Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = ephrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2992 KB  
Article
Ephrin Receptors and Ephrin Ligands in Uveal Melanoma: A Big Data Analysis Using Web Resources
by Georgios Mandrakis, Christina-Maria Flessa, Panoraia Keratsa, Apostolos Zaravinos, Stamatios Theocharis and Alexandros G. Sykaras
Int. J. Mol. Sci. 2026, 27(1), 442; https://doi.org/10.3390/ijms27010442 - 31 Dec 2025
Viewed by 431
Abstract
Uveal melanoma (UVM) is a rare cancer that represents the second most common melanoma (after the cutaneous) and the most common primary intraocular malignancy in adults. Despite recent advances in the understanding of UVM pathogenesis, its prognosis remains unchanged, with half of patients [...] Read more.
Uveal melanoma (UVM) is a rare cancer that represents the second most common melanoma (after the cutaneous) and the most common primary intraocular malignancy in adults. Despite recent advances in the understanding of UVM pathogenesis, its prognosis remains unchanged, with half of patients dying because of liver metastasis. Erythropoietin-producing human hepatocellular receptors (EPHs) constitute the largest known family of tyrosine receptors, and, along with their ligands, EFNs, regulate key physiological processes and are implicated in cancer pathogenesis. In this study, we used open-access web bioinformatics platforms to explore and analyze big datasets provided by The Cancer Genome Atlas (TCGA) UVM cohort of patients. We profiled the genomic alterations present in a subset of UVM patients, highlighting a likely pathogenic deep deletion of EPHA7. Survival analysis showed that overexpression levels of EPHA4, EPHA5, EPHA8, EPHB2, and EFNB2 are significantly associated with poor overall survival. Additionally, high expression levels of EPHA4, EPHA5, EPHA7, EPHA8, EPHB2, EFNA2, and EFNB2 correlate with reduced progression-free interval and disease-free survival. Finally, we identified the EPHs (EPHA2, EPHA4, EPHA8, and EPHB4) and EFNs (EFNA1, EFNA3, EFNA4, and EFNB2) that are significantly overexpressed in the aggressive epithelioid histological subtype and revealed that the majority of EPHs/EFNs are overexpressed in metastatic disease. In conclusion, our results highlight that a subset of EPHs and EFNs may be associated with worse clinical outcomes (EPHA4, EPHA5, EPHA7, EPHA8, EPHB2, EFNA2, and EFNB2), and an aggressive histological subtype (EPHA2, EPHA4, EPHA8, EPHB4, EFNA1, EFNA3, EFNA4, and EFNB2). The potential correlation of these genes with clinicopathological parameters of UVM need to be evaluated and validated with bioinformatic and experimental approaches in well-characterized cohorts of UVM patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

2 pages, 144 KB  
Retraction
RETRACTED: Gravina et al. The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers 2019, 11, 359
by Giovanni Luca Gravina, Andrea Mancini, Alessandro Colapietro, Simona Delle Monache, Roberta Sferra, Flora Vitale, Loredana Cristiano, Stefano Martellucci, Francesco Marampon, Vincenzo Mattei, Filip Beirinckx, Philippe Pujuguet, Laurent Saniere, Giocondo Lorenzon, Ellen van der Aar and Claudio Festuccia
Cancers 2026, 18(1), 135; https://doi.org/10.3390/cancers18010135 - 31 Dec 2025
Viewed by 205
Abstract
The journal retracts the article, “The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models” [...] Full article
22 pages, 5387 KB  
Article
EFNA5 as an Oocyte-Derived Factor Enhances Developmental Competence by Modulating Oxidative Stress, Inflammation, and Apoptosis During In Vitro Maturation
by Xingyuan Liu, Jian Cui, Yubing Wang, Jia Hao, Yingjie Wu, Yinjuan Wang, Lei An, Jianhui Tian and Guangyin Xi
Antioxidants 2025, 14(12), 1476; https://doi.org/10.3390/antiox14121476 - 9 Dec 2025
Viewed by 416
Abstract
In vitro maturation (IVM) of oocytes remains suboptimal due to oxidative stress and disrupted cumulus–oocyte communication. Oocyte-derived factors (ODFs) are key mediators of this crosstalk and crucial for oocyte competence. Here, we provide systematic evidence that ephrin-A5 (EFNA5) is an oocyte-derived membrane ligand [...] Read more.
In vitro maturation (IVM) of oocytes remains suboptimal due to oxidative stress and disrupted cumulus–oocyte communication. Oocyte-derived factors (ODFs) are key mediators of this crosstalk and crucial for oocyte competence. Here, we provide systematic evidence that ephrin-A5 (EFNA5) is an oocyte-derived membrane ligand capable of regulating oocyte quality during IVM. Cross-species transcriptomic analysis revealed that EFNA5 is stably enriched in mammalian oocytes but markedly reduced in in vitro-matured oocytes compared with in vivo counterparts. Using the ovine IVM model, supplementation with recombinant EFNA5 significantly improved blastocyst formation, increased total cell numbers, and reduced apoptosis. Mechanistically, EFNA5 promoted cumulus–oocyte complex expansion, reduced reactive oxygen species accumulation, activated NRF2-dependent antioxidant signaling, and suppressed NF-κB-driven inflammation. RNA-seq and functional validation further confirmed that EFNA5 enhanced redox homeostasis and decreased DNA damage, collectively improving oocyte developmental potential. These findings establish EFNA5 as a novel and conserved ODF that alleviates oxidative and inflammatory stress to enhance oocyte quality and embryo development, providing mechanistic insight and a potential strategy for improving assisted reproductive technologies. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

22 pages, 10255 KB  
Article
Targeting PAK1 or PAK4 Uncovers Different Mechanisms of Vascular Reprogramming in Pancreatic Cancer
by Arian Ansardamavandi, Chelsea Dumesny, Sarah Ellis, Ching-Seng Ang, Mehrdad Nikfarjam and Hong He
Cells 2025, 14(22), 1806; https://doi.org/10.3390/cells14221806 - 17 Nov 2025
Viewed by 750
Abstract
The tumour microenvironment in pancreatic ductal adenocarcinoma (PDA) regulates vascular function and therapeutic response. P21-activated kinases (PAKs) regulate cytoskeletal dynamics and angiogenesis; however, their roles in vascular reprogramming and chemotherapy responses remain unclear. This study examined the effects of a PAK1 knockdown (PAK1KD) [...] Read more.
The tumour microenvironment in pancreatic ductal adenocarcinoma (PDA) regulates vascular function and therapeutic response. P21-activated kinases (PAKs) regulate cytoskeletal dynamics and angiogenesis; however, their roles in vascular reprogramming and chemotherapy responses remain unclear. This study examined the effects of a PAK1 knockdown (PAK1KD) and a PAK4 knockout (PAK4KO) on vascular remodelling in PDA. Human PANC-1 wild-type (WT), PAK1KD, and PAK4KO cells were injected subcutaneously into the flanks of SCID mice followed gemcitabine treatment. The tumour growth, vascular density, pericyte coverage, adhesion molecules, and hypoxia were determined. A proteomics study was used to identify the molecular changes involved in the vascular pathways. PAK1KD suppressed tumour growth and angiogenesis, promoted vascular normalisation, reduced hypoxia, and increased stromal ICAM-1. PAK4KO inhibited tumour growth, enlarged vessels, enhanced angiogenesis, and reduced hypoxia. PAK4KO did not affect adhesion molecules in the absence of gemcitabine, but markedly upregulated ICAM-1 and VCAM-1 with gemcitabine. Additionally, PAK4KO promoted vascular mimicry (VM) with a compromised integrity in tumour-derived vessels, but enhanced the integrity in endothelial-derived vessels. The proteomics study confirmed the enrichment of molecules in fibronectin and the VEGF pathway in PAK4KO cancer cells, along with the upregulation of EphA2, RhoA, ROCK1, ROCK2, and components of the EPH-ephrin signalling pathway, linking to enhanced VM. Neither PAK1KD nor PAK4KO increased the gemcitabine efficacy. In conclusion, PAK1KD and PAK4KO suppressed tumour growth with distinct vascular effects, but failed to enhance the gemcitabine responses, suggesting that PAK targeting reprograms the PDA vasculature, but offers limited benefit in chemotherapy-resistant models. Full article
(This article belongs to the Special Issue Molecular, Cellular and Biochemical Approaches of Anti-Cancer Drugs)
Show Figures

