Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = error-prone RNA polymerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4178 KiB  
Review
Host Immune Response to Dengue Virus Infection: Friend or Foe?
by Priya Dhole, Amir Zaidi, Hardik K. Nariya, Shruti Sinha, Sandhya Jinesh and Shivani Srivastava
Immuno 2024, 4(4), 549-577; https://doi.org/10.3390/immuno4040033 - 21 Nov 2024
Cited by 2 | Viewed by 5262
Abstract
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, [...] Read more.
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, the exact mechanism underlying the pathogenesis of severe DENV infection remains elusive. It is believed that both host and viral factors contribute to the outcome of dengue disease. The host factors are age at the time of infection, sex, nutrition, and immune status, including the presence of pre-existing antibodies or reactive T cells. Viral factors include the serotype, genotype, and mutation(s) due to error-prone RNA-dependent polymerase leading to the development of quasispecies. Accumulating bodies of literature have depicted that DENV has many ways to invade and escape the immune system of the host. These invading strategies are directed to overcome innate and adaptive immune responses. Like other viruses, once the infection is established, the host also mounts a series of antiviral responses to combat and eliminate the virus replication. Nevertheless, DENV has evolved a variety of mechanisms to evade the immune system. In this review, we have emphasized the strategies that DENV employs to hijack the host innate (interferon, IFN; toll-like receptors, TLR; major histocompatibility complex, MHC; autophagy; complement; apoptosis; RNAi) and adaptive (antibody-dependent enhancement, ADE; T cell immunity) immune responses, which contribute to the severity of DENV disease. Full article
Show Figures

Figure 1

20 pages, 2115 KiB  
Article
Evaluation of Commercial RNA Extraction Protocols for Avian Influenza Virus Using Nanopore Metagenomic Sequencing
by Maria Chaves, Amro Hashish, Onyekachukwu Osemeke, Yuko Sato, David L. Suarez and Mohamed El-Gazzar
Viruses 2024, 16(9), 1429; https://doi.org/10.3390/v16091429 - 7 Sep 2024
Cited by 2 | Viewed by 3219
Abstract
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription–polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This [...] Read more.
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription–polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This two-step diagnostic process takes days to weeks, but it can be expedited by using novel sequencing technologies. We aim to optimize and validate nucleic acid extraction as the first step to establishing Oxford Nanopore Technologies (ONT) as a rapid diagnostic tool for identifying and characterizing AIV from clinical samples. This study compared four commercially available RNA extraction protocols using AIV-known-positive clinical samples. The extracted RNA was evaluated using total RNA concentration, viral copies as measured by rRT-PCR, and purity as measured by a 260/280 absorbance ratio. After NGS testing, the number of total and influenza-specific reads and quality scores of the generated sequences were assessed. The results showed that no protocol outperformed the others on all parameters measured; however, the magnetic particle-based method was the most consistent regarding CT value, purity, total yield, and AIV reads, and it was less error-prone. This study highlights how different RNA extraction protocols influence ONT sequencing performance. Full article
(This article belongs to the Special Issue Recent Advances of Avian Viruses Research)
Show Figures

Figure 1

14 pages, 1514 KiB  
Article
Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana
by Tathiana Ferreira Sa Antunes, José C. Huguet-Tapia, Santiago F. Elena and Svetlana Y. Folimonova
Viruses 2024, 16(9), 1385; https://doi.org/10.3390/v16091385 - 30 Aug 2024
Cited by 1 | Viewed by 1450
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus [...] Read more.
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs—deletions, insertions, and copy- and snap-backs—were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host. Full article
(This article belongs to the Special Issue Viruses 2024—A World of Viruses)
Show Figures

