Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = epigenetic readout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 1898 KB  
Review
Advances in Colorectal Cancer: Epidemiology, Gender and Sex Differences in Biomarkers and Their Perspectives for Novel Biosensing Detection Methods
by Konstantina K. Georgoulia, Vasileios Tsekouras and Sofia Mavrikou
Pharmaceuticals 2026, 19(1), 13; https://doi.org/10.3390/ph19010013 - 20 Dec 2025
Viewed by 826
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide, with its incidence and biological behavior influenced by both genetic and environmental factors. Emerging evidence highlights notable sex differences in CRC, with men generally exhibiting higher incidence rates and poorer prognoses, [...] Read more.
Colorectal cancer (CRC) remains a major cause of morbidity and mortality worldwide, with its incidence and biological behavior influenced by both genetic and environmental factors. Emerging evidence highlights notable sex differences in CRC, with men generally exhibiting higher incidence rates and poorer prognoses, while women often display stronger immune responses and distinct molecular profiles. Traditional screening tools, such as colonoscopy and fecal-based tests, have improved survival through early detection but are limited by invasiveness, cost, and adherence issues. In this context, biosensors have emerged as innovative diagnostic platforms capable of rapid, sensitive, and non-invasive detection of CRC-associated biomarkers, including genetic, epigenetic, and metabolic alterations. These technologies integrate biological recognition elements with nanomaterials, microfluidics, and digital systems, enabling the analysis of biomarkers such as proteins, nucleic acids, autoantibodies, epigenetic marks, and metabolic or VOC signatures from blood, stool, or breath and supporting point-of-care applications. Electrochemical, optical, piezoelectric, and FET platforms enable label-free or ultrasensitive multiplexed readouts and align with liquid biopsy workflows. Despite challenges related to standardization, robustness in complex matrices, and clinical validation, advances in nanotechnology, multi-analyte biosensing with artificial intelligence are enhancing biosensor performance. Integrating biosensor-based diagnostics with knowledge of sex-specific molecular and hormonal pathways may lead to more precise and equitable approaches in CRC detection, selection of therapeutic regimes and management. Full article
(This article belongs to the Special Issue Application of Biosensors in Pharmaceutical Research)
Show Figures

Graphical abstract

26 pages, 5704 KB  
Article
The Therapeutic Effect of EZH2 Inhibitors in Targeting Human Papillomavirus Associated Cervical Cancer
by Dora Vidalina, Lucy Ghali, Nick Kassouf, Shuhan Li, Dong Li and Xuesong Wen
Curr. Issues Mol. Biol. 2025, 47(12), 990; https://doi.org/10.3390/cimb47120990 - 27 Nov 2025
Viewed by 584
Abstract
High-risk human papillomavirus (HPV) is a crucial risk factor in the development of cervical cancer, where epigenetic modifications and epithelial–mesenchymal transition (EMT) processes have been implicated in cancer progression and metastasis. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, is frequently overexpressed [...] Read more.
High-risk human papillomavirus (HPV) is a crucial risk factor in the development of cervical cancer, where epigenetic modifications and epithelial–mesenchymal transition (EMT) processes have been implicated in cancer progression and metastasis. Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, is frequently overexpressed in HPV-associated cervical cancers and has been linked to tumour progression. However, there is still no consensus on the mechanisms of their action and their effectiveness on HPV-associated cancers. This study aimed to investigate whether EZH2 inhibitors (EPZ6438 and ZLD1039) can be effective in managing cervical cancer with less toxic effects than the conventional chemotherapeutic drug cisplatin. Proliferation assay and flow cytometry results showed that EZH2 inhibitors effectively induced apoptosis and arrested cells in G0/G1 phase in both HPV+ and HPV- cervical cancer cells. Both inhibitors downregulated the expression of EZH2 and HPV16 E6/E7 at mRNA and protein levels whilst upregulating expressions of p53 and Rb and epithelial markers. In summary, both EZH2 inhibitors showed therapeutic potential in comparison to cisplatin based on cellular and molecular readouts. Additionally, EPZ6438 showed a greater efficacy and higher sensitivity towards HPV+ cells, which was further supported by preliminary in vivo results from the chorioallantoic membrane assay. Full article
(This article belongs to the Special Issue Molecular Mechanism of HPV’s Involvement in Cancers)
Show Figures

