Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = environmental management system (EMS) environmental monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4201 KiB  
Proceeding Paper
Portable, Energy-Autonomous Electrochemical Impedance Spectroscopy (EIS) System Based on Python and Single-Board Computer
by Jhon Alvaro Cuastuza and Carlos Andrés Rosero-Zambrano
Eng. Proc. 2025, 87(1), 89; https://doi.org/10.3390/engproc2025087089 - 9 Jul 2025
Viewed by 241
Abstract
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager [...] Read more.
We develop a modular, wireless, solar- and battery-powered system for detecting chlorpyrifos (LorsbanTM 2.5% DP) in water using electrochemical impedance spectroscopy (EIS). The system integrates a Raspberry Pi Zero 2W for data processing, Python-based software (version 3.12.2), and a solar charge manager to power all components via a lithium-ion battery and solar panel. A commercial EmStat Pico Module and an amperometric biosensor with acetylcholinesterase (AChE) detect chlorpyrifos. Nine water samples with varying concentrations were tested using a 20 Hz–200 kHz frequency sweep and 15 mV excitation. Bode plots and statistical analyses confirmed statistically significant impedance variation as a function of chlorpyrifos concentration, validating the system as a portable, sensitive, and effective tool for environmental monitoring. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

19 pages, 2709 KiB  
Review
Enabling Sustainable Solar Energy Systems Through Electromagnetic Monitoring of Key Components Across Production, Usage, and Recycling: A Review
by Mahdieh Samimi and Hassan Hosseinlaghab
J. Manuf. Mater. Process. 2025, 9(7), 225; https://doi.org/10.3390/jmmp9070225 - 1 Jul 2025
Viewed by 492
Abstract
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and [...] Read more.
The transition to renewable energy requires sustainable solar manufacturing through optimized Production–Usage–Recycling (PUR) cycles, where electromagnetic (EM) sensing offers non-destructive monitoring solutions. This review categorizes EM methods into low- (<100 MHz) and medium-frequency (100 MHz–10 GHz) techniques for material evaluation, defect detection, and performance optimization throughout the solar lifecycle. During production, eddy current testing and impedance spectroscopy improve quality control while reducing waste. In operational phases, RFID-based monitoring enables continuous performance tracking and early fault detection of photovoltaic panels. For recycling, electrodynamic separation efficiently recovers materials, supporting circular economies. The analysis demonstrates the unique advantages of EM techniques in non-contact evaluation, real-time monitoring, and material-specific characterization, addressing critical sustainability challenges in photovoltaic systems. By examining capabilities and limitations, we highlight EM monitoring’s transformative potential for sustainable manufacturing, from production quality assurance to end-of-life material recovery. The frequency-based framework provides manufacturers with physics-guided solutions that enhance efficiency while minimizing environmental impact. This comprehensive assessment establishes EM technologies as vital tools for advancing solar energy systems, offering practical monitoring approaches that align with global sustainability goals. The review identifies current challenges and future opportunities in implementing these techniques, emphasizing their role in facilitating the renewable energy transition through improved resource efficiency and lifecycle management. Full article
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
by Sara Moscatelli, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci and Giacomo Quattrini
Geographies 2025, 5(2), 26; https://doi.org/10.3390/geographies5020026 - 16 Jun 2025
Viewed by 484
Abstract
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for [...] Read more.
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for improving grazing management and animal welfare and ensuring the sustainability of these systems. This study evaluated the movement patterns of sheep grazing on pastures with differing vegetation indices in the Sibillini Mountains. Twenty lactating ewes foraging on two different pastures were monitored from June to October 2023 using GPS collars and accelerometers. GPS tracks were segmented using the Expectation Maximization Binary Clustering (EmBC) method to characterize movement behaviors, such as foraging, traveling, and resting. The NDVI was used to characterize vegetation dynamics, showing notable differences between the two pastures and across the grazing season. Additive mixed models were used to analyze data, accounting for individual variability and temporal autocorrelation in the sample. The results suggest that variations in the NDVI influence grazing behavior, with sheep in areas of lower vegetation density exhibiting increased movement during foraging. These findings provide valuable insights for optimizing grazing practices and promoting sustainable land use. Full article
Show Figures

