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Abstract: We introduce the development of gallium nitride (GaN) layers by employing graphene and
hexagonal boron nitride (h-BN) as intermediary substrates. This study demonstrated the successful
growth of GaN with a uniformly smooth surface morphology on h-BN. In order to evaluate the
crystallinity of GaN grown on h-BN, a comparison was conducted with GaN grown on a sapphire
substrate. Photoluminescence spectroscopy and X-ray diffraction confirmed that the crystallinity
of GaN deposited on h-BN was inferior to that of GaN grown on conventional GaN. To validate
the practical applicability of the GaN layer grown on h-BN, we subsequently grew an NUV-LED
structure and fabricated a device that operated well in optoelectrical performance experiments.
Our findings validate the potential usefulness of h-BN to be a substrate in the direct growth of a
GaN layer.
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1. Introduction

The epitaxial development of GaN-based light-emitting diodes (LEDs) has brought
about a significant transformation in the solid-state lighting sector [1–4]. GaN-based
near-ultraviolet LEDs (NUV-LEDs) emitting light in the 370–400 nm range are employed
as effective excitation sources for inorganic and organic luminescent materials used in
white light production [5,6] and have been extensively used in various applications over
the past few decades due to significant advancements in device efficiency, durability,
and stability within the field of technology [7,8]. While the latter two qualities are, to a
large extent, inherent to the material’s properties, the device efficiency, i.e., the sum of
internal and external quantum efficiencies, is principally decided by the structural and
optical quality of the active layers and the device configuration. To optimize the internal
quantum efficiency to its maximum extent, the most ideal approach is to grow the active
layers on a native GaN substrate. GaN-based NUV-LEDs that are constructed via hetero-
epitaxial growth on c-plane sapphire, SiC, or Si, as native GaN substrates, are prohibitively
expensive. Among several substrates, the c-plane sapphire has many merits, including
high-temperature resistance, preservation of the hexagonal crystal structure, and cost-
effectiveness. However, the direct growth of an NUV-LED on a sapphire substrate leads
to a low-quality layer and the eventual deterioration of device performance because of
significant differences in the fundamental properties of the GaN layer and the sapphire
substrate, such as lattice constants and thermal expansion coefficients, resulting in highly
dense threading dislocations (TDs) [9,10]. It is noteworthy that this mismatch problem is a
primary hurdle that needs to be addressed to achieve highly efficient NUV-LEDs.

Recently, the epitaxial growth of sp3-bonded group-III-nitrides on sp2-bonded
two-dimensional (2D) materials, such as hexagonal boron nitride (h-BN) or graphene, has
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garnered significant attention due to its remarkable physical characteristics, which include
high thermal conductivities, chemical and thermal stability, and mechanical flexibility [11–21].
In this case, the 2D material serves a dual purpose, functioning both as a buffer layer featuring
a hexagonal in-plane lattice arrangement and as a release layer for mechanically exfoliating
the layer. This approach has the potential to enable the production of large-scale flexible
III-nitride devices. Achieving the direct epitaxial growth of a GaN layer on 2D materials
poses challenges, primarily stemming from the low surface energies of 2D materials due
to the absence of dangling bonds along the c-plane [11–19]. To resolve this issue, several
pioneering studies have demonstrated that the epitaxial growth of a GaN layer on graphene
or h-BN can be realized by integrating additional processing that forms dangling bonds or by
adding layers, such as zinc oxide nano-walls [11,12], AlN [13,15,18], carbon nanotubes [17],
and nanorods [20]. In addition, Wu et al. introduced the growth of an AlGaN-based deep-
ultraviolet LED structure on oxygen-plasma-treated h-BN/Al2O3 [22]. Liu et al. also reported
the interfacial bonding behavior and nucleation phenomena of a GaN layer grown on an
activated h-BN/sapphire substrate [19]. Although the growth of a GaN layer on graphene
or h-BN has been reported, differences in the nucleation behavior of a GaN layer grown on
graphene and those grown on h-BN have seldom been reported.

