Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = erythroid lineage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1352 KB  
Review
Hematopoietic Niche Hijacking in Bone Metastases: Roles of Megakaryocytes, Erythroid Lineage Cells, and Perivascular Stromal Subsets
by Abdul Rahman Alkhatib, Youssef Elshimy, Bilal Atassi and Khalid Said Mohammad
Biomedicines 2026, 14(1), 161; https://doi.org/10.3390/biomedicines14010161 - 12 Jan 2026
Viewed by 312
Abstract
Bone metastases mark a critical and often terminal phase in cancer progression, where disseminated tumor cells (DTCs) manage to infiltrate and exploit the complex microenvironments of the bone marrow. While most current therapies focus on the well-known late-stage “vicious cycle” of osteolysis, they [...] Read more.
Bone metastases mark a critical and often terminal phase in cancer progression, where disseminated tumor cells (DTCs) manage to infiltrate and exploit the complex microenvironments of the bone marrow. While most current therapies focus on the well-known late-stage “vicious cycle” of osteolysis, they often overlook the earlier stages, namely, tumor cell colonization and dormancy. During these early phases, cancer cells co-opt hematopoietic stem cell (HSC) niches, using them as sanctuaries for long-term survival. In this review, we bring together emerging insights that highlight a trio of underappreciated cellular players in this metastatic takeover: megakaryocytes, erythroid lineage cells, and perivascular stromal subsets. Far from being passive bystanders, these cells actively shape the metastatic niche. For instance, megakaryocytes and platelets go beyond their role in transport; they orchestrate immune evasion and dormancy through mechanisms such as transforming growth factor-β1 (TGF-β1) signaling and the physical shielding of tumor cells. In parallel, we uncover a distinct “erythroid-immune” axis: here, stress-induced CD71+ erythroid progenitors suppress T-cell responses via arginase-mediated nutrient depletion and checkpoint engagement, forming a potent metabolic barrier against immune attack. Furthermore, leptin receptor–positive (LepR+) perivascular stromal cells emerge as key structural players. These stromal subsets not only act as anchoring points for DTCs but also maintain them in protective vascular zones via CXCL12 chemokine gradients. Altogether, these findings reveal that the metastatic bone marrow niche is not static; it is a highly dynamic, multi-lineage ecosystem. By mapping these intricate cellular interactions, we argue for a paradigm shift: targeting these early and cooperative crosstalk, whether through glycoprotein-A repetitions predominant (GARP) blockade, metabolic reprogramming, or other niche-disruptive strategies, could unlock new therapeutic avenues and prevent metastatic relapse at its root. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

24 pages, 1274 KB  
Review
The Non-Coding RNome Landscape in Erythropoiesis: Pathophysiological Implications
by Emma Brisot, Laurent Metzinger and Valérie Metzinger-Le Meuth
Cells 2025, 14(24), 1971; https://doi.org/10.3390/cells14241971 - 11 Dec 2025
Viewed by 404
Abstract
Erythropoiesis is a multistage process critical for red blood cell production and systemic oxygen transport. It is tightly regulated, and recent advances have highlighted the pivotal regulatory roles of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in governing both [...] Read more.
Erythropoiesis is a multistage process critical for red blood cell production and systemic oxygen transport. It is tightly regulated, and recent advances have highlighted the pivotal regulatory roles of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in governing both physiological and pathological erythropoiesis. These ncRNAs have roles in the fine-tuning of the classical transcriptional and post-transcriptional control. This review explores the complex landscape of the non-coding RNome in erythroid differentiation, maturation, and function. We summarize how specific miRNAs influence erythroid lineage commitment, hemoglobin switching, iron metabolism, and cellular morphology, as well as their modulation by environmental and pathological cues. We also discuss emerging evidence on lncRNAs regulating chromatin remodeling, alternative splicing, apoptosis, enucleation, and erythroid-specific gene expression. These insights suggest that ncRNAs are instrumental orchestrators of erythropoiesis and accordingly, potential biomarkers and therapeutic targets in anemia and related hematologic disorders. Full article
Show Figures

