Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = epigenetic switch based therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 2075 KiB  
Review
Epigenetic Dysregulation in Cancer: Implications for Gene Expression and DNA Repair-Associated Pathways
by Nina Rembiałkowska, Katarzyna Rekiel, Piotr Urbanowicz, Mateusz Mamala, Karolina Marczuk, Maria Wojtaszek, Marta Żywica, Eivina Radzevičiūtė-Valčiukė, Vitalij Novickij and Julita Kulbacka
Int. J. Mol. Sci. 2025, 26(13), 6531; https://doi.org/10.3390/ijms26136531 - 7 Jul 2025
Viewed by 1377
Abstract
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage [...] Read more.
Epigenetic modifications are heritable, reversible alterations that causally reshape chromatin architecture and thereby influence DNA repair without changing nucleotide sequence. DNA methylation, histone modifications and non-coding RNAs profoundly influence DNA repair mechanisms and genomic stability. Aberrant epigenetic patterns in cancer compromise DNA damage recognition and repair, therefore impairing homologous recombination (HR), non-homologous end joining (NHEJ), and base excision repair (BER) by suppressing key repair genes and lowering access to repair sites. Then it is dissected how loss-of-function mutations in Switch/Sucrose non-fermentable, imitation switch and CHD (Chromodomain helicase DNA-binding) chromatin-remodeling complexes impair nucleosome repositioning, preventing effective damage sensing and assembly of repair machinery. Non-coding RNAs contribute to epigenetic silencing at DNA break sites, exacerbating repair deficiencies. This review evaluates recent advances concerning epigenetic dysfunction and DNA repair impairment. It is also highlighted that nanoparticle-mediated delivery strategies are designed to overcome pharmacologic resistance. It is presented how epigenetic dysregulation of DNA repair can guide more effective and drug-resistant cancer therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Markers of Cancer)
Show Figures

Figure 1

27 pages, 6756 KiB  
Review
Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer
by Yan Lei and Maode Lai
Pharmaceuticals 2025, 18(5), 713; https://doi.org/10.3390/ph18050713 - 12 May 2025
Viewed by 1156
Abstract
Alternative splicing enables a single precursor mRNA to generate multiple mRNA isoforms, leading to protein variants with different structures and functions. Abnormal alternative splicing is frequently associated with cancer development and progression. Recent studies have revealed a complex and dynamic interplay between epigenetic [...] Read more.
Alternative splicing enables a single precursor mRNA to generate multiple mRNA isoforms, leading to protein variants with different structures and functions. Abnormal alternative splicing is frequently associated with cancer development and progression. Recent studies have revealed a complex and dynamic interplay between epigenetic modifications and alternative splicing. On the one hand, dysregulated epigenetic changes can alter splicing patterns; on the other hand, splicing events can influence epigenetic landscapes. The reversibility of epigenetic modifications makes epigenetic drugs, both approved and investigational, attractive therapeutic options. This review provides a comprehensive overview of the bidirectional relationship between epigenetic regulation and alternative splicing in cancer. It also highlights emerging therapeutic approaches aimed at correcting splicing abnormalities, with a special focus on drug-based strategies. These include epigenetic inhibitors, antisense oligonucleotides (ASOs), small-molecule compounds, CRISPR–Cas9 genome editing, and the SMaRT (splice-switching molecule) technology. By integrating recent advances in research and therapeutic strategies, this review provides novel insights into the molecular mechanisms of cancer and supports the development of more precise and effective therapies targeting aberrant splicing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 1489 KiB  
Review
Epigenetic Biomarkers in Thoracic Aortic Aneurysm, Dissection, and Bicuspid Aortopathy: A Comprehensive Review
by Dimitrios E. Magouliotis, Serge Sicouri, Noah Sicouri, Massimo Baudo, Francesco Cabrucci, Yoshiyuki Yamashita and Basel Ramlawi
Biomolecules 2025, 15(4), 568; https://doi.org/10.3390/biom15040568 - 11 Apr 2025
Cited by 1 | Viewed by 1073
Abstract
Thoracic aortic disease (TAD) encompasses a spectrum of life-threatening conditions, including thoracic aortic aneurysm (TAA), acute type A aortic dissection (ATAAD), and bicuspid aortic valve (BAV)-associated aortopathy. While genetic mutations are well-documented contributors, emerging evidence highlights epigenetic mechanisms as critical regulators of TAD [...] Read more.
Thoracic aortic disease (TAD) encompasses a spectrum of life-threatening conditions, including thoracic aortic aneurysm (TAA), acute type A aortic dissection (ATAAD), and bicuspid aortic valve (BAV)-associated aortopathy. While genetic mutations are well-documented contributors, emerging evidence highlights epigenetic mechanisms as critical regulators of TAD pathogenesis. This comprehensive review explores the role of epigenetic modifications—DNA methylation, histone modifications, and microRNA (miRNA) regulation—in vascular remodeling, extracellular matrix degradation, and endothelial dysfunction. Aberrant DNA methylation patterns have been implicated in TAA and ATAAD, influencing genes responsible for vascular integrity and inflammation. Histone modifications modulate smooth muscle cell phenotype switching, impacting aneurysm progression. Additionally, dysregulated miRNA expression contributes to endothelial barrier disruption and extracellular matrix remodeling, presenting novel avenues for biomarker discovery. The reversibility of epigenetic modifications offers a promising therapeutic target, with pharmacological agents such as histone deacetylase inhibitors and miRNA-based therapies showing potential in preclinical models. This review underscores the translational potential of epigenetic biomarkers for early disease detection, risk stratification, and precision medicine approaches. Further research is needed to integrate these findings into clinical practice, paving the way for innovative diagnostic and therapeutic strategies in TAD management. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