Graphical abstract

23 pages, 4398 KiB  
Article
Modelling of Energy Management Strategies in a PV-Based Renewable Energy Community with Electric Vehicles
by Shoaib Ahmed, Amjad Ali, Sikandar Abdul Qadir, Domenico Ramunno and Antonio D’Angola
World Electr. Veh. J. 2025, 16(6), 302; https://doi.org/10.3390/wevj16060302 - 29 May 2025
Viewed by 547
Abstract
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles [...] Read more.
The Renewable Energy Community (REC) has emerged in Europe, encouraging the use of renewable energy sources (RESs) within localities, bringing social, economic, and environmental benefits. RESs are characterized by various loads, including household consumption, storage systems, and the increasing integration of electric vehicles (EVs). EVs offer opportunities for distributed RESs, such as photovoltaic (PV) systems, which can be economically advantageous for RECs whose members own EVs and charge them within the community. This article focuses on the integration of PV systems and the management of energy loads for different participants—consumers and prosumers—along with a small EV charging setup in the REC. A REC consisting of a multi-unit building is examined through a mathematical and numerical model. In the model, hourly PV generation data are obtained from the PVGIS tool, while residential load data are modeled by converting monthly electricity bills, including peak and off-peak details, into hourly profiles. Finally, EV hourly load data are obtained after converting the data of voltage and current data from the charging monitoring portal into power profiles. These data are then used in our mathematical model to evaluate energy fluxes and to calculate self-consumed, exported, and shared energy within the REC based on energy balance criteria. In the model, an energy management system (EMS) is included within the REC to analyze EV charging behavior and optimize it in order to increase self-consumption and shared energy. Following the EMS, it is also suggested that the number of EVs to be charged should be evaluated in light of energy-sharing incentives. Numerical results have been reported for different seasons, showing the possibility for the owners of EVs to charge their vehicles within the community to optimize self-consumption and shared energy. Full article
Show Figures

Figure 1

24 pages, 6999 KiB  
Article
Energy-Efficient and Comprehensive Garbage Bin Overflow Detection Model Based on Spiking Neural Networks
by Liwen Yang, Xionghui Zha, Jin Huang, Zhengming Liu, Jiaqi Chen and Chaozhou Mou
Smart Cities 2025, 8(2), 71; https://doi.org/10.3390/smartcities8020071 - 20 Apr 2025
Viewed by 826
Abstract
With urbanization and population growth, waste management has become a pressing issue. Intelligent detection systems using deep learning algorithms to monitor garbage bin overflow in real time have emerged as a key solution. However, these systems often face challenges such as lack of [...] Read more.
With urbanization and population growth, waste management has become a pressing issue. Intelligent detection systems using deep learning algorithms to monitor garbage bin overflow in real time have emerged as a key solution. However, these systems often face challenges such as lack of dataset diversity and high energy consumption due to the extensive use of IoT devices. To address these challenges, we developed the Garbage Bin Status (GBS) dataset, which includes 16,771 images. Among them, 8408 images were generated using the Stable Diffusion model, depicting garbage bins under diverse weather and lighting scenarios. This enriched dataset enhances the generalization of garbage bin overflow detection models across various environmental conditions. We also created an energy-efficient model called HERD-YOLO based on Spiking Neural Networks. HERD-YOLO reduces energy consumption by 89.2% compared to artificial neural networks and outperforms the state-of-the-art EMS-YOLO in both energy efficiency and detection performance. This makes HERD-YOLO a promising solution for sustainable and efficient urban waste management, contributing to a better urban environment. Full article
Show Figures