Graphical abstract

15 pages, 7736 KiB  
Article
Chikungunya Virus RNA Secondary Structures Impact Defective Viral Genome Production
by Laura I. Levi, Emily A. Madden, Jeremy Boussier, Diana Erazo, Wes Sanders, Thomas Vallet, Veronika Bernhauerova, Nathaniel J. Moorman, Mark T. Heise and Marco Vignuzzi
Microorganisms 2024, 12(9), 1794; https://doi.org/10.3390/microorganisms12091794 - 29 Aug 2024
Cited by 1 | Viewed by 2066
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that poses an emerging threat to humans. In a manner similar to other RNA viruses, CHIKV encodes an error-prone RNA polymerase which, in addition to producing full-length genomes, gives rise to truncated, non-functional genomes, which [...] Read more.
Chikungunya virus (CHIKV) is a mosquito-borne RNA virus that poses an emerging threat to humans. In a manner similar to other RNA viruses, CHIKV encodes an error-prone RNA polymerase which, in addition to producing full-length genomes, gives rise to truncated, non-functional genomes, which have been coined defective viral genomes (DVGs). DVGs have been intensively studied in the context of therapy, as they can inhibit viral replication and dissemination in their hosts. In this work, we interrogate the influence of viral RNA secondary structures on the production of CHIKV DVGs. We experimentally map RNA secondary structures of the CHIKV genome using selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), which couples chemical labelling with next-generation sequencing. We correlate the inferred secondary structure with preferred deletion sites of CHIKV DVGs. We document an increased probability of DVG generation with truncations at unpaired nucleotides within the secondary structure. We then generated a CHIKV mutant bearing synonymous changes at the nucleotide level to disrupt the existing RNA secondary structure (CHIKV-D2S). We show that CHIKV-D2S presents altered DVG generation compared to wild-type virus, correlating with the change in RNA secondary structure obtained by SHAPE-MaP. Our work thus demonstrates that RNA secondary structure impacts CHIKV DVG production during replication. Full article
(This article belongs to the Special Issue Arboviruses 2.0)
Show Figures

Figure 1

18 pages, 1773 KiB  
Review
Epidemiological Dynamics of Foot-and-Mouth Disease in the Horn of Africa: The Role of Virus Diversity and Animal Movement
by Fanos Tadesse Woldemariyam, Christopher Kinyanjui Kariuki, Joseph Kamau, Annebel De Vleeschauwer, Kris De Clercq, David J. Lefebvre and Jan Paeshuyse
Viruses 2023, 15(4), 969; https://doi.org/10.3390/v15040969 - 14 Apr 2023
Cited by 15 | Viewed by 6400
Abstract
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region’s livestock production system is mainly extensive and pastoralist. It faces countless problems, such as [...] Read more.
The Horn of Africa is a large area of arid and semi-arid land, holding about 10% of the global and 40% of the entire African livestock population. The region’s livestock production system is mainly extensive and pastoralist. It faces countless problems, such as a shortage of pastures and watering points, poor access to veterinary services, and multiple endemic diseases like foot-and-mouth disease (FMD). Foot-and-mouth disease is one of the most economically important livestock diseases worldwide and is endemic in most developing countries. Within Africa, five of the seven serotypes of the FMD virus (FMDV) are described, but serotype C is not circulating anymore, a burden unseen anywhere in the world. The enormous genetic diversity of FMDV is favored by an error-prone RNA-dependent RNA polymerase, intra-typic and inter-typic recombination, as well as the quasi-species nature of the virus. This paper describes the epidemiological dynamics of foot-and-mouth disease in the Horn of Africa with regard to the serotypes and topotypes distribution of FMDV, the livestock production systems practiced, animal movement, the role of wildlife, and the epidemiological complexity of FMD. Within this review, outbreak investigation data and serological studies confirm the endemicity of the disease in the Horn of Africa. Multiple topotypes of FMDV are described in the literature as circulating in the region, with further evolution of virus diversity predicted. A large susceptible livestock population and the presence of wild ungulates are described as complicating the epidemiology of the disease. Further, the husbandry practices and legal and illegal trading of livestock and their products, coupled with poor biosecurity practices, are also reported to impact the spread of FMDV within and between countries in the region. The porosity of borders for pastoralist herders fuels the unregulated transboundary livestock trade. There are no systematic control strategies in the region except for sporadic vaccination with locally produced vaccines, while literature indicates that effective control measures should also consider virus diversity, livestock movements/biosecurity, transboundary trade, and the reduction of contact with wild, susceptible ungulates. Full article
(This article belongs to the Special Issue Advances in Endemic and Emerging Viral Diseases in Livestock)
Show Figures