In this study, we utilized graphene and h-BN as intermediary substrates to analyze
disparities in the nucleation characteristics of GaN layers grown on them. It was success-
fully deposited on h-BN/sapphire substrates with the aid of a traditional low-temperature
GaN buffer layer. Note that although a flat GaN layer has been successfully grown on
both graphene and h-BN by pioneering works [11,15,19], growing GaN on graphene is not
as easily accessible as that on h-BN. We also grew GaN-based NUV-LEDs based on these
planar GaN layers on the h-BN/sapphire substrate and compared their performance with
that of conventional sapphire-grown NUV-LEDs.

2. Materials and Methods

2.1. Synthesis of h-BN

A large-scale h-BN layer investigated in this work was synthesized on 35 µm thick
Cu foils (sourced from Nippon Mining) using low-pressure chemical vapor deposition
(LPCVD). The copper foil’s surface was made flat via an electrochemical polishing (ECP)
process, conducted in a solution containing phosphoric acid and water for 10 min at 1.8 V.
In this process, a Cu plate was employed as the cathode, whereas a 100 × 100 mm copper
foil served as the working electrode. Borazine (B3N3H6), as a precursor to h-BN, was stored
in a bubbler-equipped canister in a chiller at −10 ◦C. Following this, the copper foil that
had been treated with ECP was placed in the middle position of a quartz tube and heated
using a split-tube furnace. Meanwhile, the quartz tube was pumped down to 0.018 torr,
and H2 gas was flown through the reactor at 15 sccm during the temperature ramp-up
up to 1040 ◦C. The annealing step was carried out at 1040 ◦C for 60 min under flowing
H2 gas (15 sccm) at a specified low pressure. The h-BN was synthesized by introducing
a mixture of borazine (0.3 sccm) and H2 (70 sccm) at 1040 ◦C for 90 s at a pressure of
5 × 10−3 torr. These conditions are ideal for achieving high-quality uniform h-BN. The
sample was subsequently rapidly cooled to room temperature in a hydrogen environment,
after which the h-BN was transferred onto various substrates, including sapphire, glass,
and SiO2/Si, using a technique similar to that used to transfer graphene, in order to apply
various substrates and investigate the structural properties of h-BN. Additional information
is provided in our previous report [23].

2.2. Synthesis of Graphene

The graphene that was applied in our study was produced on the ECP-treated
copper foil by the use of LPCVD. The copper foil was introduced into a quartz tube
with a diameter of 4 inches and placed under an ongoing temperature increase of up to
1030 ◦C for a duration of 60 min. This process was carried out in the environment of H2 gas
flowing at a rate of 15 sccm using a split-tube furnace. At the same time, the chemical
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vapor deposition (CVD) chamber conducted a vacuum process, lowering the pressure to
0.072 torr. Following that, copper foils underwent an annealing process for 60 min. To
obtain high-quality graphene, we employed the two-step growth method. In the initial
stages, the attainment of large-size graphene domains was successfully achieved on a
copper foil via the reduction in nucleation sites in an ambient atmosphere consisting of
a mixture of CH4 (5 sccm) and H2 (100 sccm) gases. This process was carried out for a
duration of 60 s at a temperature of 1030 ◦C. In the next step, the continuous graphene
surface was accomplished by enlarging the flow rate of CH4 (13 sccm) and increasing the
growth time to 8 min. This was carried out while keeping the H2 flow rate and tempera-
ture identical. The chamber was finally cooled to room temperature by injecting Ar gas
(500 sccm). Further details are presented in a previous report [24].