Graphical abstract

12 pages, 2063 KB  
Case Report
Necrotizing Enterocolitis Due to Mesenteric Artery Thrombosis in a Patient with Craniofrontonasal Dysplasia: Casual or Causal Association?
by Gregorio Serra, Deborah Bacile, Maria Rita Di Pace, Alessandra Giliberti, Mario Giuffré, Marco Pensabene, Giusy Ranucci, Maria Sergio, Giovanni Corsello and Rosaria Nardello
J. Clin. Med. 2025, 14(19), 7055; https://doi.org/10.3390/jcm14197055 - 6 Oct 2025
Viewed by 748
Abstract
Background: Craniofrontonasal dysplasia (CFND) is an X-linked developmental disorder caused by mutations in the EFNB1 gene located on chromosome Xq13. This gene encodes ephrin-B1, a ligand for Eph receptors, which is involved in cell signaling pathways and the development of the nervous [...] Read more.
Background: Craniofrontonasal dysplasia (CFND) is an X-linked developmental disorder caused by mutations in the EFNB1 gene located on chromosome Xq13. This gene encodes ephrin-B1, a ligand for Eph receptors, which is involved in cell signaling pathways and the development of the nervous and vascular systems, as well as facial and cranial structures. Paradoxically, the syndrome manifests with greater severity in heterozygous females, whereas hemizygous males typically present with mild or no abnormalities. Methods and Results: We report the case of a late preterm female neonate with dysmorphic features at birth, who subsequently developed necrotizing enterocolitis (NEC) caused by thrombosis of the superior mesenteric artery. Extensive bowel resection led to short bowel syndrome, resulting in cholestatic liver disease, malabsorption, and growth impairment. Array-comparative genomic hybridization (a-CGH) analysis identified a ~791 Kb microduplication at Xq13.1, encompassing the EFNB1 gene, confirming the diagnosis of CFND. She was enrolled in a multidisciplinary follow-up program and, at 2 years of age, presents with marked growth and neurodevelopmental delay. Conclusions: This report describes a rare association between CFND and NEC caused by superior mesenteric artery thrombosis. To the best of our knowledge, no previously reported cases of CFND associated with thrombosis or thrombosis-related conditions, including NEC, have been identified. This is based on a literature review (2004–2025) performed using PubMed and Scopus, and limited to English-language case reports and reviews. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

10 pages, 1491 KB  
Article
Development of a Point-of-Care Immunochromatographic Lateral Flow Strip Assay for the Detection of Nipah and Hendra Viruses
by Jianjun Jia, Wenjun Zhu, Guodong Liu, Sandra Diederich, Bradley Pickering, Logan Banadyga and Ming Yang
Viruses 2025, 17(7), 1021; https://doi.org/10.3390/v17071021 - 21 Jul 2025
Cited by 1 | Viewed by 1088
Abstract
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases [...] Read more.
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases of henipavirus infection are critical to limiting the spread of these viruses. Current laboratory methods for detecting NiV and HeV include virus isolation, reverse transcription quantitative real-time PCR (RT-qPCR), and antigen detection via an enzyme-linked immunosorbent assay (ELISA), all of which require highly trained personnel and specialized equipment. Here, we describe the development of a point-of-care customized immunochromatographic lateral flow (ILF) assay that uses recombinant human ephrin B2 as a capture ligand on the test line and a NiV-specific monoclonal antibody (mAb) on the conjugate pad to detect NiV and HeV. The ILF assay detects NiV and HeV with a diagnostic specificity of 94.4% and has no cross-reactivity with other viruses. This rapid test may be suitable for field testing and in countries with limited laboratory resources. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

24 pages, 8383 KB  
Article
Idebenone Mitigates Traumatic-Brain-Injury-Triggered Gene Expression Changes to Ephrin-A and Dopamine Signaling Pathways While Increasing Microglial Genes
by Hyehyun Hwang, Chinmoy Sarkar, Boris Piskoun, Naibo Zhang, Apurva Borcar, Courtney L. Robertson, Marta M. Lipinski, Nagendra Yadava, Molly J. Goodfellow and Brian M. Polster
Cells 2025, 14(11), 824; https://doi.org/10.3390/cells14110824 - 1 Jun 2025
Cited by 1 | Viewed by 1744
Abstract
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to [...] Read more.
Traumatic brain injury (TBI) leads to persistent pro-inflammatory microglial activation implicated in neurodegeneration. Idebenone, a coenzyme Q10 analogue that interacts with both mitochondria and the tyrosine kinase adaptor SHC1, inhibits aspects of microglial activation in vitro. We used the NanoString Neuropathology Panel to test the hypothesis that idebenone post-treatment mitigates TBI-pathology-associated acute gene expression changes by moderating the pro-inflammatory microglial response to injury. Controlled cortical impact to adult male mice increased the microglial activation signature in the peri-lesional cortex at 24 h post-TBI. Unexpectedly, several microglial signature genes upregulated by TBI were further increased by post-injury idebenone administration. However, idebenone significantly attenuated TBI-mediated perturbations to gene expression associated with behavior, particularly in the gene ontology–biological process (GO:BP) pathways “ephrin receptor signaling” and “dopamine metabolic process”. Gene co-expression analysis correlated levels of microglial complement component 1q (C1q) and the neurotrophin receptor gene Ntrk1 to large (>3-fold) TBI-induced decreases in dopamine receptor genes Drd1 and Drd2 that were mitigated by idebenone treatment. Bioinformatics analysis identified SUZ12 as a candidate transcriptional regulator of idebenone-modified gene expression changes. Overall, the results suggest that idebenone may enhance TBI-induced microglial number within the first 24 h of TBI and identify ephrin-A and dopamine signaling as novel idebenone targets. Full article
Show Figures

Graphical abstract

11 pages, 526 KB  
Article
Cracking the Kinase Code: Urinary Biomarkers as Early Alarms for AAA Rupture—A Pilot Study
by Emma Maria Östling, Tomas Baltrunas, Nathalie Grootenboer and Sigitas Urbonavicius
J. Clin. Med. 2025, 14(11), 3845; https://doi.org/10.3390/jcm14113845 - 29 May 2025
Viewed by 925
Abstract
Background/Objectives: Ruptured abdominal aortic aneurysm (RAAA) remains a leading cause of vascular death, with mortality rates approaching 90%. Biomarkers capable of identifying the most at-risk population are urgently needed in the clinic. We aimed to identify potential alterations in the urine proteome that [...] Read more.
Background/Objectives: Ruptured abdominal aortic aneurysm (RAAA) remains a leading cause of vascular death, with mortality rates approaching 90%. Biomarkers capable of identifying the most at-risk population are urgently needed in the clinic. We aimed to identify potential alterations in the urine proteome that can enable non-invasive detection of abdominal aortic aneurysms (AAA) at high risk of rupture. Methods: We used multiplexed kinase inhibitor beads (MIBs) and quantitative mass spectrometry (MIB/MS) to examine potential biomarkers in urine samples. Quantitative proteomic profiling was conducted using iTRAQ labeling and LC-TEMPO MALDI-TOF/TOF analysis, revealing several dysregulated proteins in the urinary proteome between the two groups. MS and MS/MS data were generated using MALDI TOF/TOF instruments (models 5800 or 4800; AB SCIEX). MS/MS spectra were processed with ProteinPilot™ software version 3.0 (AB SCIEX) and matched against the UniProt/Swiss-Prot database for identification of proteins with an Unused ProtScore >1.3. Statistical tests were performed using R/Bioconductor software and bioinformatics analysis using open-source software. Results: We quantitatively measured activity over 130 kinases from various kinase families using MIB/MS with a threshold of 1.5-fold change in expression. Statistical analysis assigned significance to EPHB6, AXL, EPHB4, DDR1, EPHA2 and EPHB3. All were tyrosine kinases, and the Ephrin receptor type was dominant. The reduced expression of specific kinases identified by MIB/MS analysis was validated by Western blot. Conclusions: This pilot study presents a promising breakthrough in the diagnosis and surveillance of AAA. We identified six dysregulated tyrosine kinases in the urine proteome of patients with RAAAs, suggesting their potential as urinary biomarkers for early detection of AAA at high risk of rupture. However, these preliminary findings require confirmation in larger, prospective cohorts to validate their diagnostic utility and generalizability. Full article
Show Figures

Figure 1

20 pages, 14004 KB  
Article
Ephrin B1 and B2 Mediate Cedar Virus Entry into Egyptian Fruit Bat Cells
by Lea Lenhard, Martin Müller, Sandra Diederich, Lisa Loerzer, Virginia Friedrichs, Bernd Köllner, Stefan Finke, Anca Dorhoi and Gang Pei
Viruses 2025, 17(4), 573; https://doi.org/10.3390/v17040573 - 16 Apr 2025
Cited by 1 | Viewed by 1427
Abstract
Cedar virus (CedV), closely related to the Hendra and Nipah viruses, is a novel Henipavirus that was originally isolated from flying foxes in Australia in 2012. Although its glycoprotein G exhibits relatively low sequence similarity with its counterparts of the Hendra and Nipah [...] Read more.
Cedar virus (CedV), closely related to the Hendra and Nipah viruses, is a novel Henipavirus that was originally isolated from flying foxes in Australia in 2012. Although its glycoprotein G exhibits relatively low sequence similarity with its counterparts of the Hendra and Nipah viruses, CedV also uses ephrin receptors, i.e., ephrins B1, B2, A2 and A5, to enters human cells. Nevertheless, the entry mechanism of CedV into bat cells remains unexplored. Considering that Rousettus aegyptiacus (Egyptian Rousette bat, ERB) is postulated to be a reservoir host for henipaviruses, we aim to reveal the receptors utilized by CedV to enable its entry into ERB cells. To this end, we cloned the class A and B ephrins of ERB and generated CHO-K1 cells stably expressing individual ephrins. We also developed a lentivirus-based pseudovirus system containing the firefly luciferase reporter. Assessment of the luciferase activity in cells expressing single ephrins demonstrated that the ERB ephrin B1 and B2 mediated CedV pseudovirus entry. Further, we generated a recombinant CedV expressing the fluorescent protein TurboFP635 (rCedV-nTurbo635). By performing high-content microscopy and flow cytometry, we unveiled that, in addition to ephrin B1 and B2, ephrin A5 was also able to mediate rCedV-nTurbo635 entry, although to a much lesser extent. In contrast to human ephrin A2, ERB ephrin A2 failed to mediate rCedV-nTurbo635 entry. Finally, we generated ERB epithelial cells with ephrin B1 and/or ephrin B2 knockdown (KD). The entry of rCedV-nTurbo635 into ERB epithelial cells was drastically impaired by ephrin B1/B2 KD, validating the importance of ephrin B1 and B2 in its entry. Altogether, we conclude that CedV primarily employs ERB ephrin B1, B2 and, possibly, A5 for its entry into ERB cells. Full article
(This article belongs to the Special Issue Antiviral Immune Responses of Bat)
Show Figures

Figure 1

15 pages, 20405 KB  
Article
Relative Quantitation of EFNA1 Expression in Mouse Heart Tissue Histologic Sections Using MALDI-MSI
by Maria Torres, Laura Gruer, Smrithi Valsaraj, Shaun Reece, Jeremy Prokop, Tonya Zeczycki, Cameron Taylor, Taylor Byers, William Cruz, Kim Kew, Lisandra de Castro Braz and Jitka Virag
Int. J. Mol. Sci. 2025, 26(4), 1398; https://doi.org/10.3390/ijms26041398 - 7 Feb 2025
Viewed by 1492
Abstract
EFNA1 (ephrinA1), a highly expressed tyrosine kinase receptor-ligand in healthy cardiomyocytes, is reduced following myocardial infarction (MI). A single intramyocardial injection of chimeric EFNA1-Fc at the time of ischemia mitigates the injury in both reperfused and non-reperfused mouse myocardium by reducing apoptosis, necrosis, [...] Read more.
EFNA1 (ephrinA1), a highly expressed tyrosine kinase receptor-ligand in healthy cardiomyocytes, is reduced following myocardial infarction (MI). A single intramyocardial injection of chimeric EFNA1-Fc at the time of ischemia mitigates the injury in both reperfused and non-reperfused mouse myocardium by reducing apoptosis, necrosis, and inflammation. Recently, we have successfully imaged and qualitatively identified endogenous EFNA1 pre- and post-MI using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) coupled with a time-of-flight mass spectrometer (MALDI/TOF MS). Building on our previous work, we are currently focused on understanding and characterizing EFNA1’s role in cardiac tissue by developing an integrated quantitative method to determine endogenous levels of EFNA1 using MALDI-MSI technologies. Herein, we have optimized a method for the relative quantitation of endogenous tryptic EFNA1 peptides detected in the murine heart as compared with routine western blotting. In healthy myocardium, there was approximately 50 ng of endogenous EFNA1 per section of 9.43 mm3 tissue, or roughly 12 pg/µg of homogenized tissue. MALDI-MSI thus provides a tool for determining the anatomical distribution and relative quantitation of endogenous EFNA1 in cardiac tissue. Future applications of these tools will allow us to investigate the dynamic changes in EFNA1 expression profile that occur in pathological states such as myocardial infarction and upon therapeutic treatments. Full article
(This article belongs to the Special Issue Research Progress on the Mechanism and Treatment of Cardiomyopathy)
Show Figures

Figure 1

17 pages, 2759 KB  
Article
Transcriptomic Response of Balamuthia mandrillaris to Lippia graveolens Extract Fractions
by Leobardo Daniel Gonzalez-Zuñiga, Jose Reyes Gonzalez-Galaviz, Abraham Cruz-Mendívil, Fernando Lares Villa, Erick Paul Gutiérrez-Grijalva, Jaime López-Cervantes, Dalia I. Sánchez-Machado, Luis Fernando Lares-Jiménez and Libia Zulema Rodriguez-Anaya
Microbiol. Res. 2025, 16(2), 40; https://doi.org/10.3390/microbiolres16020040 - 6 Feb 2025
Viewed by 1496
Abstract
Balamuthia mandrillaris is a free-living amoeba pathogenic to humans, causing amoebic granulomatous encephalitis (GAE). Due to the associated mortality rates of <95%, the absence of treatments, and a clear understanding of the pathogenesis of this amoeba, Lippia graveolens could be an interesting alternative [...] Read more.
Balamuthia mandrillaris is a free-living amoeba pathogenic to humans, causing amoebic granulomatous encephalitis (GAE). Due to the associated mortality rates of <95%, the absence of treatments, and a clear understanding of the pathogenesis of this amoeba, Lippia graveolens could be an interesting alternative since it has been used against bacteria, fungi, and other pathogenic protozoa. This study employed RNA sequencing to analyze differentially expressed genes (DEGs), following treatment with two fractionated L. graveolens extracts (concentration: 150 µg/mL) at 48, 96, and 120 h. The DEGs identified are associated with several functions such as stress responses (Prohibitin domain-containing protein), and oxidative damage repair and cell stability (Peroxiredoxin). Genes implicated in virulence and host interaction also showed significant expression changes, such as the ADP ribosylation factor (Arf) GTPase and ephrin type-A receptor, alongside transcription factors involved in the phagocytosis of amoebas. Additionally, the analysis of Gene Ontology categories revealed terms including transmembrane signaling receptor and protein tyrosine activity, DNA replication initiation, the mitotic M phase, and membrane integrity. These results provide valuable insights into the molecular mechanisms utilized by B. mandrillaris to respond to environmental stressors and the repression of genes related to essential functions, which could serve as potential targets for developing novel strategies. Full article
Show Figures

Figure 1

15 pages, 1428 KB  
Article
Upregulation of ABLIM1 Differentiates Intrahepatic Cholangiocarcinoma from Hepatocellular Carcinoma and Both Colorectal and Pancreatic Adenocarcinoma Liver Metastases
by Tina Draškovič, Branislava Ranković, Nina Zidar and Nina Hauptman
Genes 2024, 15(12), 1545; https://doi.org/10.3390/genes15121545 - 28 Nov 2024
Cited by 3 | Viewed by 1794
Abstract
Background: Altered gene expression in cancers holds great potential to improve the diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression of the protein-coding genes ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger [...] Read more.
Background: Altered gene expression in cancers holds great potential to improve the diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression of the protein-coding genes ring finger protein 135 (RNF135), ephrin-B2 (EFNB2), ring finger protein 125 (RNF125), homeobox-C 4 (HOXC4), actin-binding LIM protein 1 (ABLIM1) and oncostatin M receptor (OSMR) and the long non-coding RNAs (lncRNA) prospero homeobox 1 antisense RNA 1 (PROX1-AS1) and leukemia inhibitory factor receptor antisense RNA 1 (LIFR-AS1) was investigated in hepatocellular carcinoma, cholangiocarcinoma, colorectal liver metastases and pancreatic ductal adenocarcinoma liver metastases. Methods: This study included 149 formalin-fixed, paraffin-embedded samples from 80 patients. After RNA isolation, quantification, reverse transcription and preamplification, real-time qPCR was performed. The gene expression between different groups was calculated relative to the expression of the reference genes using the ∆∆Cq method and statistically analyzed. The expression of the genes was additionally analyzed using the AmiCA and UCSC Xena platforms. Results: In primary cancers, our results showed differential expression between primary tumors and healthy tissues for all the genes and lncRNA examined. Moreover, we found downregulation of RNF135 in hepatocellular carcinoma, downregulation of OSMR in colorectal liver metastases and upregulation of HOXC4 in cholangiocarcinoma compared to primary liver cancers and metastatic cancers. The major finding is the upregulation of ABLIM1 in cholangiocarcinoma compared to hepatocellular carcinoma, colorectal liver metastases, pancreatic ductal adenocarcinoma liver metastases and healthy liver tissue. We propose ABLIM1 as a potential biomarker that differentiates cholangiocarcinoma from other cancers and healthy liver tissue. Conclusions: This study emphasizes the importance of understanding the differences in gene expression between healthy tissues and primary and metastatic cancers and highlights the potential use of altered gene expression as a diagnostic biomarker in these malignancies. Full article
(This article belongs to the Special Issue Genomic Diagnosis of Human Cancers)
Show Figures

Graphical abstract

11 pages, 1747 KB  
Article
The Role of Biomarkers in the Early Diagnosis of Gastric Cancer: A Study on CCR5, CCL5, PDGF, and EphA7
by Süleyman Bademler, Berkay Kılıç, Muhammed Üçüncü, Alisan Zirtiloglu and Burak İlhan
Curr. Issues Mol. Biol. 2024, 46(9), 10651-10661; https://doi.org/10.3390/cimb46090632 - 23 Sep 2024
Cited by 4 | Viewed by 1897
Abstract
Despite the use of screening programs, gastric cancer (GC) diagnosis may only be possible at an advanced stage. In this study, we examined the serum levels of C-C chemokine receptor type 5 (CCR5), C-C motif chemokine ligand 5 (CCL5), platelet-derived growth factor (PDGF), [...] Read more.
Despite the use of screening programs, gastric cancer (GC) diagnosis may only be possible at an advanced stage. In this study, we examined the serum levels of C-C chemokine receptor type 5 (CCR5), C-C motif chemokine ligand 5 (CCL5), platelet-derived growth factor (PDGF), and EphrinA7 (EphA7) in patients with gastric carcinoma and healthy controls to investigate the significance and usability of these potential biomarkers in the early diagnosis of GC. The study enrolled 69 GC patients and 40 healthy individuals. CCR5, CCL5, PDGF-BB, and EphA7 levels, which have been identified in the carcinogenesis of many cancers, were measured in the blood samples using the ELISA method. CCR5, CCL5, PDGF-BB, and EphA7 were all correlated with GC diagnosis (CCR5, p < 0.001, r = −0.449; CCL5, p = 0.014, r = −0.234; PDGF-BB, p < 0.001, r = −0.700; EPHA7, p < 0.001, r = −0.617). The serum CCR5, EphA7, and especially the PDGF-BB levels of the patients diagnosed with GC were discovered to be significantly higher compared to the healthy controls. PDGF-BB had the highest positive and negative predictive values when evaluated in ROC analysis to determine its diagnostic significance (cut-off value: 59.8 ng/L; AUC: 0.92 (0.87–0.97)). As far as we know, this is the first study to investigate the potential connection between GC and these four biomarkers. The fact that serum CCR5, CCL5, EphA7, and especially PDGF-BB levels in the patient group were significantly higher compared to healthy controls indicates that they can be used with high accuracy in the early diagnosis of GC. In addition, the levels of CCR5, PDGF-BB, and EphA7 can be used as important indicators to predict the biological behavior and prognosis of GC. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3221 KB  
Article
Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System
by Indah Permata Sari, Christopher Llynard D. Ortiz, Lee-Wei Yang, Ming-Hsiang Chen, Ming-Der Perng and Tzong-Yuan Wu
Int. J. Mol. Sci. 2024, 25(16), 9102; https://doi.org/10.3390/ijms25169102 - 22 Aug 2024
Cited by 1 | Viewed by 1989
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a [...] Read more.
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin’s interaction with NiV-G’s central hole and EphrinB2’s G-H loop, which could be the possible reason for its fusion inhibitory activity. Full article
(This article belongs to the Special Issue Infectious Diseases: Focus on Molecular Mechanisms and Future Therapy)
Show Figures

Figure 1

13 pages, 2505 KB  
Article
Transgenerational Response of Germline Nuclear Hormone Receptor Genes to Nanoplastics at Predicted Environmental Doses in Caenorhabditis elegans
by Zhengying Liu, Yuxing Wang, Qian Bian and Dayong Wang
Toxics 2024, 12(6), 420; https://doi.org/10.3390/toxics12060420 - 7 Jun 2024
Cited by 21 | Viewed by 2063
Abstract
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles [...] Read more.
Transgenerational nanoplastic toxicity could be detected in Caenorhabditis elegans after exposure at the parental generation (P0-G); however, the underlying mechanisms remain largely unclear. We aimed to examine the role of germline nuclear hormone receptors (NHRs) in controlling the transgenerational toxicity of polystyrene nanoparticles (PS-NPs) based on gene expression screening and functional analysis. Among germline NHR genes, daf-12, nhr-14, and nhr-47 expressions were increased and nhr-12 expression was decreased by PS-NPs (1 and 10 μg/L). Transgenerational alterations in expressions of these four NHR genes were also induced by PS-NPs (1 and 10 μg/L). RNAi of daf-12, nhr-14, and nhr-47 caused resistance, whereas RNAi of nhr-12 conferred susceptibility to transgenerational PS-NP toxicity. After PS-NP exposure, expressions of ins-3, daf-28, and ins-39 encoding insulin ligands, efn-3 encoding Ephrin ligand, and lin-44 encoding Wnt ligand, as well as expressions of their receptor genes (daf-2, vab-1, and/or mig-1), were dysregulated by the RNAi of daf-12, nhr-14, nhr-47, and nhr-12. Therefore, alteration in certain germline NHRs could mediate the induction of transgenerational nanoplastic toxicity by affecting secreted ligands and their receptors in the offspring of exposed organisms. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

Back to TopTop