxana Mitzayé del Castillo Vázquez and Juan Manuel Ramirez-de-Arellano
Crystals 2025, 15(5), 460; https://doi.org/10.3390/cryst15050460 - 14 May 2025
Viewed by 2623
Abstract
We studied the interaction between a Cu-doped graphene layer and a CO2 molecule, using DFT, ab initio calculations, and the pseudopotential formalism. We used the Quantum ESPRESSO code package, with the PBE XC functional expression and the semiempirical Grimme’s DFT-D3 Van der [...] Read more.
We studied the interaction between a Cu-doped graphene layer and a CO2 molecule, using DFT, ab initio calculations, and the pseudopotential formalism. We used the Quantum ESPRESSO code package, with the PBE XC functional expression and the semiempirical Grimme’s DFT-D3 Van der Waals correction. We found that the Cu atom, being absorbed in a C vacancy on the graphene surface, has a catalytic effect on the absorption of CO2 in said surface. The Van der Waals correction calculations showed that the CO2 is physisorbed, with an adsorption energy of −0.1786 eV. Our results are congruent with previously published results. The Cu-doped graphene surface could be suitable for the development of a CO2 sensor. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

29 pages, 7563 KB  
Article
Influence of Fluorine Doping on Rutile TiO2 Nanostructures for Visible-Light-Driven Photocatalysis: A DFT + U Study
by Fikadu Takele Geldasa and Francis Birhanu Dejene
Nanomaterials 2025, 15(9), 694; https://doi.org/10.3390/nano15090694 - 5 May 2025
Cited by 8 | Viewed by 1350
Abstract
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO [...] Read more.
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO2 is a promising material for renewable energy production and environmental remediation, but its wide bandgap limits its application to the UV spectrum, which is narrow and expensive. To extend the absorption edge of TiO2 into the visible light range, different concentrations of F were substituted at oxygen atom sites. The structural analysis reveals that the lattice constants and bond lengths of TiO2 increased with F concentrations. Ab initio molecular dynamics simulations (AIMD) at 1000 K confirm that both pristine and F-doped rutile TiO2 maintains structural integrity, indicating excellent thermal stability essential for high-temperature photocatalytic applications. Band structure calculations show that pure rutile TiO2 has a bandgap of 3.0 eV, which increases as the F concentration rises, with the 0.25 F-doped structures exhibiting an even larger bandgap, preventing it from responding to visible light. The absorption edge of doped TiO2 shifts towards the visible region, as shown by the imaginary part of the dielectric function. This research provides valuable insights for experimentalists, helping them understand how varying F concentrations influence the properties of rutile TiO2 for photocatalytic applications. Full article
Show Figures

Figure 1

17 pages, 2839 KB  
Article
Combined Effect of Spent Mushroom Substrate and Agro-Industrial Residues on Pleurotus columbinus Production and Intra-Cellular Polysaccharide Synthesis
by Marianna Dedousi, Chrysavgi Gardeli, Seraphim Papanikolaou and Panagiota Diamantopoulou
BioTech 2025, 14(2), 34; https://doi.org/10.3390/biotech14020034 - 2 May 2025
Viewed by 2575
Abstract
Spent mushroom substrate (SMS), spent coffee grounds from espresso production (SCG), faba bean harvest residues (FBR), pistachio shells (PS) wheat straw (WS) (control) agro-industrial waste were combined in different ratios, with or without supplements (wheat bran, soybean flour), to create novel substrates for [...] Read more.
Spent mushroom substrate (SMS), spent coffee grounds from espresso production (SCG), faba bean harvest residues (FBR), pistachio shells (PS) wheat straw (WS) (control) agro-industrial waste were combined in different ratios, with or without supplements (wheat bran, soybean flour), to create novel substrates for Pleurotus columbinus growth. The impact of the substrates on the mycelial growth rate (Kr), biomass production, laccase, total cellulases and carbohydrate synthesis, along with the C and N consumption by P. columbinus, were examined in fully colonized substrates. The incubation period, earliness and biological efficiency (B.E.) (%) were also determined. Then, the intracellular polysaccharide (ICP) contents of the P. columbinus produced mushrooms were evaluated in the most promising substrates. P. columbinus was grown successfully in a wide range of C/N ratios of substrates and the fastest Kr (7.6 mm/d) was detected on the 70 SMS-30 FBR, without supplements, whereas substrates consisting of SCG enhanced biomass production (700.0–803.7 mg/g d.w.). SMS and PS or SCG led to the shortest incubation and earliness period of P. columbinus. The C content was reduced and the N content was substantially increased in all the colonized substrates. The 70 SMS-30 FBR and 80 SMS considerably enhanced the laccase production (up to 59,933.4 U/g d.w.) and substrates consisting of PS promoted total cellulases activities. Greater amounts of carbohydrates (3.8–17.4 mg/g d.w.) than that in the control were recorded for all the substrates. The combination of SMS and SCG or WS led to the highest B.E. values (59.3–87.1%) and ICP amounts (34.7–45.9%, w/w), regardless of the supplement addition. These findings support the effective utilization of agro-industrial waste in P. columbinus cultivation, producing high-value-added compounds and supporting mushroom growth. Full article
Show Figures