38 pages, 1488 KiB  
Review
Lineage Plasticity and Stemness Phenotypes in Prostate Cancer: Harnessing the Power of Integrated “Omics” Approaches to Explore Measurable Metrics
by Souzana Logotheti, Eugenia Papadaki, Vasiliki Zolota, Christopher Logothetis, Aristidis G. Vrahatis, Rama Soundararajan and Vasiliki Tzelepi
Cancers 2023, 15(17), 4357; https://doi.org/10.3390/cancers15174357 - 1 Sep 2023
Cited by 6 | Viewed by 3159
Abstract
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic [...] Read more.
Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients. Full article
Show Figures

Figure 1

20 pages, 696 KiB  
Review
Exploring the Roles of lncRNAs in GBM Pathophysiology and Their Therapeutic Potential
by Christian T. Stackhouse, G. Yancey Gillespie and Christopher D. Willey
Cells 2020, 9(11), 2369; https://doi.org/10.3390/cells9112369 - 28 Oct 2020
Cited by 53 | Viewed by 6254
Abstract
Glioblastoma (GBM) remains the most devastating primary central nervous system malignancy with a median survival of around 15 months. The past decades of research have not yielded significant advancements in the treatment of GBM. In that same time, a novel class of molecules, [...] Read more.
Glioblastoma (GBM) remains the most devastating primary central nervous system malignancy with a median survival of around 15 months. The past decades of research have not yielded significant advancements in the treatment of GBM. In that same time, a novel class of molecules, long non-coding RNAs (lncRNAs), has been found to play a multitude of roles in cancer and normal biology. The increased accessibility of next generation sequencing technologies and the advent of lncRNA-specific microarrays have facilitated the study of lncRNA etiology. Molecular and computational methods can be applied to predict lncRNA function. LncRNAs can serve as molecular decoys, scaffolds, super-enhancers, or repressors. These molecules can serve as phenotypic switches for GBM cells at the expression and/or epigenetic levels. LncRNAs can affect stemness/differentiation, proliferation, invasion, survival, DNA damage response, and chromatin dynamics. Aberrant expression of these transcripts may facilitate therapy resistance, leading to tumor recurrence. LncRNAs could serve as novel theragnostic or prognostic biomarkers in GBM and other cancers. RNA-based therapeutics may also be employed to target lncRNAs as a novel route of treatment for primary or recurrent GBM. In this review, we explore the roles of lncRNAs in GBM pathophysiology and posit their novel therapeutic potential for GBM. Full article
Show Figures

Figure 1

25 pages, 1616 KiB  
Review
A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer
by Cornelia Braicu, Mihail Buse, Constantin Busuioc, Rares Drula, Diana Gulei, Lajos Raduly, Alexandru Rusu, Alexandru Irimie, Atanas G. Atanasov, Ondrej Slaby, Calin Ionescu and Ioana Berindan-Neagoe
Cancers 2019, 11(10), 1618; https://doi.org/10.3390/cancers11101618 - 22 Oct 2019
Cited by 720 | Viewed by 33424
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both [...] Read more.
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies. Full article
Show Figures

Figure 1

24 pages, 665 KiB  
Review
Strategies To Modulate Heritable Epigenetic Defects in Cellular Machinery: Lessons from Nature
by Ganesh N. Pandian and Hiroshi Sugiyama
Pharmaceuticals 2013, 6(1), 1-24; https://doi.org/10.3390/ph6010001 - 27 Dec 2012
Cited by 17 | Viewed by 10212
Abstract
Natural epigenetic processes precisely orchestrate the intricate gene network by expressing and suppressing genes at the right place and time, thereby playing an essential role in maintaining the cellular homeostasis. Environment-mediated alteration of this natural epigenomic pattern causes abnormal cell behavior and shifts [...] Read more.
Natural epigenetic processes precisely orchestrate the intricate gene network by expressing and suppressing genes at the right place and time, thereby playing an essential role in maintaining the cellular homeostasis. Environment-mediated alteration of this natural epigenomic pattern causes abnormal cell behavior and shifts the cell from the normal to a diseased state, leading to certain cancers and neurodegenerative disorders. Unlike heritable diseases that are caused by the irreversible mutations in DNA, epigenetic errors can be reversed. Inheritance of epigenetic memory is also a major concern in the clinical translation of the Nobel Prize-winning discovery of induced pluripotent stem cell technology. Consequently, there is an increasing interest in the development of novel epigenetic switch-based therapeutic strategies that could potentially restore the heritable changes in epigenetically inherited disorders. Here we give a comprehensive overview of epigenetic inheritance and suggest the prospects of therapeutic gene modulation using epigenetic-based drugs, in particular histone deacetylase inhibitors. This review suggests that there is a need to develop therapeutic strategies that effectively mimic the natural environment and include the ways to modulate the gene expression at both the genetic and epigenetic levels. The development of tailor-made small molecules that could epigenetically alter DNA in a sequence-specific manner is a promising approach for restoring defects in an altered epigenome and may offer a sustainable solution to some unresolved clinical issues. Full article
(This article belongs to the Special Issue Epigenetic Therapies and Biomarkers)
Show Figures

Figure 1

Back to TopTop