2.3. 2D Materials (h-BN or Graphene) Transfer

In order to protect and transfer the 2D materials onto the desired substrate, polymethyl-
methacrylate (PMMA) was placed onto the surface of 2D materials using a spin-coating
process. The spin-coating was carried out at a speed of 4000 rpm for 50 s. Prior to the
2D materials transfer, the unintentional formation of 2D materials on the opposite side
of the copper foil was eliminated via the utilization of O2 plasma etching. Subsequently,
the copper foil with PMMA-covered 2D materials was immersed in a solution containing
0.1 M ammonium persulfate [(NH4)2S2O8] for 4 h, allowing the process of etching the
copper foil. Then, PMMA/2D materials were transferred onto various substrates, such
as the 300 nm SiO2/Si substrate, the c-plane sapphire, glass, and Cu mesh TEM grid, to
investigate the properties of 2D materials and to grow GaN. The PMMA was removed
using acetone, and the sample was annealed for 2 h at 500 ◦C in an Ar/H2 gas mixture to
eliminate any remaining PMMA residues.

2.4. Growth of un-Doped GaN on an h-BN/Sapphire Substrate

A GaN epilayer was formed using metal–organic chemical vapor deposition (MOCVD)
on an h-BN/sapphire substrate under identical growth conditions to those used to directly
grow the GaN layer on a sapphire substrate. A 25 nm thick GaN buffer layer was applied
to a sapphire substrate at 560 ◦C for 100 s under a growth pressure of 400 mbar as part of
the conventional GaN growth process. Following this, a 3.7 µm thick undoped GaN layer
was grown for 2 h at 1130 ◦C and 100 mbar.

2.5. Growth and Fabrication of the NUV-LED Structure

The LED configuration included an undoped GaN layer, a Si-doped n-type GaN layer,
five sets of InGaN/AlGaN multi-quantum wells (MQWs), a Mg-doped p-AlGaN electron-
blocking layer (EBL), and a Mg-doped p-type GaN layer. A 2 µm thick Si-doped n-type
GaN layer was deposited on the undoped GaN layer on the h-BN/sapphire substrate
at 1100 ◦C and 400 mbar for 60 min. Following this, five sets of In0.04Ga0.96N quantum
wells and Al0.08Ga0.92N barrier layers, each with thicknesses of 3 and 12 nanometers, were
grown at 720 ◦C and 810 ◦C, respectively, to serve as the active layers. Then, a 25 nm
thick Mg-doped p-Al0.25Ga0.75N electron-blocking layer (EBL) and a 100 nm thick p-type
GaN contact layer were deposited at 1040 ◦C. To activate the Mg dopants, rapid thermal
annealing was performed in a nitrogen (N2) atmosphere at 940 ◦C for 40 s. The p-type GaN
layer was calculated to have a hole concentration of approximately 1016 cm−3. Figure 1 il-
lustrates a schematic representation of an InGaN/AlGaN NUV-LED wafer developed on an
h-BN/sapphire substrate. Further details are provided in the report of Seo et al. [25]. After
LED wafer growth, individual LEDs, each with a chip dimension of 350 × 350 µm, were
manufactured by utilizing an inductively coupled plasma etcher (ICP) with Cl2/BCl3/Ar
gases to delineate the mesa region until the n-type GaN layer was revealed for contact with
the n-electrode. Using an electron beam evaporator, a 200 nm thick layer of indium tin
oxide (ITO) was then applied as a transparent current-spreading electrode on the p-type
GaN layer. Finally, 50 nm thick Cr and 250 nm thick Au layers were deposited onto both
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the n-type GaN and ITO layers to serve as the n- and p-electrodes, employing an electron
beam evaporator.
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Figure 1. Schematic diagram of InGaN/AlGaN NUV-LED wafer grown on h-BN/sapphire substrate.

2.6. Formation of Patterned 2D Materials

The CVD-grown 2D materials were transferred onto a c-plane sapphire substrate to
fabricate patterned 2D materials. Subsequently, the designated area of 3 × 3 µm was coated
with a photoresist (PR), acting as a protective mask against the etchant. The 2D materials
were then patterned by exposing them to an ICP using O2 plasma. Finally, the PR was
removed using acetone.

