Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = epitaxial gallium nitride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4511 KiB  
Article
Crystallographic Engineering of CrN Buffer Layers for GaN Thin Film Epitaxy
by Kyu-Yeon Shim, Seongho Kang, Min-Joo Ahn, Yukyeong Cha, Eojin-Gyere Ham, Dohoon Kim and Dongjin Byun
Materials 2025, 18(8), 1817; https://doi.org/10.3390/ma18081817 - 16 Apr 2025
Viewed by 539
Abstract
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this [...] Read more.
Gallium nitride (GaN) is commonly used in various semiconductor systems owing to its high mobility and thermal stability; however, the production of GaN thin films using the currently employed methods requires improvement. To facilitate the growth of high-quality GaN epitaxial thin films, this study explored the crystallographic structures, properties, and influences of chromium nitride (CrN) buffer layers sputtered under various conditions. The crystallographic orientation of CrN played a crucial role in determining the GaN film quality. For example, even when the crystallinity of the CrN (111) plane was relatively low, a single-phase CrN (111) buffer layer could provide a more favorable template for GaN epitaxy compared to cases where both the CrN (111) and Cr2N (110) phases coexisted. The significance of a low-temperature (LT) GaN nucleation layer deposited onto the CrN buffer layers was assessed using atomic force microscopy and contact angle measurements. The X-ray phi scan results confirmed the six-fold symmetry of the grown GaN, further emphasizing the contribution of an LT-GaN nucleation layer. These findings offer insights into the underlying mechanisms governing GaN thin film growth and provide guidance for the optimization of the buffer layer conditions to achieve high-quality GaN epitaxial films. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

10 pages, 3798 KiB  
Article
750 V Breakdown in GaN Buffer on 200 mm SOI Substrates Using Reverse-Stepped Superlattice Layers
by Shuzhen You, Yilong Lei, Liang Wang, Xing Chen, Ting Zhou, Yi Wang, Junbo Wang, Tong Liu, Xiangdong Li, Shenglei Zhao, Jincheng Zhang and Yue Hao
Micromachines 2024, 15(12), 1460; https://doi.org/10.3390/mi15121460 - 30 Nov 2024
Viewed by 1486
Abstract
In this work, we demonstrated the epitaxial growth of a gallium nitride (GaN) buffer structure on 200 mm SOI (silicon-on-insulator) substrates. This epitaxial layer is grown using a reversed stepped superlattice buffer (RSSL), which is composed of two superlattice (SL) layers with different [...] Read more.
In this work, we demonstrated the epitaxial growth of a gallium nitride (GaN) buffer structure on 200 mm SOI (silicon-on-insulator) substrates. This epitaxial layer is grown using a reversed stepped superlattice buffer (RSSL), which is composed of two superlattice (SL) layers with different Al component ratios stacked in reverse order. The upper layer, with a higher Al component ratio, introduces tensile stress instead of accumulative compressive stress and reduces the in situ curvature of the wafer, thereby achieving a well-controlled wafer bow ≤ ±50 µm for a 3.3 µm thick buffer. Thanks to the compliant SOI substrate, good crystal quality of the grown GaN layers was obtained, and a breakdown voltage of 750 V for a 3.3 µm thick GaN buffer was achieved. The breakdown field strength of the epitaxial GaN buffer layer on the SOI substrate is estimated to be ~2.27 MV/cm, which is higher than the breakdown field strength of the GaN-on-Si epitaxial buffer layer. This RSSL buffer also demonstrated a low buffer dispersion of less than 10%, which is good enough for the further processing of device and circuit fabrication. A D-mode GaN HEMT was fabricated on this RSSL buffer, which showed a good on/off ratio of ~109 and a breakdown voltage of 450 V. Full article
Show Figures

Figure 1

15 pages, 3034 KiB  
Article
Polycrystalline Diamond Film Growth on Gallium Nitride with Low Boundary Thermal Resistance
by Ying Wang, Jiahao Yao, Yong Yang, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2024, 14(11), 1457; https://doi.org/10.3390/coatings14111457 - 15 Nov 2024
Cited by 1 | Viewed by 1525
Abstract
As the demand for high-frequency and high-power electronic devices has increased, gallium nitride (GaN), particularly in the context of high-electron mobility transistors (HEMTs), has attracted considerable attention. However, the ‘self-heating effect’ of GaN HEMTs represents a significant limitation regarding both performance and reliability. [...] Read more.
As the demand for high-frequency and high-power electronic devices has increased, gallium nitride (GaN), particularly in the context of high-electron mobility transistors (HEMTs), has attracted considerable attention. However, the ‘self-heating effect’ of GaN HEMTs represents a significant limitation regarding both performance and reliability. Diamond, renowned for its exceptional thermal conductivity, represents an optimal material for thermal management in HEMTs. This paper proposes a novel method for directly depositing diamond films onto N-polar GaN (NP-GaN) epitaxial layers. This eliminates the complexities of the traditional diamond growth process and the need for temporary substrate steps. Given the relative lag in the development of N-polar material growth technologies, which are marked by surface roughness issues, and the recognition that the thermal boundary resistance (TBRGaN/diamond) represents a critical factor constraining efficient heat transfer, our study has introduced a series of optimizations to enhance the quality of the diamond nucleation layer while ensuring that the integrity of the GaN buffer layer remains intact. Moreover, chemical mechanical polishing (CMP) technology was employed to effectively reduce the surface roughness of the NP-GaN base, thereby providing a more favorable foundation for diamond growth. The optimization trends observed in the thermal performance test results are encouraging. Integrating diamond films onto highly smooth NP-GaN epitaxial layers demonstrates a reduction in TBRGaN/diamond compared to that of diamond layers deposited onto NP-GaN with higher surface roughness that had undergone no prior process treatment. Full article
Show Figures

Figure 1

35 pages, 14744 KiB  
Review
Review of the Properties of GaN, InN, and Their Alloys Obtained in Cubic Phase on MgO Substrates by Plasma-Enhanced Molecular Beam Epitaxy
by Edgar López Luna and Miguel Ángel Vidal
Crystals 2024, 14(9), 801; https://doi.org/10.3390/cryst14090801 - 11 Sep 2024
Cited by 1 | Viewed by 2333
Abstract
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which [...] Read more.
Gallium nitride (GaN) semiconductors and their broadband InGaN alloys in their hexagonal phase have been extensively studied over the past 30 years and have allowed the development of blue-ray lasers, which are essential disruptive developments. In addition to high-efficiency white light-emitting diodes, which have revolutionized lighting technologies and generated a great industry around these semiconductors, several transistors have been developed that take advantage of the characteristics of these semiconductors. These include power transistors for high-frequency applications and high-power transistors for power electronics, among other devices, which have far superior achievements. However, less effort has been devoted to studying GaN and InGaN alloys grown in the cubic phase. The metastable or cubic phase of III-N alloys has superior characteristics compared to the hexagonal phase, mainly because of the excellent symmetry. It can be used to improve lighting technologies and develop other devices. Indium gallium nitride, InxGa1−xN alloy, has a variable band interval of 0.7 to 3.4 eV that covers almost the entire solar spectrum, making it a suitable material for increasing the efficiencies of photovoltaic devices. In this study, we successfully synthesized high-quality cubic InGaN films on MgO (100) substrates using plasma-assisted molecular beam epitaxy (PAMBE), demonstrating tunable emissions across the visible spectrum by varying the indium concentration. We significantly reduced the defect density and enhanced the crystalline quality by using an intermediate cubic GaN buffer layer. We not only developed a heterostructure with four GaN/InGaN/GaN quantum wells, achieving violet, blue, yellow, and red emissions, but also highlighted the immense potential of cubic InGaN films for high-efficiency light-emitting diodes and photovoltaic devices. Achieving better p-type doping levels is crucial for realizing diodes with excellent performance, and our findings will pave the way for this advancement. Full article
(This article belongs to the Special Issue Reviews of Crystal Engineering)
Show Figures

Figure 1

15 pages, 10114 KiB  
Article
On Morphology of Aluminum–Gallium Nitride Layers Grown by Halide Vapor Phase Epitaxy: The Role of Total Reactants’ Pressure and Ammonia Flow Rate
by Arianna Jaroszynska, Michal Dabrowski, Petro Sadovy, Michal Bockowski, Robert Czernecki and Tomasz Sochacki
Materials 2024, 17(14), 3446; https://doi.org/10.3390/ma17143446 - 12 Jul 2024
Viewed by 1157
Abstract
The focus of this study was the investigation of how the total pressure of reactants and ammonia flow rate influence the growth morphology of aluminum–gallium nitride layers crystallized by Halide Vapor Phase Epitaxy. It was established how these two critical parameters change the [...] Read more.
The focus of this study was the investigation of how the total pressure of reactants and ammonia flow rate influence the growth morphology of aluminum–gallium nitride layers crystallized by Halide Vapor Phase Epitaxy. It was established how these two critical parameters change the supersaturation levels of gallium and aluminum in the growth zone, and subsequently the morphology of the produced layers. A halide vapor phase epitaxy reactor built in-house was used, allowing for precise control over the growth conditions. Results demonstrate that both total pressure and ammonia flow rate significantly affect the nucleation and crystal growth processes which have an impact on the alloy composition, surface morphology and structural quality of aluminum–gallium nitride layers. Reducing the total pressure and adjusting the ammonia flow rate led to a notable enhancement in the homogeneity and crystallographic quality of the grown layers, along with increased aluminum incorporation. This research contributes to a deeper understanding of the growth mechanisms involved in the halide vapor phase epitaxy of aluminum–gallium nitride, and furthermore it suggests a trajectory for the optimization of growth parameters so as to obtain high-quality materials for advanced optoelectronic and electronic applications. Full article
Show Figures

Figure 1

13 pages, 5877 KiB  
Article
Study of Leakage Current Transport Mechanisms in Pseudo-Vertical GaN-on-Silicon Schottky Diode Grown by Localized Epitaxy
by Mohammed El Amrani, Julien Buckley, Thomas Kaltsounis, David Plaza Arguello, Hala El Rammouz, Daniel Alquier and Matthew Charles
Crystals 2024, 14(6), 553; https://doi.org/10.3390/cryst14060553 - 14 Jun 2024
Cited by 3 | Viewed by 1849
Abstract
In this work, a GaN-on-Si quasi-vertical Schottky diode was demonstrated on a locally grown n-GaN drift layer using Selective Area Growth (SAG). The diode achieved a current density of 2.5 kA/cm2, a specific on-resistance RON,sp of [...] Read more.
In this work, a GaN-on-Si quasi-vertical Schottky diode was demonstrated on a locally grown n-GaN drift layer using Selective Area Growth (SAG). The diode achieved a current density of 2.5 kA/cm2, a specific on-resistance RON,sp of 1.9 mΩ cm2 despite the current crowding effect in quasi-vertical structures, and an on/off current ratio (Ion/Ioff) of 1010. Temperature-dependent current–voltage characteristics were measured in the range of 313–433 K to investigate the mechanisms of leakage conduction in the device. At near-zero bias, thermionic emission (TE) was found to dominate. By increasing up to 10 V, electrons gained enough energy to excite into trap states, leading to the dominance of Frenkel–Poole emission (FPE). For a higher voltage range (−10 V to −40 V), the increased electric field facilitated the hopping of electrons along the continuum threading dislocations in the “bulk” GaN layers, and thus, variable range hopping became the main mechanism for the whole temperature range. This work provides an in-depth insight into the leakage conduction transport on pseudo-vertical GaN-on-Si Schottky barrier diodes (SBDs) grown by localized epitaxy. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductor: GaN and SiC Material and Device)
Show Figures

Figure 1

19 pages, 6011 KiB  
Article
Optical, Structural, and Synchrotron X-ray Absorption Studies for GaN Thin Films Grown on Si by Molecular Beam Epitaxy
by Zhe Chuan Feng, Jiamin Liu, Deng Xie, Manika Tun Nafisa, Chuanwei Zhang, Lingyu Wan, Beibei Jiang, Hao-Hsiung Lin, Zhi-Ren Qiu, Weijie Lu, Benjamin Klein, Ian T. Ferguson and Shiyuan Liu
Materials 2024, 17(12), 2921; https://doi.org/10.3390/ma17122921 - 14 Jun 2024
Cited by 5 | Viewed by 1556
Abstract
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) [...] Read more.
GaN on Si plays an important role in the integration and promotion of GaN-based wide-gap materials with Si-based integrated circuits (IC) technology. A series of GaN film materials were grown on Si (111) substrate using a unique plasma assistant molecular beam epitaxy (PA-MBE) technology and investigated using multiple characterization techniques of Nomarski microscopy (NM), high-resolution X-ray diffraction (HR-XRD), variable angular spectroscopic ellipsometry (VASE), Raman scattering, photoluminescence (PL), and synchrotron radiation (SR) near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. NM confirmed crack-free wurtzite (w-) GaN thin films in a large range of 180–1500 nm. XRD identified the w- single crystalline structure for these GaN films with the orientation along the c-axis in the normal growth direction. An optimized 700 °C growth temperature, plus other corresponding parameters, was obtained for the PA-MBE growth of GaN on Si, exhibiting strong PL emission, narrow/strong Raman phonon modes, XRD w-GaN peaks, and high crystalline perfection. VASE studies identified this set of MBE-grown GaN/Si as having very low Urbach energy of about 18 meV. UV (325 nm)-excited Raman spectra of GaN/Si samples exhibited the GaN E2(low) and E2(high) phonon modes clearly without Raman features from the Si substrate, overcoming the difficulties from visible (532 nm) Raman measurements with strong Si Raman features overwhelming the GaN signals. The combined UV excitation Raman–PL spectra revealed multiple LO phonons spread over the GaN fundamental band edge emission PL band due to the outgoing resonance effect. Calculation of the UV Raman spectra determined the carrier concentrations with excellent values. Angular-dependent NEXAFS on Ga K-edge revealed the significant anisotropy of the conduction band of w-GaN and identified the NEXAFS resonances corresponding to different final states in the hexagonal GaN films on Si. Comparative GaN material properties are investigated in depth. Full article
(This article belongs to the Special Issue III-V Semiconductor Optoelectronics: Materials and Devices)
Show Figures

Figure 1

15 pages, 11880 KiB  
Article
Epitaxial Growth of GaN Films on Chemical-Vapor-Deposited 2D MoS2 Layers by Plasma-Assisted Molecular Beam Epitaxy
by Iwan Susanto, Hong-Shan Liu, Yen-Ten Ho and Ing-Song Yu
Nanomaterials 2024, 14(8), 732; https://doi.org/10.3390/nano14080732 - 22 Apr 2024
Cited by 2 | Viewed by 2735
Abstract
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted [...] Read more.
The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics. Full article
Show Figures

Figure 1

16 pages, 5289 KiB  
Review
Review on Main Gate Characteristics of P-Type GaN Gate High-Electron-Mobility Transistors
by Zhongxu Wang, Jiao Nan, Zhiwen Tian, Pei Liu, Yinhe Wu and Jincheng Zhang
Micromachines 2024, 15(1), 80; https://doi.org/10.3390/mi15010080 - 30 Dec 2023
Cited by 3 | Viewed by 5676
Abstract
As wide bandgap semiconductors, gallium nitride (GaN) lateral high-electron-mobility transistors (HEMTs) possess high breakdown voltage, low resistance and high frequency performance. PGaN gate HEMTs are promising candidates for high-voltage, high-power applications due to the normally off operation and robust gate reliability. However, the [...] Read more.
As wide bandgap semiconductors, gallium nitride (GaN) lateral high-electron-mobility transistors (HEMTs) possess high breakdown voltage, low resistance and high frequency performance. PGaN gate HEMTs are promising candidates for high-voltage, high-power applications due to the normally off operation and robust gate reliability. However, the threshold and gate-breakdown voltages are relatively low compared with Si-based and SiC-based power MOSFETs. The epitaxial layers and device structures were optimized to enhance the main characteristics of pGaN HEMTs. In this work, various methods to improve threshold and gate-breakdown voltages are presented, such as the top-layer optimization of the pGaN cap, hole-concentration enhancement, the low-work-function gate electrode, and the MIS-type pGaN gate. The discussion of the main gate characteristic enhancement of p-type GaN gate HEMTs would accelerate the development of GaN power electronics to some extent. Full article
Show Figures

Figure 1

11 pages, 4021 KiB  
Article
Hexagonal Boron Nitride as an Intermediate Layer for Gallium Nitride Epitaxial Growth in Near-Ultraviolet Light-Emitting Diodes
by Ah-Hyun Park and Tae-Hoon Seo
Materials 2023, 16(22), 7216; https://doi.org/10.3390/ma16227216 - 17 Nov 2023
Cited by 3 | Viewed by 1967
Abstract
We introduce the development of gallium nitride (GaN) layers by employing graphene and hexagonal boron nitride (h-BN) as intermediary substrates. This study demonstrated the successful growth of GaN with a uniformly smooth surface morphology on h-BN. In order to evaluate the crystallinity of [...] Read more.
We introduce the development of gallium nitride (GaN) layers by employing graphene and hexagonal boron nitride (h-BN) as intermediary substrates. This study demonstrated the successful growth of GaN with a uniformly smooth surface morphology on h-BN. In order to evaluate the crystallinity of GaN grown on h-BN, a comparison was conducted with GaN grown on a sapphire substrate. Photoluminescence spectroscopy and X-ray diffraction confirmed that the crystallinity of GaN deposited on h-BN was inferior to that of GaN grown on conventional GaN. To validate the practical applicability of the GaN layer grown on h-BN, we subsequently grew an NUV-LED structure and fabricated a device that operated well in optoelectrical performance experiments. Our findings validate the potential usefulness of h-BN to be a substrate in the direct growth of a GaN layer. Full article
Show Figures

Figure 1

9 pages, 2141 KiB  
Article
Nanotribological Characteristics of the Al Content of AlxGa1−xN Epitaxial Films
by Hua-Chiang Wen, Ssu-Kuan Wu, Cheng-Wei Liu, Jin-Ji Dai and Wu-Ching Chou
Nanomaterials 2023, 13(21), 2884; https://doi.org/10.3390/nano13212884 - 31 Oct 2023
Viewed by 1313
Abstract
The nanotribological properties of aluminum gallium nitride (AlxGa1−xN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of [...] Read more.
The nanotribological properties of aluminum gallium nitride (AlxGa1−xN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of the bonding forces and the shear resistance. It was verified that the measured friction coefficient (μ) values of the AlxGa1−xN films from the Al compositions (where x = 0.065, 0.085, and 0.137) were in the range of 0.8, 0.5, and 0.3, respectively, for Fn = 2000 μN and 0.12, 0.9, and 0.7, respectively, for Fn = 4000 μN. The values of μ were found to decrease with the increases in the Al compositions. We concluded that the Al composition played an important role in the reconstruction of the crystallites, which induced the transition phenomenon of brittleness to ductility in the AlxGa1−xN system. Full article
(This article belongs to the Special Issue Thermophysical and Tribological Properties of Nanomaterials)
Show Figures

Figure 1

16 pages, 5559 KiB  
Article
Simulation and Comprehensive Analysis of AlGaN/GaN HBT for High Voltage and High Current
by Xinyuan Wang, Lian Zhang, Jiaheng He, Zhe Cheng, Zhe Liu and Yun Zhang
Electronics 2023, 12(17), 3590; https://doi.org/10.3390/electronics12173590 - 25 Aug 2023
Cited by 2 | Viewed by 2512
Abstract
We present a series of TCAD analysis of gallium nitride (GaN) heterojunction bipolar transistors (HBTs) that investigates the impact of various key parameters on the gain characteristics, output characteristics, and breakdown characteristics. It has been observed that the DC gain of the AlGaN/GaN [...] Read more.
We present a series of TCAD analysis of gallium nitride (GaN) heterojunction bipolar transistors (HBTs) that investigates the impact of various key parameters on the gain characteristics, output characteristics, and breakdown characteristics. It has been observed that the DC gain of the AlGaN/GaN HBTs exhibits a non-linear relationship with the increase in the Al fraction. Specifically, the DC gain initially rises, then declines after reaching its peak value at approximately 7%. By optimizing the concentration of the base and the concentration and thickness of the collector epitaxial layer, it is possible to achieve devices with breakdown voltages of 1270 V (with a collector thickness of 6 μm and a carrier concentration of 2 × 1016 cm−3), specific on-resistance of 0.88 mΩ·cm2, and a current gain of 73. In addition, an investigation on breakdown characteristics is conducted for HBTs with two types of substrates, namely QV-HBTs and FV-HBTs, at different inclinations of the ramp. We propose that critical angles are 79° and 69° to prevent the surface breakdown of the device, which helps to achieve an avalanche in GaN HBTs. We anticipate that the aforementioned findings will offer valuable insights for designing GaN-based power HBTs with elevated breakdown thresholds, heightened current densities, and increased power capabilities. Full article
(This article belongs to the Special Issue GaN Power Devices and Applications)
Show Figures

Figure 1

13 pages, 4213 KiB  
Article
(Al, Ga)N-Based Quantum Dots Heterostructures on h-BN for UV-C Emission
by Aly Zaiter, Nikita Nikitskiy, Maud Nemoz, Phuong Vuong, Vishnu Ottapilakkal, Suresh Sundaram, Abdallah Ougazzaden and Julien Brault
Nanomaterials 2023, 13(17), 2404; https://doi.org/10.3390/nano13172404 - 24 Aug 2023
Cited by 2 | Viewed by 1838
Abstract
Aluminium Gallium Nitride (AlyGa1-yN) quantum dots (QDs) with thin sub-µm AlxGa1-xN layers (with x > y) were grown by molecular beam epitaxy on 3 nm and 6 nm thick hexagonal boron nitride (h-BN) initially deposited [...] Read more.
Aluminium Gallium Nitride (AlyGa1-yN) quantum dots (QDs) with thin sub-µm AlxGa1-xN layers (with x > y) were grown by molecular beam epitaxy on 3 nm and 6 nm thick hexagonal boron nitride (h-BN) initially deposited on c-sapphire substrates. An AlN layer was grown on h-BN and the surface roughness was investigated by atomic force microscopy for different deposited thicknesses. It was shown that for thicker AlN layers (i.e., 200 nm), the surface roughness can be reduced and hence a better surface morphology is obtained. Next, AlyGa1-yN QDs embedded in Al0.7Ga0.3N cladding layers were grown on the AlN and investigated by atomic force microscopy. Furthermore, X-ray diffraction measurements were conducted to assess the crystalline quality of the AlGaN/AlN layers and examine the impact of h-BN on the subsequent layers. Next, the QDs emission properties were studied by photoluminescence and an emission in the deep ultra-violet, i.e., in the 275–280 nm range was obtained at room temperature. Finally, temperature-dependent photoluminescence was performed. A limited decrease in the emission intensity of the QDs with increasing temperatures was observed as a result of the three-dimensional confinement of carriers in the QDs. Full article
(This article belongs to the Special Issue (Al, Ga)N-Based Nanostructures for UV-C Optoelectronics)
Show Figures

Figure 1

12 pages, 2948 KiB  
Article
Evolution of the Growth Mode and Its Consequences during Bulk Crystallization of GaN
by Tomasz Sochacki, Robert Kucharski, Karolina Grabianska, Jan L. Weyher, Magdalena A. Zajac, Malgorzata Iwinska, Lutz Kirste and Michal Bockowski
Materials 2023, 16(9), 3360; https://doi.org/10.3390/ma16093360 - 25 Apr 2023
Cited by 4 | Viewed by 1823
Abstract
A detailed analysis of morphology of gallium nitride crystal growth obtained by ammonothermal and halide vapor phase epitaxy methods was carried out. The work was conducted to determine the source of triangular planar defects visible in X-ray topography as areas with locally different [...] Read more.
A detailed analysis of morphology of gallium nitride crystal growth obtained by ammonothermal and halide vapor phase epitaxy methods was carried out. The work was conducted to determine the source of triangular planar defects visible in X-ray topography as areas with locally different lattice parameters. It is shown that the occurrence of these defects is related to growth hillocks. Particular attention was paid to analyzing the manner and consequences of merging hillocks. In the course of the study, the nature of the mentioned defects and the cause of their formation were determined. It was established that the appearance of the defects depends on the angle formed between the steps located on the sides of two adjacent hillocks. A universal growth model is presented to explain the cause of heterogeneity during the merging of growth hillocks. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

21 pages, 3838 KiB  
Review
A Brief Overview of the Rapid Progress and Proposed Improvements in Gallium Nitride Epitaxy and Process for Third-Generation Semiconductors with Wide Bandgap
by An-Chen Liu, Yung-Yu Lai, Hsin-Chu Chen, An-Ping Chiu and Hao-Chung Kuo
Micromachines 2023, 14(4), 764; https://doi.org/10.3390/mi14040764 - 29 Mar 2023
Cited by 26 | Viewed by 7101
Abstract
In this paper, we will discuss the rapid progress of third-generation semiconductors with wide bandgap, with a special focus on the gallium nitride (GaN) on silicon (Si). This architecture has high mass-production potential due to its low cost, larger size, and compatibility with [...] Read more.
In this paper, we will discuss the rapid progress of third-generation semiconductors with wide bandgap, with a special focus on the gallium nitride (GaN) on silicon (Si). This architecture has high mass-production potential due to its low cost, larger size, and compatibility with CMOS-fab processes. As a result, several improvements have been proposed in terms of epitaxy structure and high electron mobility transistor (HEMT) process, particularly in the enhancement mode (E-mode). IMEC has made significant strides using a 200 mm 8-inch Qromis Substrate Technology (QST®) substrate for breakdown voltage to achieve 650 V in 2020, which was further improved to 1200 V by superlattice and carbon-doped in 2022. In 2016, IMEC adopted VEECO metal-organic chemical vapor deposition (MOCVD) for GaN on Si HEMT epitaxy structure and the process by implementing a three-layer field plate to improve dynamic on-resistance (RON). In 2019, Panasonic HD-GITs plus field version was utilized to effectively improve dynamic RON. Both reliability and dynamic RON have been enhanced by these improvements. Full article
(This article belongs to the Special Issue Gallium Nitride-Based Devices)
Show Figures

Figure 1

Back to TopTop