Figure 1

19 pages, 1427 KiB  
Review
Quasispecies Nature of RNA Viruses: Lessons from the Past
by Kiran Singh, Deepa Mehta, Shaurya Dumka, Aditya Singh Chauhan and Sachin Kumar
Vaccines 2023, 11(2), 308; https://doi.org/10.3390/vaccines11020308 - 30 Jan 2023
Cited by 14 | Viewed by 5485
Abstract
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA [...] Read more.
Viral quasispecies are distinct but closely related mutants formed by the disparity in viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV), lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus populations are a daunting challenge for the designing of effective control measures like vaccines. Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what influences their adaptation and virulence will help curtail outbreaks of past and future pathogens. Full article
(This article belongs to the Special Issue Recent Vaccine Development for Emerging Infectious Diseases)
Show Figures

Figure 1

26 pages, 4539 KiB  
Review
Heterologous RNA Recombination in the Cystoviruses φ6 and φ8: A Mechanism of Viral Variation and Genome Repair
by Paul Gottlieb and Aleksandra Alimova
Viruses 2022, 14(11), 2589; https://doi.org/10.3390/v14112589 - 21 Nov 2022
Cited by 3 | Viewed by 2971
Abstract
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic [...] Read more.
Recombination and mutation of viral genomes represent major mechanisms for viral evolution and, in many cases, moderate pathogenicity. Segmented genome viruses frequently undergo reassortment of the genome via multiple infection of host organisms, with influenza and reoviruses being well-known examples. Specifically, major genomic shifts mediated by reassortment are responsible for radical changes in the influenza antigenic determinants that can result in pandemics requiring rapid preventative responses by vaccine modifications. In contrast, smaller mutational changes brought about by the error-prone viral RNA polymerases that, for the most part, lack a replication base mispairing editing function produce small mutational changes in the RNA genome during replication. Referring again to the influenza example, the accumulated mutations—known as drift—require yearly vaccine updating and rapid worldwide distribution of each new formulation. Coronaviruses with a large positive-sense RNA genome have long been known to undergo intramolecular recombination likely mediated by copy choice of the RNA template by the viral RNA polymerase in addition to the polymerase-based mutations. The current SARS-CoV-2 origin debate underscores the importance of understanding the plasticity of viral genomes, particularly the mechanisms responsible for intramolecular recombination. This review describes the use of the cystovirus bacteriophage as an experimental model for recombination studies in a controlled manner, resulting in the development of a model for intramolecular RNA genome alterations. The review relates the sequence of experimental studies from the laboratory of Leonard Mindich, PhD at the Public Health Research Institute—then in New York City—and covers a period of approximately 12 years. Hence, this is a historical scientific review of research that has the greatest relevance to current studies of emerging RNA virus pathogens. Full article
Show Figures