Graphical abstract

26 pages, 25883 KB  
Article
The Antioxidant and HDAC-Inhibitor α-Lipoic Acid Is Synergistic with Exemestane in Estrogen Receptor-Positive Breast Cancer Cells
by Laura S. Pradel, Yu-Lin Ho, Holger Gohlke and Matthias U. Kassack
Int. J. Mol. Sci. 2024, 25(15), 8455; https://doi.org/10.3390/ijms25158455 - 2 Aug 2024
Cited by 1 | Viewed by 4238
Abstract
Anti-estrogenic therapy is established in the management of estrogen receptor (ER)-positive breast cancer. However, to overcome resistance and improve therapeutic outcome, novel strategies are needed such as targeting widely recognized aberrant epigenetics. The study aims to investigate the combination of the aromatase inhibitor [...] Read more.
Anti-estrogenic therapy is established in the management of estrogen receptor (ER)-positive breast cancer. However, to overcome resistance and improve therapeutic outcome, novel strategies are needed such as targeting widely recognized aberrant epigenetics. The study aims to investigate the combination of the aromatase inhibitor exemestane and the histone deacetylase (HDAC) inhibitor and antioxidant α-lipoic acid in ER-positive breast cancer cells. First, the enantiomers and the racemic mixture of α-lipoic acid, and rac-dihydro-lipoic acid were investigated for HDAC inhibition. We found HDAC inhibitory activity in the 1–3-digit micromolar range with a preference for HDAC6. Rac-dihydro-lipoic acid is slightly more potent than rac-α-lipoic acid. The antiproliferative IC50 value of α-lipoic acid is in the 3-digit micromolar range. Notably, the combination of exemestane and α-lipoic acid resulted in synergistic behavior under various incubation times (24 h to 10 d) and readouts (MTT, live-cell fluorescence microscopy, caspase activation) analyzed by the Chou–Talalay method. α-lipoic acid increases mitochondrial fusion and the expression of apoptosis-related proteins p21, APAF-1, BIM, FOXO1, and decreases expression of anti-apoptotic proteins survivin, BCL-2, and c-myc. In conclusion, combining exemestane with α-lipoic acid is a promising novel treatment option for ER-positive breast cancer. Full article
(This article belongs to the Special Issue Hormone Receptors and Signaling in Breast Cancer)
Show Figures

Figure 1

10 pages, 732 KB  
Article
Utility of Continuous Disease Subtyping Systems for Improved Evaluation of Etiologic Heterogeneity
by Ruitong Li, Tomotaka Ugai, Lantian Xu, David Zucker, Shuji Ogino and Molin Wang
Cancers 2022, 14(7), 1811; https://doi.org/10.3390/cancers14071811 - 2 Apr 2022
Cited by 3 | Viewed by 3069
Abstract
Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches [...] Read more.
Molecular pathologic diagnosis is important in clinical (oncology) practice. Integration of molecular pathology into epidemiological methods (i.e., molecular pathological epidemiology) allows for investigating the distinct etiology of disease subtypes based on biomarker analyses, thereby contributing to precision medicine and prevention. However, existing approaches for investigating etiological heterogeneity deal with categorical subtypes. We aimed to fully leverage continuous measures available in most biomarker readouts (gene/protein expression levels, signaling pathway activation, immune cell counts, microbiome/microbial abundance in tumor microenvironment, etc.). We present a cause-specific Cox proportional hazards regression model for evaluating how the exposure–disease subtype association changes across continuous subtyping biomarker levels. Utilizing two longitudinal observational prospective cohort studies, we investigated how the association of alcohol intake (a risk factor) with colorectal cancer incidence differed across the continuous values of tumor epigenetic DNA methylation at long interspersed nucleotide element-1 (LINE-1). The heterogeneous alcohol effect was modeled using different functions of the LINE-1 marker to demonstrate the method’s flexibility. This real-world proof-of-principle computational application demonstrates how the new method enables visualizing the trend of the exposure effect over continuous marker levels. The utilization of continuous biomarker data without categorization for investigating etiological heterogeneity can advance our understanding of biological and pathogenic mechanisms. Full article
(This article belongs to the Special Issue The Application of Biostatistics in Cancers)
Show Figures