2.7. Characterization

Field-emission scanning electron microscopy (SEM) was employed to examine the
surface structures of h-BN on copper foil, the initial phase of the GaN buffer layer on the h-
BN/sapphire substrate, and the subsequent undoped GaN layer grown on these substrates.
X-ray photoelectron spectroscopy (XPS) was conducted with the use of monochromatic alu-
minum K-alpha X-rays, utilizing equipment from Thermo Fisher Scientific. High-resolution
transmission electron microscopy (HRTEM) was performed using an FEI TITAN G2 instru-
ment equipped with an image Cs corrector and a monochromator provided by Thermo
Fisher Scientific in Waltham, MA, USA. The equipment was operated at an optimized
accelerator voltage of 60 kV to avoid damaging the h-BN. The crystallinities of the GaN
layers, both with and without h-BN, were assessed via X-ray diffraction (XRD). For a
comparative evaluation, samples were scanned at 2◦/min in the 20–80◦ range. Photolumi-
nescence (PL) spectroscopy, excited with the 325 nm line of a He–Cd laser, was employed
to investigate the crystalline quality and residual strains in GaN layers cultivated on both
sapphire and h-BN/sapphire substrates. Current–voltage (I-V) plots were constructed
using a probe-station system, and electroluminescence (EL) experiments were performed.

3. Results and Discussion

In Figure 2a, one can observe an SEM image of h-BN production on copper foil via
the ECP process. The h-BN completely covered the copper foil within 90 s of growth and
exhibited a seamless two-dimensional nanosheet structure. However, wrinkles are com-
monly observed as they alleviate thermal stress; they may have originated through defect
nucleation on the step margins of copper terraces during quenching, and their presence
provides indirect evidence for the successful growth of continuous h-BN [26]. The h-BN
thickness was determined using HRTEM, the results of which are depicted in Figure 2b,
which verified that the h-BN synthesized in this study is predominantly monolayer. We
acquired B and N core-level XPS spectra of the h-BN monolayer on the copper foil to
confirm the growth of the h-BM monolayer and to quantify atomic concentrations. Atomic
concentrations were determined from the intensity of the core-level photoemission for each
element normalized by the atomic sensitivity factor at the photon emission energy. The
B-to-N atomic ratio was calculated to be 1.02:0.98, which is close to 1:1. All XPS spectra
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were Lorentzian-fitted with multiple peaks. Figure 2c,d show B 1s and N 1s peaks at 189.2
and 396.8 eV, respectively, consistent with the binding energies reported for h-BN [27,28].
In addition, Raman spectroscopy was employed, which has become a crucial technique
for characterizing and exploring two-dimensional materials to conduct a more in-depth
analysis of the crystal structure of the h-BN monolayer. In Figure 2e, the Raman spectrum
of the h-BN transferred onto the SiO2/Si substrate exhibits a peak at 1369.3 cm−1, which
is indicative of the E2g lattice-vibration mode of h-BN in-plane oscillations. The peak at
1370 cm−1 corresponds to h-BN, whereas those associated with the cubic structure are
observed at 1300 cm−1 (for the longitudinal optical vibrational mode) and 1065 cm−1 (for
the transverse optical vibrational mode). Our sample did not exhibit the vibrational mode
of cubic BN. Taking into account the number of h-BN layers, the E2g mode of bulk h-BN is
observed at approximately 1366 cm−1, whereas the E2g mode of the h-BN single layer is
located between 1368 and 1370 cm−1, and that of two-to-five-layer thick h-BN is observed
between 1364 and 1367 cm−1 [29,30]. The identification of a peak at 1369.3 cm−1 in the
h-BN indicates that it possesses a monolayer structure, which is in accordance with the
HRTEM image of the sample presented in Figure 2b. The crystal size can be inferred from
the full width at half maximum (FWHM) of the E2g mode due to its correlation with the
phonon vibration duration. The prepared h-BN has an FWHM value of approximately
26 cm−1, which is comparable to the value of previously reported h-BN [31,32].
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Figure 2. (a) SEM image of h-BN grown on copper foil; (b) HRTEM image of monolayer h-BN;
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SiO2/Si substrate.