Figure 1

23 pages, 6929 KiB  
Article
IoT Energy Management System Based on a Wireless Sensor/Actuator Network
by Omar Arzate-Rivas, Víctor Sámano-Ortega, Juan Martínez-Nolasco, Mauro Santoyo-Mora, Coral Martínez-Nolasco and Roxana De León-Lomelí
Technologies 2024, 12(9), 140; https://doi.org/10.3390/technologies12090140 - 24 Aug 2024
Cited by 4 | Viewed by 3362
Abstract
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS). An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as [...] Read more.
The use of DC microgrids (DC-µGs) offers a variety of environmental benefits; albeit, a successful implementation depends on the implementation of an Energy Management System (EMS). An EMS is broadly implemented with a hierarchical and centralized structure, where the communications layer presents as a key element of the system to achieve a successful operation. Additionally, the relatively low cost of wireless communication technologies and the advantages offered by remote monitoring have promoted the inclusion of the Internet of Things (IoT) and Wireless Sensor and Actuator Network (WSAN) technologies in the energy sector. In this article is presented the development of an IoT EMS based on a WSAN (IoT-EMS-WSAN) for the management of a DC-µG. The proposed EMS is composed of a WiFi-based WSAN that is interconnected to a DC-µG, a cloud server, and a User Web App. The proposed system was compared to a conventional EMS with a high latency wired communication layer. In comparison to the conventional EMS, the IoT-EMS-WSAN increased the updating time from 100 ms to 1200 ms; also, the bus of the DC-µG maintained its stability even though its variations increased; finally, the DC bus responded to an energy-outage scenario with a recovery time of 1 s instead of 150 ms, as seen with the conventional EMS. Despite the reduced latency, the developed IoT-EMS-WSAN was demonstrated to be a reliable tool for the management, monitoring, and remote controlling of a DC-µG. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

40 pages, 5502 KiB  
Review
Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview
by Shoaib Ahmed, Amjad Ali, Alessandro Ciocia and Antonio D’Angola
Energies 2024, 17(13), 3100; https://doi.org/10.3390/en17133100 - 24 Jun 2024
Cited by 22 | Viewed by 3932
Abstract
The Renewable Energy Community (REC) in Europe promotes renewable energy sources (RESs), offering social, economic, and environmental benefits. This new entity could alter consumer energy relationships, requiring self-consumption, energy sharing, and full utilization of RESs. Modernizing energy systems within the REC requires addressing [...] Read more.
The Renewable Energy Community (REC) in Europe promotes renewable energy sources (RESs), offering social, economic, and environmental benefits. This new entity could alter consumer energy relationships, requiring self-consumption, energy sharing, and full utilization of RESs. Modernizing energy systems within the REC requires addressing self-consumption, energy sharing, demand response, and energy management system initiatives. The paper discusses the role of decentralized energy systems, the scenarios of the REC concept and key aspects, and activities involving energy generation, energy consumption, energy storage systems, energy sharing, and EV technologies. Moreover, the present work highlights the research gap in the existing literature and the necessity of addressing the technological elements. It also highlights that there is no uniform architecture or model for the REC, like in the case of microgrids. Additionally, the present work emphasizes the role and importance of technological elements in RECs, suggesting future recommendations for EMS, DSM, data monitoring and analytics, communication systems, and the software or tools to ensure reliability, efficiency, economic, and environmental measures. The authors also highlight the crucial role of policymakers and relevant policies, which could help in implementing these technological elements and show the importance of the RECs for a sustainable energy shift and transition. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

24 pages, 1796 KiB  
Article
Mind the Gap: Management System Standards Addressing the Gap for Ontario’s Municipal Drinking Water, Wastewater and Stormwater Ecosystem of Regulations
by Edgar Tovilla
Sustainability 2020, 12(17), 7099; https://doi.org/10.3390/su12177099 - 31 Aug 2020
Cited by 5 | Viewed by 4313
Abstract
The research finds evidence in support of and wide recognition of the practical value of management system standards (MSS) by assisting municipalities in meeting their human health protection, environmental objectives, addressing environmental and property damage risks, and providing an additional mechanism of public [...] Read more.
The research finds evidence in support of and wide recognition of the practical value of management system standards (MSS) by assisting municipalities in meeting their human health protection, environmental objectives, addressing environmental and property damage risks, and providing an additional mechanism of public accountability and transparency. Semi-structured interviews were applied to assess perceptions with practitioners and environmental non-governmental organizations on whether a similar approach to the legally required drinking water quality management standard (DWQMS) could be applied for the municipal wastewater and stormwater sectors. Twelve Ontario municipalities have adopted or are in the process of adopting an ISO 14001 environmental management system (EMS) standard for their wastewater and/or stormwater systems, which represents 66% of Ontario’s population. With the large urban centres (e.g., Toronto, York Region, Durham Region, Halton Region and Peel Region) adopting the standard, this is likely to influence small to medium-sized cities to follow a similar approach. Although, resources might be a factor preventing the cohort of smaller utilities voluntarily taking this path. Regulations governing Ontario’s municipal drinking water, wastewater and stormwater utilities were compared via gap analysis. Gaps on management of the system, performance monitoring, auditing and having minimum design criteria left the municipal wastewater and stormwater sectors behind in comparison with recently updated (2004–2008) regulatory framework for the drinking water sector. Based on the identification and review of significant gaps in wastewater and stormwater regulation (compared with the drinking water sector), environmental MSS should be incorporated to strengthen the regulatory framework of these sectors. These phenomena also depict a form of sustainable governance with the use of MSS, which are initiated, developed and regulated by non-state actors, recognizing the value of non-state rule instruments in the water, wastewater and stormwater sectors. Full article
(This article belongs to the Special Issue Sustainable Corporate Social Responsibility Management and Innovation)
Show Figures

Figure 1

27 pages, 2711 KiB  
Review
Dynamic Flow Approaches for Automated Radiochemical Analysis in Environmental, Nuclear and Medical Applications
by Jixin Qiao
Molecules 2020, 25(6), 1462; https://doi.org/10.3390/molecules25061462 - 24 Mar 2020
Cited by 17 | Viewed by 5024
Abstract
Automated sample processing techniques are desirable in radiochemical analysis for environmental radioactivity monitoring, nuclear emergency preparedness, nuclear waste characterization and management during operation and decommissioning of nuclear facilities, as well as medical isotope production, to achieve fast and cost-effective analysis. Dynamic flow based [...] Read more.
Automated sample processing techniques are desirable in radiochemical analysis for environmental radioactivity monitoring, nuclear emergency preparedness, nuclear waste characterization and management during operation and decommissioning of nuclear facilities, as well as medical isotope production, to achieve fast and cost-effective analysis. Dynamic flow based approaches including flow injection (FI), sequential injection (SI), multi-commuted flow injection (MCFI), multi-syringe flow injection (MSFI), multi-pumping flow system (MPFS), lab-on-valve (LOV) and lab-in-syringe (LIS) techniques have been developed and applied to meet the analytical criteria under different situations. Herein an overall review and discussion on these techniques and methodologies developed for radiochemical separation and measurement of various radionuclides is presented. Different designs of flow systems with combinations of radiochemical separation techniques, such as liquid–liquid extraction (LLE), liquid–liquid microextraction (LLME), solid phase extraction chromatography (SPEC), ion exchange chromatography (IEC), electrochemically modulated separations (EMS), capillary electrophoresis (CE), molecularly imprinted polymer (MIP) separation and online sensing and detection systems, are summarized and reviewed systematically. Full article
(This article belongs to the Special Issue Modern Flow Analysis)
Show Figures

Figure 1

22 pages, 1269 KiB  
Article
Particle (Soot) Pollution in Port Harcourt Rivers State, Nigeria—Double Air Pollution Burden? Understanding and Tackling Potential Environmental Public Health Impacts
by Okhumode H. Yakubu
Environments 2018, 5(1), 2; https://doi.org/10.3390/environments5010002 - 24 Dec 2017
Cited by 47 | Viewed by 32044
Abstract
Residents of Port Harcourt in Rivers State, Nigeria, and its environs have since the last quarter of 2016 been experiencing adverse environmental impacts of particle (soot) pollution. This “double air pollution burden”—the unresolved prevailing widespread air pollution and the “added” emergence of particle [...] Read more.
Residents of Port Harcourt in Rivers State, Nigeria, and its environs have since the last quarter of 2016 been experiencing adverse environmental impacts of particle (soot) pollution. This “double air pollution burden”—the unresolved prevailing widespread air pollution and the “added” emergence of particle pollution considered an environmental health threat, led to protests against government inaction in some parts of the state. In February 2017, several months following the onset of the pollution, the government declared an Emergency, and set up a Task Force to investigate and find a solution to the problem. Global research suggests that particle pollution correlates positively with a range of morbidities and an increased risk of mortality among exposed populations. This underscores the need for rigorous implementation of existing environmental legislations established to protect the environment and public health. Nigeria’s rapid response to the 2014–2015 Ebola Virus Disease (EVD) and successful prevention of its spread provides some lessons for addressing such environmental health emergencies—strategic action, including effective environmental risk communication, environmental audit, and monitoring is key. Epidemiological studies of the affected population is imperative. A concerted effort by the Rivers State Ministries of Environment and Health, as well as academia and private organizations is required. Public service campaign in terms of government providing up to date information on the existing situation is required. Full article
Show Figures

Figure 1

Back to TopTop