Figure 1

17 pages, 5153 KB  
Article
Megakaryocytic Differentiation Regulates the Permissiveness and Antiviral Response of the Megakaryocytic Erythroid Progenitor to Dengue Virus
by Diego Sait Cruz-Hernández, Francisco Javier Sánchez-Peña, Marymar Cruz-Cruz, Darío de Jesús Guillén-Morales, Martha Cristina Castillo-Soriano, Elizabeth Cruz-Altamirano, Juan Alpuche, José Bustos-Arriaga, María de Los Ángeles Romero-Tlalolini, Honorio Torres-Aguilar, Juan Carlos Rodríguez-Alba and Sergio Roberto Aguilar-Ruíz
Int. J. Mol. Sci. 2025, 26(22), 11081; https://doi.org/10.3390/ijms262211081 - 16 Nov 2025
Viewed by 517
Abstract
Dengue virus (DENV) affects not only peripheral immune cells but also hematopoietic progenitors in the bone marrow, particularly megakaryocytic precursors, which contribute to the thrombocytopenia characteristic of the disease. In this study, we evaluated the relationship between the differentiation status of the megakaryocytic [...] Read more.
Dengue virus (DENV) affects not only peripheral immune cells but also hematopoietic progenitors in the bone marrow, particularly megakaryocytic precursors, which contribute to the thrombocytopenia characteristic of the disease. In this study, we evaluated the relationship between the differentiation status of the megakaryocytic lineage and its permissiveness and antiviral response to DENV. Our results demonstrate that the erythroid–megakaryocytic precursor (K562 cells) was more permissive to DENV infection than megakaryoblasts, as evidenced by immunofluorescence, flow cytometry, and quantification of viral particles. The antiviral response in K562 cells peaked at three days post-infection, with maximal expression of genes associated with the type I interferon (IFN-I) pathway. In vitro-induced differentiation of K562 cells reduced the initial susceptibility to DENV and enhanced the expression of Toll-like receptor 3 (TLR3) and the type I interferon receptor (IFNAR1), accelerating and intensifying IFN-β secretion, and increasing the expression of OAS2 and IRF3. Furthermore, pretreatment of K562 cells with recombinant IFN-β significantly reduced viral replication from the first day post-infection. Collectively, these findings demonstrate for the first time that the differentiation status of erythroid–megakaryocytic progenitor critically shapes their antiviral response and underscore the central role of IFN-β in the early restriction of DENV infection. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

17 pages, 1841 KB  
Review
An Update on Role of Ionizing Radiation to Enhance Proliferation and Differentiation of Normal Stem Cells via Activation of NRF2 Pathway: Review
by Kave Moloudi and Siamak Haghdoost
Antioxidants 2025, 14(8), 986; https://doi.org/10.3390/antiox14080986 - 11 Aug 2025
Cited by 1 | Viewed by 2857
Abstract
Ionizing radiation (IR) as a stress inducer has a significant impact on various normal stem cells differentiation through activation of various signaling pathways. Low levels of oxidative stress of IR may preserve or even enhance cell differentiation. In response to IR, reactive oxygen [...] Read more.
Ionizing radiation (IR) as a stress inducer has a significant impact on various normal stem cells differentiation through activation of various signaling pathways. Low levels of oxidative stress of IR may preserve or even enhance cell differentiation. In response to IR, reactive oxygen species (ROS) can activate various signaling pathways that promote cell differentiation, notably through the involvement of nuclear factor erythroid 2–related factor 2 (NRF2). NRF2 interacts with multiple pathways, including Wnt/β-catenin (osteogenesis), PPARγ (adipogenesis), and BDNF/TrkB (neurogenesis). This response is dose-dependent: low doses of IR activate NRF2 and support differentiation, while high doses can overwhelm the antioxidant system, resulting in cell death. However, the quality of various types of IR, such as proton and carbon ion radiation, may have a varied impact on stem cells (SCs) differentiation compared to X-rays. Hence, activation of the NRF2 signaling pathway in SCs and cell differentiation depends on the level of stress and the quality and quantity of IR. This review is an update to explore how IR modulates SCs fate toward osteogenic, adipogenic, and neurogenic lineages through the NRF2 signaling pathway. We highlight mechanistic insights, dose-dependent effects, and therapeutic implications, bridging gaps between experimental models and clinical translation. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

19 pages, 1025 KB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 - 1 Aug 2025
Viewed by 1424
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

29 pages, 1100 KB  
Review
Epigenetic Regulation of Erythropoiesis: From Developmental Programs to Therapeutic Targets
by Ninos Ioannis Vasiloudis, Kiriaki Paschoudi, Christina Beta, Grigorios Georgolopoulos and Nikoletta Psatha
Int. J. Mol. Sci. 2025, 26(13), 6342; https://doi.org/10.3390/ijms26136342 - 30 Jun 2025
Viewed by 3432
Abstract
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in [...] Read more.
Erythropoiesis, the process driving the differentiation of hematopoietic stem and progenitor cells to mature erythrocytes, unfolds through tightly orchestrated developmental stages, each defined by profound epigenetic remodeling. From the initial commitment of hematopoietic progenitors to the terminal enucleation of erythrocytes, dynamic changes in chromatin accessibility, transcription factor occupancy, and three-dimensional genome architecture govern lineage specification and stage-specific gene expression. Advances in our understanding of the regulatory genome have uncovered how non-coding elements, including enhancers, silencers, and insulators, shape the transcriptional landscape of erythroid cells. These elements work in concert with lineage-determining transcription factors to establish and maintain erythroid identity. Disruption of these epigenetic programs—whether by inherited mutations, somatic alterations, or environmental stress—can lead to a wide range of hematologic disorders. Importantly, this growing knowledge base has opened new therapeutic avenues, enabling the development of precision tools that target regulatory circuits to correct gene expression. These include epigenetic drugs, enhancer-targeted genome editing, and lineage-restricted gene therapies that leverage endogenous regulatory logic. As our understanding of erythroid epigenomics deepens, so too does our ability to design rational, cell-type-specific interventions for red blood cell disorders. Full article
(This article belongs to the Special Issue New Advances in Erythrocyte Biology and Functions)
Show Figures

Figure 1

28 pages, 2105 KB  
Review
DNA Methylation in Ph-Negative Myeloproliferative Neoplasms: Prognostic Role and Therapeutic Implications
by Paola Barone, Adele Bottaro, Rossana Leanza, Fabio Stagno and Alessandro Allegra
Curr. Issues Mol. Biol. 2025, 47(4), 227; https://doi.org/10.3390/cimb47040227 - 26 Mar 2025
Viewed by 1453
Abstract
Myeloproliferative neoplasms are clonal hematological neoplasms characterized by excessive proliferation of cells of erythroid, granulocytic, and megakaryocytic lineage. The genetic mechanisms underlying this group of blood diseases are now known, but new perspectives have recently emerged in the field of epigenetics and particularly [...] Read more.
Myeloproliferative neoplasms are clonal hematological neoplasms characterized by excessive proliferation of cells of erythroid, granulocytic, and megakaryocytic lineage. The genetic mechanisms underlying this group of blood diseases are now known, but new perspectives have recently emerged in the field of epigenetics and particularly related to the possible role of DNA methylation in disease development and progression. DNA methylation regulates different cellular processes, such as proliferation, differentiation, and apoptosis. In myeloproliferative neoplasms, a link has been found between abnormal methylation patterns, such as hypermethylation of tumor suppressors or, conversely, oncogenes hypomethylation, with the progression of the disease, spreading important prognostic and therapeutic implications. This review aims to investigate the relationship between methylation alterations and myeloproliferative neoplasms, emphasizing the ways by which epigenetic dysregulation promotes disease biology. Full article
Show Figures