The early stages of growth are crucial for achieving epitaxial layers and ensuring the
superior quality of the resulting layer. To examine and compare GaN nucleation on h-BN,
we acquired SEM images of the GaN buffer layer on a graphene/sapphire substrate and
an h-BN/sapphire substrate, each with a 3 × 3 µm pattern size. This experiment enabled
the initial GaN growth on sapphire, graphene, and h-BN to be compared. Figure 3a shows
that dense and almost homogeneous nucleation occurred as the GaN buffer layer grew
on sapphire. However, the GaN buffer layer grown on graphene exhibited irregular and
low-density nucleation, which is attributable to the inherent non-reactivity of graphene
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and stems from its hexagonal arrangement of sp2-bonded carbon atoms that lack dangling
bonds [11]. The nucleated GaN exhibited an irregular three-dimensional growth pattern,
leading to unevenly dispersed nucleation and resulting in a partially covered GaN surface
after a growth period of 3 h (Figure 3c). In the case of h-BN (Figure 3b), the GaN buffer layer
displays a consistent and organized GaN nucleation morphology, in contrast to the GaN
buffer layer on graphene. However, GaN was less densely nucleated on h-BN than the GaN
buffer layer grown on sapphire. The B-N bond types provide a reasonable explanation for
the differences observed between graphene and h-BN. While the C-C- bonds in graphene
are purely covalent and have evenly distributed electrons, the B-N bonds in the h-BN
sheets display an alternating ionic/covalent nature due to the significant difference in the
electronegativities of B and N [33,34]. We believe that electrically active N atoms attract the
gallium atoms, which assists nucleation. First, growth begins only from GaN nucleation
seeds that originate from N atoms or imperfections, such as point defects, wrinkles, and
folds. These islands increase in size and spread progressively across the h-BN as growth
progresses. The GaN crystallites eventually coalesce laterally to cover the entire surface.
The GaN buffer layers do not cover the entire surface during the early growth following
GaN deposition at low growth temperatures. This activity led to a noticeable transformation
of the GaN surface, from a three-dimensional to a two-dimensional structure, on the h-BN
during subsequent high-temperature growth, as shown by the SEM image in Figure 2d.
The ultimate thickness of the GaN layer was ascertained to be 3.7 µm.
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We synthesized GaN on h-BN with a crack-free, mirror-like, and flat morphology.
However, directly comparing a GaN layer on h-BN and its counterpart on graphene may
not provide an entirely accurate result, considering that the GaN layer on graphene does
not exhibit a typical two-dimensional morphology. We examined two samples to assess the
crystallinity of the GaN layer on h-BN: GaN grown on h-BN and conventional GaN grown
on a sapphire substrate. XRD omega-scanning is typically used to evaluate the crystallinity
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of a GaN layer. Figure 4 shows the XRD rocking curves for both the symmetric (002)
and asymmetric (102) planes of GaN on sapphire and h-BN, which are commonly used
to identify dislocation types. Specific lattice distortions are well known to influence the
omega-scan FWHM values of crystal planes, such that the (002) plane is susceptible to screw
or mixed dislocations, whereas the (102) plane is responsive to all types of dislocations,
including pure-edge, screw, and mixed [17,35,36]. When compared to a conventional
GaN layer grown on sapphire, the GaN grown on h-BN exhibits a slightly larger FWHM
value for its (002) plane (308 vs. 268 arcsec), whereas the FWHM of the (102) plane is
significantly larger (824 vs. 573 arcsec). Despite the slightly higher FWHM value for the
(002) plane, the considerably higher value for the (102) plane implies the existence of more
pure-edge dislocations in the GaN in h-BN than those on sapphire. The results presented
herein suggest that the crystallinity of the GaN grown on h-BN is inferior to that grown
on sapphire.
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Figure 4. XRD omega rocking curves for the (a,b) symmetrical (002) and (c,d) asymmetrical (102)
reflections of a GaN epilayer grown on sapphire and h-BN.