Figure 1

12 pages, 2682 KiB  
Review
The Second Human Pegivirus, a Non-Pathogenic RNA Virus with Low Prevalence and Minimal Genetic Diversity
by Shuyi Chen, Haiying Wang, Emmanuel Enoch Dzakah, Farooq Rashid, Jufang Wang and Shixing Tang
Viruses 2022, 14(9), 1844; https://doi.org/10.3390/v14091844 - 23 Aug 2022
Cited by 6 | Viewed by 2947
Abstract
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to [...] Read more.
The second human pegivirus (HPgV-2) is a virus discovered in the plasma of a hepatitis C virus (HCV)-infected patient in 2015 belonging to the pegiviruses of the family Flaviviridae. HPgV-2 has been proved to be epidemiologically associated with and structurally similar to HCV but unrelated to HCV disease and non-pathogenic, but its natural history and tissue tropism remain unclear. HPgV-2 is a unique RNA virus sharing the features of HCV and the first human pegivirus (HPgV-1 or GBV-C). Moreover, distinct from most RNA viruses such as HCV, HPgV-1 and human immunodeficiency virus (HIV), HPgV-2 exhibits much lower genomic diversity, with a high global sequence identity ranging from 93.5 to 97.5% and significantly lower intra-host variation than HCV. The mechanisms underlying the conservation of the HPgV-2 genome are not clear but may include efficient innate immune responses, low immune selection pressure and, possibly, the unique features of the viral RNA-dependent RNA polymerase (RdRP). In this review, we summarize the prevalence, pathogenicity and genetic diversity of HPgV-2 and discuss the possible reasons for the uniformity of its genome sequence, which should elucidate the implications of RNA virus fidelity for attenuated viral vaccines. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

22 pages, 1423 KiB  
Review
Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis
by Nicole E. Bowen, Adrian Oo and Baek Kim
Viruses 2022, 14(8), 1622; https://doi.org/10.3390/v14081622 - 26 Jul 2022
Cited by 9 | Viewed by 3574
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly [...] Read more.
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein. Full article
(This article belongs to the Special Issue Viral Reverse Transcriptases)
Show Figures

Figure 1

11 pages, 275 KiB  
Review
Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases
by Xi Yu and Gong Cheng
Viruses 2022, 14(2), 435; https://doi.org/10.3390/v14020435 - 21 Feb 2022
Cited by 22 | Viewed by 4642
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile [...] Read more.
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence. Full article
(This article belongs to the Section Invertebrate Viruses)
44 pages, 12869 KiB  
Review
Targeting the Virus Capsid as a Tool to Fight RNA Viruses
by Lucie Hozáková, Barbora Vokatá, Tomáš Ruml and Pavel Ulbrich
Viruses 2022, 14(2), 174; https://doi.org/10.3390/v14020174 - 18 Jan 2022
Cited by 7 | Viewed by 3961
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds [...] Read more.
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses. Full article
24 pages, 5781 KiB  
Article
TENT4A Non-Canonical Poly(A) Polymerase Regulates DNA-Damage Tolerance via Multiple Pathways That Are Mutated in Endometrial Cancer
by Umakanta Swain, Gilgi Friedlander, Urmila Sehrawat, Avital Sarusi-Portuguez, Ron Rotkopf, Charlotte Ebert, Tamar Paz-Elizur, Rivka Dikstein, Thomas Carell, Nicholas E. Geacintov and Zvi Livneh
Int. J. Mol. Sci. 2021, 22(13), 6957; https://doi.org/10.3390/ijms22136957 - 28 Jun 2021
Cited by 9 | Viewed by 5111
Abstract
TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show [...] Read more.
TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 2237 KiB  
Article
Cockayne Syndrome-Associated CSA and CSB Mutations Impair Ribosome Biogenesis, Ribosomal Protein Stability, and Global Protein Folding
by Mingyue Qiang, Fatima Khalid, Tamara Phan, Christina Ludwig, Karin Scharffetter-Kochanek and Sebastian Iben
Cells 2021, 10(7), 1616; https://doi.org/10.3390/cells10071616 - 28 Jun 2021
Cited by 17 | Viewed by 3706
Abstract
Cockayne syndrome (CS) is a developmental disorder with symptoms that are typical for the aging body, including subcutaneous fat loss, alopecia, and cataracts. Here, we show that in the cells of CS patients, RNA polymerase I transcription and the processing of the pre-rRNA [...] Read more.
Cockayne syndrome (CS) is a developmental disorder with symptoms that are typical for the aging body, including subcutaneous fat loss, alopecia, and cataracts. Here, we show that in the cells of CS patients, RNA polymerase I transcription and the processing of the pre-rRNA are disturbed, leading to an accumulation of the 18S-E intermediate. The mature 18S rRNA level is reduced, and isolated ribosomes lack specific ribosomal proteins of the small 40S subunit. Ribosomal proteins are susceptible to unfolding and the CS cell proteome is heat-sensitive, indicating misfolded proteins and an error-prone translation process in CS cells. Pharmaceutical chaperones restored impaired cellular proliferation. Therefore, we provide evidence for severe protein synthesis malfunction, which together with a loss of proteostasis constitutes the underlying pathophysiology in CS. Full article
(This article belongs to the Section Intracellular and Plasma Membranes)
Show Figures