Figure 1

13 pages, 2025 KB  
Article
Immune Cell Profiles of Patients with Sickle Cell Disease during Parvovirus B19–Induced Transient Red Cell Aplasia
by E. Kaitlynn Allen, Rhiannon R. Penkert, Jane S. Hankins, Sherri L. Surman, Lee-Ann Van de Velde, Alyssa Cotton, Randall T. Hayden, Li Tang, Xiaomeng Yuan, Ying Zheng, Paul G. Thomas and Julia L. Hurwitz
Vaccines 2024, 12(9), 984; https://doi.org/10.3390/vaccines12090984 - 29 Aug 2024
Cited by 1 | Viewed by 2822
Abstract
Parvovirus B19 frequently infects children and targets cells of the erythroid lineage. Although healthy children rarely suffer severe disease, children with sickle cell disease (SCD) can experience transient red cell aplasia (TRCA), hospitalization, and life-threatening anemia upon first virus exposure. Given that children [...] Read more.
Parvovirus B19 frequently infects children and targets cells of the erythroid lineage. Although healthy children rarely suffer severe disease, children with sickle cell disease (SCD) can experience transient red cell aplasia (TRCA), hospitalization, and life-threatening anemia upon first virus exposure. Given that children with SCD can also suffer chronic inflammation and that parvovirus B19 has been associated with autoimmune disease in other patient populations, we asked if parvovirus B19 infections contributed to acute and chronic immune abnormalities in children with SCD. Nineteen hospitalized patients with SCD and parvovirus B19–induced TRCA were evaluated. Blood tests included CBC, flow cytometry, and total antibody isotype analyses. Cytokine/chemokine analyses were performed on nasal wash (NW) samples, representing a common site of viral entry. Unusually high white blood cell count (WBC) and absolute neutrophil count (ANC) values were observed in some patients. A correlation matrix with Day 0 values from the 19 patients then identified two mutually exclusive phenotype clusters. Cluster 1 included WBC, ANC, absolute reticulocyte count (ARC), absolute lymphocyte count (ALC), lactate dehydrogenase (LDH), NW cytokines/chemokines, % naïve cells among B cell and T cell populations, and parvovirus-specific IgG. This cluster was negatively associated with virus load, suggesting a signature of successful adaptive immunity and virus control. Cluster 2 included virus load, % CD38+CD24 cells among CD19+ B cells (termed ‘plasmablasts’ for simplicity), % HLA-DRlow cells among CD19+ B cells, IgG4, and % memory phenotypes among B cell and T cell populations. Plasmablast percentages correlated negatively with parvovirus-specific IgG, possibly reflecting a non-specific trigger of cell activation. All patients were released from the hospital within 1 week after admission, and the highest WBC and ANC values were eventually reduced. Nonetheless, a concern remained that the acutely abnormal immune profiles caused by parvovirus B19 infections could exacerbate chronic inflammation in some patients. To avoid the numerous sequelae known to affect patients with SCD following hospitalizations with parvovirus B19, rapid development of a parvovirus B19 vaccine is warranted. Full article
Show Figures

Figure 1

8 pages, 234 KB  
Article
WHO/ICC Classification for Myelodysplastic Neoplasms/Syndromes Performs Better for Subtype Cytomorphological Diagnosis?
by Ana Isabel Vicente, Irene Luna, Juan Carlos Ruiz, María José Remigia, Andrés Jerez, Rafael Lluch, Inmaculada Llopis, María Josefa Marco, Carmen Benet, Carmen Alonso, María Dolores Linares, Luis Serrano, María Teresa Orero, Francisco José Ortuño and María Leonor Senent
Diagnostics 2024, 14(15), 1631; https://doi.org/10.3390/diagnostics14151631 - 29 Jul 2024
Cited by 1 | Viewed by 3858
Abstract
The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias (ICC) and the 5th edition of the WHO classification (WHO 2022) have refined the diagnosis of myelodysplastic syndromes (MDS). Both classifications segregate MDS subtypes based on molecular or cytogenetic findings but rely on [...] Read more.
The International Consensus Classification of Myeloid Neoplasms and Acute Leukemias (ICC) and the 5th edition of the WHO classification (WHO 2022) have refined the diagnosis of myelodysplastic syndromes (MDS). Both classifications segregate MDS subtypes based on molecular or cytogenetic findings but rely on the subjective assessment of blast cell percentage and dysplasia in hematopoietic cell lineages. This study aimed to evaluate interobserver concordance among 13 cytomorphologists from eight hospitals in assessing blast percentages and dysplastic features in 44 MDS patients. The study found fair interobserver agreement for the PB blast percentage and moderate agreement for the BM blast percentage, with the best concordance in cases with <5% BM blasts and >10% BM blasts. Monocyte count agreement was fair, and dysplasia assessment showed moderate concordance for megakaryocytic lineage but lower concordance for erythroid and granulocytic lineages. Overall, interobserver concordance for MDS subtypes was moderate across all classifications, with slightly better results for WHO 2022. These findings highlight the ongoing need for morphological evaluation in MDS diagnosis despite advances in genetic and molecular techniques. The study supports the blast percentage ranges established by the ICC but suggests refining BM blast cutoffs. Given the moderate interobserver concordance, a unified classification approach for MDS is recommended. Full article
(This article belongs to the Special Issue Diagnosis, Prognosis and Management of Hematologic Malignancies)
11 pages, 1335 KB  
Review
The Diverse Genomic Landscape of Diamond–Blackfan Anemia: Two Novel Variants and a Mini-Review
by Iordanis Pelagiadis, Ioannis Kyriakidis, Nikolaos Katzilakis, Chrysoula Kosmeri, Danai Veltra, Christalena Sofocleous, Stavros Glentis, Antonis Kattamis, Alexandros Makis and Eftichia Stiakaki
Children 2023, 10(11), 1812; https://doi.org/10.3390/children10111812 - 15 Nov 2023
Cited by 4 | Viewed by 4622
Abstract
Diamond–Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in [...] Read more.
Diamond–Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in the ribosomal RNA (rRNA) maturation or levels. Besides classic DBA, DBA-like disease has been described with variations in 16 genes (primarily in GATA1, followed by ADA2 alias CECR1, HEATR3, and TSR2). To date, more than a thousand variants have been reported in RP genes. Splice variants represent 6% of identifiable genetic defects in DBA, while their prevalence is 14.3% when focusing on pathogenic and likely pathogenic (P/LP) variants, thus highlighting the impact of such alterations in RP translation and, subsequently, in ribosome levels. We hereby present two cases with novel pathogenic splice variants in RPS17 and RPS26. Associations of DBA-related variants with specific phenotypic features and malignancies and the molecular consequences of pathogenic variations for each DBA-related gene are discussed. The determinants of the spontaneous remission, cancer development, variable expression of the same variants between families, and selectivity of RP defects towards the erythroid lineage remain to be elucidated. Full article
Show Figures