The impact of h-BN on the optical characteristics of the GaN layer was examined using
PL spectroscopy, a rapid and nondestructive method, the results of which are depicted in
Figure 5. The PL spectrum is notably influenced by the strain state and epilayer defects.
Figure 5 depicts the room-temperature photoluminescence (PL) spectra of GaN grown
separately on h-BN and on a sapphire substrate. Similar strong near-band-edge (NBE)
emission peaks were observed at approximately 362 nm for both samples; however, GaN
grown on h-BN exhibited an NBE emission peak intensity that was approximately 8% less
intense than that grown on sapphire. The intensity of the NBE emission peak is generally
acknowledged to be closely related to the defect density [37]. Although we successfully
grew a smooth and crack-free GaN layer on h-BN, the GaN layer formed on h-BN appeared
to contain additional defects, which is in good accord with the XRD results shown in
Figure 4.



Materials 2023, 16, 7216 8 of 11

Materials 2023, 16, x FOR PEER REVIEW 8 of 11 
 

 

defects. Figure 5 depicts the room-temperature photoluminescence (PL) spectra of GaN 
grown separately on h-BN and on a sapphire substrate. Similar strong near-band-edge 
(NBE) emission peaks were observed at approximately 362 nm for both samples; however, 
GaN grown on h-BN exhibited an NBE emission peak intensity that was approximately 
8% less intense than that grown on sapphire. The intensity of the NBE emission peak is 
generally acknowledged to be closely related to the defect density [37]. Although we suc-
cessfully grew a smooth and crack-free GaN layer on h-BN, the GaN layer formed on h-
BN appeared to contain additional defects, which is in good accord with the XRD results 
shown in Figure 4. 

 
Figure 5. Room-temperature PL spectra of GaN epilayer formed on sapphire and h-BN. 

We used a two-dimensional GaN layer on h-BN to fabricate NUV-LEDs, and LED 
devices with and without h-BN were fabricated to understand the real potential of the 
GaN layer grown on h-BN. We examined the effect of h-BN on the optoelectrical perfor-
mance of the constructed NUV-LEDs. Figure 6a compares the I-V characteristics of an 
NUV-LED fabricated on h-BN with that fabricated on a sapphire substrate. The NUV-
LEDs exhibited forward voltages of 3.25 V (on sapphire) and 3.37 V (on h-BN) at a driving 
current of 20 mA. The forward voltage of the NUV-LED on h-BN is slightly elevated com-
pared to that on sapphire, which is rationalized by the higher number of defects and the 
greater internal strain in the GaN layer grown on h-BN. In general, TDs in LEDs serve as 
pathways for current leakage, thereby possibly increasing the forward voltage [38,39]; 
consequently, they serve as non-radiative recombination centers. The EL spectra of the 
NUV-LEDs fabricated on h-BN and sapphire substrates are shown in Figure 6b,c, respec-
tively, which were obtained by varying the injection current in the 10–100 mA range. Both 
samples demonstrated adequate stability when tested at injection currents of up to 100 
mA. The EL emission wavelength was observed to slightly redshift with increasing ap-
plied current (from 375 nm at 10 mA to 378 nm at 100 mA). The blue InGaN/GaN LED 
exhibited a lower emission peak energy than the theoretical value due to the quantum 
confinement Stark effect (QCSE). This shift originates from strong spontaneous polariza-
tion and internal piezoelectric fields associated with the high indium mole fraction. The 
peak position of the blue LED underwent a progressive shift toward higher energies with 
increasing excitation power, which is attributable to a higher photogenerated-carrier den-
sity leading to a lower QCSE and resulting in a blueshift in the emission peak as a conse-
quence. The redshift behavior of the NUV-LEDs is a result of the relatively weak QCSE 
induced by a lower indium mole fraction [40]. The EL emission intensity of the NUV-LED 
on h-BN is 30% lower than that of the NUV-LED on the sapphire substrate at an injection 
current of 20 mA. The insets in Figure 6b,c present the electroluminescence (EL) emission 
images of the constructed devices at an injection current of 20 mA. The NUV-LED on the 
h-BN substrate is less bright than that on the sapphire substrate. Commercially advancing 

Figure 5. Room-temperature PL spectra of GaN epilayer formed on sapphire and h-BN.