Figure 1

12 pages, 2060 KB  
Article
Recognition of Dimethylarginine Analogues by Tandem Tudor Domain Protein Spindlin1
by Miriam R. B. Porzberg, Laust Moesgaard, Catrine Johansson, Udo Oppermann, Jacob Kongsted and Jasmin Mecinović
Molecules 2022, 27(3), 983; https://doi.org/10.3390/molecules27030983 - 1 Feb 2022
Cited by 5 | Viewed by 3218
Abstract
Epigenetic readout of the combinatorial posttranslational modification comprised of trimethyllysine and asymmetric dimethylarginine (H3K4me3R8me2a) takes place via biomolecular recognition of tandem Tudor-domain-containing protein Spindlin1. Through comparative thermodynamic data and molecular dynamics simulations, we sought to explore the binding scope of asymmetric dimethylarginine mimics [...] Read more.
Epigenetic readout of the combinatorial posttranslational modification comprised of trimethyllysine and asymmetric dimethylarginine (H3K4me3R8me2a) takes place via biomolecular recognition of tandem Tudor-domain-containing protein Spindlin1. Through comparative thermodynamic data and molecular dynamics simulations, we sought to explore the binding scope of asymmetric dimethylarginine mimics by Spindlin1. Herein, we provide evidence that the biomolecular recognition of H3K4me2R8me2a is not significantly affected when R8me2a is replaced by dimethylarginine analogues, implying that the binding of K4me3 provides the major binding contribution. High-energy water molecules inside both aromatic cages of the ligand binding sites contribute to the reader–histone association upon displacement by histone peptide, with the K4me3 hydration site being lower in free energy due to a flip of Trp151. Full article
Show Figures

Graphical abstract

20 pages, 4318 KB  
Article
The Novel Phosphatase Domain Mutations Q171R and Y65S Switch PTEN from Tumor Suppressor to Oncogene
by Jose Antonio Ma. G. Garrido, Krizelle Mae M. Alcantara, Joshua Miguel C. Danac, Fidel Emmanuel C. Serrano, Eva Maria Cutiongco-de la Paz and Reynaldo L. Garcia
Cells 2021, 10(12), 3423; https://doi.org/10.3390/cells10123423 - 5 Dec 2021
Cited by 1 | Viewed by 6081
Abstract
Phosphatase and tensin homolog deleted on chromosome 10, or PTEN, is a well-characterized tumor suppressor with both lipid and protein phosphatase activities. PTEN is often downregulated by epigenetic mechanisms such as hypermethylation, which leads to constitutive activation of the PI3K–Akt pathway. Large datasets [...] Read more.
Phosphatase and tensin homolog deleted on chromosome 10, or PTEN, is a well-characterized tumor suppressor with both lipid and protein phosphatase activities. PTEN is often downregulated by epigenetic mechanisms such as hypermethylation, which leads to constitutive activation of the PI3K–Akt pathway. Large datasets from next-generation sequencing, however, revealed that mutations in PTEN may not only hamper protein function but may also affect interactions with downstream effectors, leading to variable oncogenic readouts. Here, two novel PTEN mutations, Q171R and Y65S, identified in Filipino colorectal cancer patients, were phenotypically characterized in NIH3T3 and HCT116 cells, alongside the C124S canonical mutant and wild-type controls. The novel mutants increased cellular proliferation, resistance to apoptosis and migratory capacity. They induced gross morphological changes including cytoplasmic shrinkage, increased cellular protrusions and extensive cytoskeletal reorganization. The mutants also induced a modest increase in Akt phosphorylation. Further mechanistic studies will help determine the differential oncogenic potencies of these mutants, and resolve whether the structural constraints imposed by the mutations may have altered associations with downstream effectors. Full article
(This article belongs to the Special Issue The PTEN Tumor Suppressor and Its Role in Tumor Pathogenesis)
Show Figures

Graphical abstract

16 pages, 3732 KB  
Review
The Paramount Role of Drosophila melanogaster in the Study of Epigenetics: From Simple Phenotypes to Molecular Dissection and Higher-Order Genome Organization
by Jean-Michel Gibert and Frédérique Peronnet
Insects 2021, 12(10), 884; https://doi.org/10.3390/insects12100884 - 29 Sep 2021
Cited by 5 | Viewed by 5432
Abstract
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, [...] Read more.
Drosophila melanogaster has played a paramount role in epigenetics, the study of changes in gene function inherited through mitosis or meiosis that are not due to changes in the DNA sequence. By analyzing simple phenotypes, such as the bristle position or cuticle pigmentation, as read-outs of regulatory processes, the identification of mutated genes led to the discovery of major chromatin regulators. These are often conserved in distantly related organisms such as vertebrates or even plants. Many of them deposit, recognize, or erase post-translational modifications on histones (histone marks). Others are members of chromatin remodeling complexes that move, eject, or exchange nucleosomes. We review the role of D. melanogaster research in three epigenetic fields: Heterochromatin formation and maintenance, the repression of transposable elements by piRNAs, and the regulation of gene expression by the antagonistic Polycomb and Trithorax complexes. We then describe how genetic tools available in D. melanogaster allowed to examine the role of histone marks and show that some histone marks are dispensable for gene regulation, whereas others play essential roles. Next, we describe how D. melanogaster has been particularly important in defining chromatin types, higher-order chromatin structures, and their dynamic changes during development. Lastly, we discuss the role of epigenetics in a changing environment. Full article
(This article belongs to the Special Issue Epigenetics in Insects)
Show Figures

Figure 1

17 pages, 2321 KB  
Article
Selective Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibition by the SCH772984 Compound Attenuates In Vitro and In Vivo Inflammatory Responses and Prolongs Survival in Murine Sepsis Models
by Michal Kopczynski, Izabela Rumienczyk, Maria Kulecka, Małgorzata Statkiewicz, Kazimiera Pysniak, Zuzanna Sandowska-Markiewicz, Urszula Wojcik-Trechcinska, Krzysztof Goryca, Karolina Pyziak, Eliza Majewska, Magdalena Masiejczyk, Katarzyna Wojcik-Jaszczynska, Tomasz Rzymski, Karol Bomsztyk, Jerzy Ostrowski and Michal Mikula
Int. J. Mol. Sci. 2021, 22(19), 10204; https://doi.org/10.3390/ijms221910204 - 22 Sep 2021
Cited by 20 | Viewed by 5134
Abstract
Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and [...] Read more.
Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and AlphaLisa assay for TNFa as a readout to perform a supervised drug repurposing screen for sepsis treatment with compounds targeting epigenetic enzymes, including kinases. We identified the SCH772984 compound, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor, as an effective blocker of TNFa production in vitro. RNA-Seq of the SCH772984-treated RAW264.7 cells at 1, 4, and 24 h time points of LPS challenge followed by functional annotation of differentially expressed genes highlighted the suppression of cellular pathways related to the immune system. SCH772984 treatment improved survival in the LPS-induced lethal endotoxemia and cecal ligation and puncture (CLP) mouse models of sepsis, and reduced plasma levels of Ccl2/Mcp1. Functional analyses of RNA-seq datasets for kidney, lung, liver, and heart tissues from SCH772984-treated animals collected at 6 h and 12 h post-CLP revealed a significant downregulation of pathways related to the immune response and platelets activation but upregulation of the extracellular matrix organization and retinoic acid signaling pathways. Thus, this study defined transcriptome signatures of SCH772984 action in vitro and in vivo, an agent that has the potential to improve sepsis outcome. Full article
Show Figures

Figure 1

15 pages, 3194 KB  
Article
Mimicking the Nucleosomal Context in Peptide-Based Binders of a H3K36me Reader Increases Binding Affinity While Altering the Binding Mode
by Velten Horn, Seino A. K. Jongkees and Hugo van Ingen
Molecules 2020, 25(21), 4951; https://doi.org/10.3390/molecules25214951 - 26 Oct 2020
Cited by 2 | Viewed by 3064
Abstract
Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of [...] Read more.
Targeting of proteins in the histone modification machinery has emerged as a promising new direction to fight disease. The search for compounds that inhibit proteins that readout histone modification has led to several new epigenetic drugs, mostly for proteins involved in recognition of acetylated lysines. However, this approach proved to be a challenging task for methyllysine readers, which typically feature shallow binding pockets. Moreover, reader proteins of trimethyllysine K36 on the histone H3 (H3K36me3) not only bind the methyllysine but also the nucleosomal DNA. Here, we sought to find peptide-based binders of H3K36me3 reader PSIP1, which relies on DNA interactions to tightly bind H3K36me3 modified nucleosomes. We designed several peptides that mimic the nucleosomal context of H3K36me3 recognition by including negatively charged Glu-rich regions. Using a detailed NMR analysis, we find that addition of negative charges boosts binding affinity up to 50-fold while decreasing binding to the trimethyllysine binding pocket. Since screening and selection of compounds for reader domains is typically based solely on affinity measurements due to their lack of enzymatic activity, our case highlights the need to carefully control for the binding mode, in particular for the challenging case of H3K36me3 readers. Full article
(This article belongs to the Special Issue NMR in the Drug Design)
Show Figures

Graphical abstract

13 pages, 2715 KB  
Article
Aging and Caloric Restriction Modulate the DNA Methylation Profile of the Ribosomal RNA Locus in Human and Rat Liver
by Noémie Gensous, Francesco Ravaioli, Chiara Pirazzini, Roberto Gramignoli, Ewa Ellis, Gianluca Storci, Miriam Capri, Stephen Strom, Ezio Laconi, Claudio Franceschi, Paolo Garagnani, Fabio Marongiu and Maria Giulia Bacalini
Nutrients 2020, 12(2), 277; https://doi.org/10.3390/nu12020277 - 21 Jan 2020
Cited by 17 | Viewed by 4904
Abstract
A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one [...] Read more.
A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5′ of the 18S and the 5′ of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR. Full article
(This article belongs to the Special Issue Nutrition and Epigenetics)
Show Figures

Figure 1

22 pages, 1817 KB  
Review
Zinc Finger Readers of Methylated DNA
by Nicholas O. Hudson and Bethany A. Buck-Koehntop
Molecules 2018, 23(10), 2555; https://doi.org/10.3390/molecules23102555 - 7 Oct 2018
Cited by 49 | Viewed by 6208
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the [...] Read more.
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys2His2 zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed. Full article
(This article belongs to the Special Issue Protein-DNA Interactions: From Biophysics to Genomics)
Show Figures