Graphical abstract

24 pages, 875 KB  
Review
Generation of Red Blood Cells from Human Pluripotent Stem Cells—An Update
by Shin-Jeong Lee, Cholomi Jung, Jee Eun Oh, Sangsung Kim, Sangho Lee, Ji Yoon Lee and Young-sup Yoon
Cells 2023, 12(11), 1554; https://doi.org/10.3390/cells12111554 - 5 Jun 2023
Cited by 11 | Viewed by 11579
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of [...] Read more.
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes. Full article
(This article belongs to the Special Issue Gene and Cell Therapy in Regenerative Medicine)
Show Figures

Figure 1

16 pages, 1388 KB  
Review
Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate
by Wadie F. Bahou, Natalia Marchenko and Natasha M. Nesbitt
Antioxidants 2023, 12(5), 1058; https://doi.org/10.3390/antiox12051058 - 7 May 2023
Cited by 7 | Viewed by 4731
Abstract
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte [...] Read more.
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders. Full article
Show Figures

Figure 1

13 pages, 3648 KB  
Article
Nucleolar Protein 56 Deficiency in Zebrafish Leads to Developmental Abnormalities and Anemia via p53 and JAK2-STAT3 Signaling
by Fang Liang, Xiaochan Lu, Biyu Wu, Yexin Yang and Wei Qin
Biology 2023, 12(4), 538; https://doi.org/10.3390/biology12040538 - 31 Mar 2023
Cited by 2 | Viewed by 2994
Abstract
Ribosomes are the vital molecular machine for protein translation in a cell. Defects in several nucleolar proteins have been observed in human ribosomopathies. In zebrafish, a deficiency in these ribosomal proteins often results in an anemic phenotype. It remains to be determined whether [...] Read more.
Ribosomes are the vital molecular machine for protein translation in a cell. Defects in several nucleolar proteins have been observed in human ribosomopathies. In zebrafish, a deficiency in these ribosomal proteins often results in an anemic phenotype. It remains to be determined whether any other ribosome proteins are involved in regulating erythropoiesis. Here, we generated a nucleolar protein 56 (nop56)−/− zebrafish model and investigated its function. A nop56 deficiency induced severe morphological abnormalities and anemia. WISH analysis showed that the specification of the erythroid lineage in definitive hematopoiesis and the maturation of erythroid cells were impaired in the nop56 mutants. Additionally, transcriptome analysis revealed that the p53 signaling pathway was abnormally activated, and the injection of a p53 morpholino partially rescued the malformation, but not the anemia. Moreover, qPCR analysis showed that the JAK2-STAT3 signaling pathway was activated in the mutants, and the inhibition of JAK2 partially rescued the anemic phenotype. This study suggests that nop56 is a potential target for investigation in erythropoietic disorders, particularly those that may be associated with JAK-STAT activation. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