We used a two-dimensional GaN layer on h-BN to fabricate NUV-LEDs, and LED
devices with and without h-BN were fabricated to understand the real potential of the GaN
layer grown on h-BN. We examined the effect of h-BN on the optoelectrical performance
of the constructed NUV-LEDs. Figure 6a compares the I-V characteristics of an NUV-LED
fabricated on h-BN with that fabricated on a sapphire substrate. The NUV-LEDs exhibited
forward voltages of 3.25 V (on sapphire) and 3.37 V (on h-BN) at a driving current of
20 mA. The forward voltage of the NUV-LED on h-BN is slightly elevated compared to
that on sapphire, which is rationalized by the higher number of defects and the greater
internal strain in the GaN layer grown on h-BN. In general, TDs in LEDs serve as pathways
for current leakage, thereby possibly increasing the forward voltage [38,39]; consequently,
they serve as non-radiative recombination centers. The EL spectra of the NUV-LEDs
fabricated on h-BN and sapphire substrates are shown in Figure 6b,c, respectively, which
were obtained by varying the injection current in the 10–100 mA range. Both samples
demonstrated adequate stability when tested at injection currents of up to 100 mA. The
EL emission wavelength was observed to slightly redshift with increasing applied current
(from 375 nm at 10 mA to 378 nm at 100 mA). The blue InGaN/GaN LED exhibited a
lower emission peak energy than the theoretical value due to the quantum confinement
Stark effect (QCSE). This shift originates from strong spontaneous polarization and internal
piezoelectric fields associated with the high indium mole fraction. The peak position
of the blue LED underwent a progressive shift toward higher energies with increasing
excitation power, which is attributable to a higher photogenerated-carrier density leading
to a lower QCSE and resulting in a blueshift in the emission peak as a consequence. The
redshift behavior of the NUV-LEDs is a result of the relatively weak QCSE induced by a
lower indium mole fraction [40]. The EL emission intensity of the NUV-LED on h-BN is
30% lower than that of the NUV-LED on the sapphire substrate at an injection current of
20 mA. The insets in Figure 6b,c present the electroluminescence (EL) emission images
of the constructed devices at an injection current of 20 mA. The NUV-LED on the h-BN
substrate is less bright than that on the sapphire substrate. Commercially advancing h-BN
as a GaN growth substrate requires achieving a level of quality that exceeds that of the
GaN layer grown on sapphire. We believe that a high-quality GaN layer on h-BN can be
achieved via material optimization using active learning and lateral epitaxial overgrowth
methods. Nevertheless, the findings of this study validate the potential utility of h-BN as
a substrate.
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Figure 6. (a) I-V curves and (b,c) EL intensities with an injection current of fabricated NUV-LEDs on
h-BN and sapphire. The insets display EL images at an applied current of 20 mA.

4. Conclusions

We employed graphene and h-BN as intermediate substrates to conduct a comparative
analysis of the nucleation characteristics of GaN grown on these substrates. Although
attempts to grow GaN on graphene failed to achieve a two-dimensional morphology,
we successfully grew GaN on h-BN. The crystallinity of the GaN grown on h-BN was
established via XRD and PL spectroscopy, with the results compared to those obtained
using conventional GaN grown on sapphire. These findings reveal that the GaN produced
on h-BN was less crystalline than that grown on sapphire despite the successful growth
of crack-free GaN on h-BN. Planar GaN grown on h-BN forms a building block for the
subsequent growth of a GaN-based NUV-LED; consequently, we fabricated LED devices.
The optoelectrical performance of the manufactured NUV-LEDs was investigated to assess
the effect of h-BN, with the LED grown on h-BN demonstrating excellent operational
properties. This study demonstrated the potential applicability of h-BN as a substrate
for GaN growth. We believe that the use of various growth strategies may enable h-BN
substrates to surpass conventional sapphire substrates in terms of GaN growth quality.
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