Figure 1

10 pages, 2393 KB  
Article
Density Functional Theory Simulations of Skaergaardite (CuPd) with a Self-Consistent Hubbard U-Correction
by Martino Napoli and Assimo Maris
Chemistry 2025, 7(2), 56; https://doi.org/10.3390/chemistry7020056 - 2 Apr 2025
Viewed by 1167
Abstract
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents [...] Read more.
The electronic and phonon bands of Skaergaardite are investigated using density functional theory (DFT) as implemented in Quantum ESPRESSO. Skaergaardite is a copper palladium mineral (CuPd) found in the Skaergaard intrusion with a CsCl-type (B2) structure. Due to its porous structure, it presents a large surface area available for interactions, which makes it a promising catalyst. The PBE-GGA functional with a Hubbard-like localized term (DFT+U) is combined with ultrasoft and norm-conserving pseudopotentials, and a conventional approach with a dense Monkhorst–Pack grid of k-points 12 × 12 × 12 is applied. The electronic valence bands are mainly constituted by 3d orbitals of Cu and 4d orbitals of Pd and a pseudo-gap can be recognized. With respect to DFT, DFT+U causes a general downward shift in the valence band. The acoustic and optical phonon branches are separated by a few cm−1 gap at about 150 cm−1 and show a density of state curve typical of ordered materials. These results highlight the reliability of DFT+U in studying bimetallic systems with scarce experimental benchmarks, offering insights into the behavior of Skaergaardite and its potential applications in material science such as reduction reactions and hydrogen storage. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

19 pages, 1360 KB  
Article
Cross-Cultural Comparison of the Espresso Protocol Repeatability
by Jisoo Choi, Jeehyun Lee and Edgar Chambers
Foods 2025, 14(4), 593; https://doi.org/10.3390/foods14040593 - 11 Feb 2025
Viewed by 2211
Abstract
The Espresso Protocol (TEP) was used to assess the quality of coffee beans through espresso extraction incorporating a sensory approach. TEP includes overall quality evaluation and attribute evaluation using check-all-that-apply (CATA). This study aims to evaluate the repeatability of TEP when used by [...] Read more.
The Espresso Protocol (TEP) was used to assess the quality of coffee beans through espresso extraction incorporating a sensory approach. TEP includes overall quality evaluation and attribute evaluation using check-all-that-apply (CATA). This study aims to evaluate the repeatability of TEP when used by experts and to compare cross-cultural assessments to determine its applicability across different countries with diverse coffee cultures. Experts with over three years of experience in the coffee industry from five countries—France (n = 7), India (n = 12), Italy (n = 7), the Republic of Korea (n = 10), and the USA (n = 10)—participated in our study. The experiment was conducted in three replications using eight different single-origin coffee samples over two or three consecutive days. Cluster analysis using CATA data was performed to verify the repeatability of individual participants in the characterization of espresso samples, revealing that most participants were repeatable in their three-time evaluations. Moreover, a significant homogeneity index demonstrated a high degree of similarity in the sensory characteristics used by experts from each country, although cultural differences were observed in the terminology used to describe coffee. In conclusion, the repeatability of individual experts and the reliability of TEP were successfully demonstrated. However, some differences in sensory evaluations were noted across cultures; these were likely influenced by differences in the use of terminology, which emphasizes the need for training in the coffee lexicon. Full article
(This article belongs to the Special Issue Sensory and Consumer Testing of Novel Methods and Novel Foods)
Show Figures

Figure 1

21 pages, 17447 KB  
Article
Espresso Crema Analysis with f-AnoGAN
by Jintak Choi, Seungeun Lee and Kyungtae Kang
Mathematics 2025, 13(4), 547; https://doi.org/10.3390/math13040547 - 7 Feb 2025
Cited by 2 | Viewed by 1736
Abstract
This study proposes a system that evaluates the quality of espresso crema in real time using the deep learning-based anomaly detection model, f-AnoGAN. The system integrates mobile devices to collect sensor data during the extraction process, enabling quick adjustments for optimal results. Using [...] Read more.
This study proposes a system that evaluates the quality of espresso crema in real time using the deep learning-based anomaly detection model, f-AnoGAN. The system integrates mobile devices to collect sensor data during the extraction process, enabling quick adjustments for optimal results. Using the GrabCut algorithm to separate crema from the background, the detection accuracy is improved. The experimental results show an increase of 0.13 in ROC-AUC in the CIFAR-10 dataset and, in crema images, ROC-AUC improved from 0.963 to 1.000 by VAE and hyperparameter optimization, achieving the classification of optimal anomalies in the image. A Pearson correlation coefficient of 0.999 confirms the effectiveness of the system. Key contributions include hyperparameter optimization, improved f-AnoGAN performance using VAE, integration of mobile devices, and improved image preprocessing. This research demonstrates the potential of AI in the management of coffee quality. Full article
Show Figures

Figure 1

Back to TopTop