18 pages, 10682 KB  
Article
MCL-1 Inhibitor S63845 Distinctively Affects Intramedullary and Extramedullary Hematopoiesis
by Hexiao Zhang, Fei Li, Ming Yang, Wenshan Zhang, Mei He, Hui Xu, Chaoqun Wang, Yiran Zhang, Wei Wang, Yingdai Gao, Xue Du and Yinghui Li
Pharmaceutics 2023, 15(4), 1085; https://doi.org/10.3390/pharmaceutics15041085 - 28 Mar 2023
Cited by 2 | Viewed by 2947
Abstract
Conventional chemotherapy for killing cancer cells using cytotoxic drugs suffers from low selectivity, significant toxicity, and a narrow therapeutic index. Hyper-specific targeted drugs achieve precise destruction of tumors by inhibiting molecular pathways that are critical to tumor growth. Myeloid cell leukemia 1 (MCL-1), [...] Read more.
Conventional chemotherapy for killing cancer cells using cytotoxic drugs suffers from low selectivity, significant toxicity, and a narrow therapeutic index. Hyper-specific targeted drugs achieve precise destruction of tumors by inhibiting molecular pathways that are critical to tumor growth. Myeloid cell leukemia 1 (MCL-1), an important pro-survival protein in the BCL-2 family, is a promising antitumor target. In this study, we chose to investigate the effects of S63845, a small-molecule inhibitor that targets MCL-1, on the normal hematopoietic system. A mouse model of hematopoietic injury was constructed, and the effects of the inhibitor on the hematopoietic system of mice were evaluated via routine blood tests and flow cytometry. The results showed that S63845 affected the hematopoiesis of various lineages in the early stage of action, causing extramedullary compensatory hematopoiesis in the myeloid and megakaryocytic lineages. The maturation of the erythroid lineage in the intramedullary and extramedullary segments was blocked to varying degrees, and both the intramedullary and extramedullary lymphoid lineages were inhibited. This study provides a complete description of the effects of MCL-1 inhibitor on the intramedullary and extramedullary hematopoietic lineages, which is important for the selection of combinations of antitumor drugs and the prevention of adverse hematopoiesis-related effects. Full article
Show Figures

Figure 1

20 pages, 35530 KB  
Article
A Refined Single Cell Landscape of Haematopoiesis in the Mouse Foetal Liver
by Elena Ceccacci, Emanuela Villa, Fabio Santoro, Saverio Minucci, Christiana Ruhrberg and Alessandro Fantin
J. Dev. Biol. 2023, 11(2), 15; https://doi.org/10.3390/jdb11020015 - 23 Mar 2023
Cited by 7 | Viewed by 6568
Abstract
During prenatal life, the foetal liver is colonised by several waves of haematopoietic progenitors to act as the main haematopoietic organ. Single cell (sc) RNA-seq has been used to identify foetal liver cell types via their transcriptomic signature and to compare gene expression [...] Read more.
During prenatal life, the foetal liver is colonised by several waves of haematopoietic progenitors to act as the main haematopoietic organ. Single cell (sc) RNA-seq has been used to identify foetal liver cell types via their transcriptomic signature and to compare gene expression patterns as haematopoietic development proceeds. To obtain a refined single cell landscape of haematopoiesis in the foetal liver, we have generated a scRNA-seq dataset from a whole mouse E12.5 liver that includes a larger number of cells than prior datasets at this stage and was obtained without cell type preselection to include all liver cell populations. We combined mining of this dataset with that of previously published datasets at other developmental stages to follow transcriptional dynamics as well as the cell cycle state of developing haematopoietic lineages. Our findings corroborate several prior reports on the timing of liver colonisation by haematopoietic progenitors and the emergence of differentiated lineages and provide further molecular characterisation of each cell population. Extending these findings, we demonstrate the existence of a foetal intermediate haemoglobin profile in the mouse, similar to that previously identified in humans, and a previously unidentified population of primitive erythroid cells in the foetal liver. Full article
(This article belongs to the Topic Advances in Red Blood Cells Research)
Show Figures

Graphical abstract

Back to TopTop