Graphical abstract

19 pages, 1344 KB  
Review
Dysregulation of miRNA Expression in Cancer Associated Fibroblasts (CAFs) and Its Consequences on the Tumor Microenvironment
by Maren Schoepp, Anda Jana Ströse and Jörg Haier
Cancers 2017, 9(6), 54; https://doi.org/10.3390/cancers9060054 - 24 May 2017
Cited by 72 | Viewed by 8520
Abstract
The tumor microenvironment, including cancer-associated fibroblasts (CAF), has developed as an important target for understanding tumor progression, clinical prognosis and treatment responses of cancer. Cancer cells appear to transform normal fibroblasts (NF) into CAFs involving direct cell-cell communication and epigenetic regulations. This review [...] Read more.
The tumor microenvironment, including cancer-associated fibroblasts (CAF), has developed as an important target for understanding tumor progression, clinical prognosis and treatment responses of cancer. Cancer cells appear to transform normal fibroblasts (NF) into CAFs involving direct cell-cell communication and epigenetic regulations. This review summarizes the current understanding on miR involvement in cancer cell—tumor environment/stroma communication, transformation of NFs into CAFs, their involved targets and signaling pathways in these interactions; and clinical relevance of CAF-related miR expression profiles. There is evidence that miRs have very similar roles in activating hepatic (HSC) and pancreatic stellate cells (PSC) as part of precancerous fibrotic diseases. In summary, deregulated miRs affect various intracellular functional complexes, such as transcriptional factors, extracellular matrix, cytoskeleton, EMT/MET regulation, soluble factors, tyrosine kinase and G-protein signaling, apoptosis and cell cycle & differentiation, but also formation and composition of the extracellular microenvironment. These processes result in the clinical appearance of desmoplasia involving CAFs and fibrosis characterized by deregulated stellate cells. In addition, modulated release of soluble factors can act as (auto)activating feedback loop for transition of NFs into their pathological counterparts. Furthermore, epigenetic communication between CAFs and cancer cells may confer to cancer specific functional readouts and transition of NF. MiR related epigenetic regulation with many similarities should be considered as key factor in development of cancer and fibrosis specific environment. Full article
Show Figures

Figure 1

19 pages, 1625 KB  
Communication
SPOTing Acetyl-Lysine Dependent Interactions
by Sarah Picaud and Panagis Filippakopoulos
Microarrays 2015, 4(3), 370-388; https://doi.org/10.3390/microarrays4030370 - 17 Aug 2015
Cited by 10 | Viewed by 5950
Abstract
Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking [...] Read more.
Post translational modifications have been recognized as chemical signals that create docking sites for evolutionary conserved effector modules, allowing for signal integration within large networks of interactions. Lysine acetylation in particular has attracted attention as a regulatory modification, affecting chromatin structure and linking to transcriptional activation. Advances in peptide array technologies have facilitated the study of acetyl-lysine-containing linear motifs interacting with the evolutionary conserved bromodomain module, which specifically recognizes and binds to acetylated sequences in histones and other proteins. Here we summarize recent work employing SPOT peptide technology to identify acetyl-lysine dependent interactions and document the protocols adapted in our lab, as well as our efforts to characterize such bromodomain-histone interactions. Our results highlight the versatility of SPOT methods and establish an affordable tool for rapid access to potential protein/modified-peptide interactions involving lysine acetylation. Full article
(This article belongs to the Special Issue Peptide Microarrays)
Show Figures

Figure 1

18 pages, 1037 KB  
Review
Regulated DNA Methylation and the Circadian Clock: Implications in Cancer
by Tammy M. Joska, Riasat Zaman and William J. Belden
Biology 2014, 3(3), 560-577; https://doi.org/10.3390/biology3030560 - 5 Sep 2014
Cited by 36 | Viewed by 11673
Abstract
Since the cloning and discovery of DNA methyltransferases (DNMT), there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has [...] Read more.
Since the cloning and discovery of DNA methyltransferases (DNMT), there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM) or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes. Full article
(This article belongs to the Special Issue DNA Methylation)
Show Figures

Figure 1

Back to TopTop