Graphical abstract

12 pages, 2270 KiB  
Article
Bead-Immobilized Multimodal Molecular Beacon-Equipped DNA Machinery for Specific RNA Target Detection: A Prototypical Molecular Nanobiosensor
by Jeonghun Kim, So Yeon Ahn and Soong Ho Um
Nanomaterials 2021, 11(6), 1617; https://doi.org/10.3390/nano11061617 - 20 Jun 2021
Cited by 3 | Viewed by 3590
Abstract
A variety of nanostructured diagnostic tools have been developed for the precise detection of known genetic variants. Molecular beacon systems are very promising tools due to their specific selectivity coupled with relatively lower cost and time requirements than existing molecular detection tools such [...] Read more.
A variety of nanostructured diagnostic tools have been developed for the precise detection of known genetic variants. Molecular beacon systems are very promising tools due to their specific selectivity coupled with relatively lower cost and time requirements than existing molecular detection tools such as next generation sequencing or real-time PCR (polymerase chain reaction). However, they are prone to errors induced by secondary structure responses to environmental fluctuations, such as temperature and pH. Herein, we report a temperature-insensitive, bead-immobilized, molecular beacon-equipped novel DNA nanostructure for detection of cancer miRNA variants with the consideration of thermodynamics. This system consists of three parts: a molecular beacon for cancer-specific RNA capture, a stem body as a core template, and a single bead for solid-support. This DNA system was selectively bound to nanosized beads using avidin–biotin chemistry. Synthetic DNA nanostructures, designed based on the principle of fluorescence-resonance enhanced transfer, were effectively applied for in vitro cancer-specific RNA detection. Several parameters were optimized for higher performance, with a focus on thermodynamic stability. Theoretical issues regarding the secondary structure of a single molecular beacon and its combinatory forms were also studied. This study provides design guidelines for new sensing systems of miRNA variation for next-generation biotechnological applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Nano-Base Composites)
Show Figures

Figure 1

13 pages, 980 KiB  
Review
Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells
by Brian Iaffaldano and Jakob Reiser
Int. J. Mol. Sci. 2021, 22(2), 857; https://doi.org/10.3390/ijms22020857 - 16 Jan 2021
Cited by 1 | Viewed by 3346
Abstract
Directed evolution is a powerful approach for protein engineering and functional studies. However, directed evolution outputs from bacterial and yeast systems do not always translate to higher organisms. In situ directed evolution in plant and animal cells has previously been limited by an [...] Read more.
Directed evolution is a powerful approach for protein engineering and functional studies. However, directed evolution outputs from bacterial and yeast systems do not always translate to higher organisms. In situ directed evolution in plant and animal cells has previously been limited by an inability to introduce targeted DNA sequence diversity. New hypermutation tools have emerged that can generate targeted mutations in plant and animal cells, by recruiting mutagenic proteins to defined DNA loci. Progress in this field, such as the development of CRISPR-derived hypermutators, now allows for all DNA nucleotides within user-defined regions to be altered through the recruitment of error-prone DNA polymerases or highly active DNA deaminases. The further engineering of these mutagenesis systems will potentially allow for all transition and transversion substitutions to be generated within user-defined genomic windows. Such targeted full-spectrum mutagenesis tools would provide a powerful platform for evolving antibodies, enzymes, structural proteins and RNAs with specific desired properties in relevant cellular contexts. These tools are expected to benefit many aspects of biological research and, ultimately, clinical applications. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop