Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview
Abstract
:1. Introduction
1.1. Background Study
1.2. Research Problem and Scope of the Work
1.3. Original Contribution of the Work and Paper Organization
2. Key Aspects of RECs
2.1. Energy Generation from RESs
2.2. Different Energy Consumption Scenarios and Prosumers Models
2.3. Energy Storage System (ESS)
2.4. Energy Sharing
2.5. Electric Vehicle (EV) Technologies and Charging Infrastructure
3. Technological Elements
3.1. Role and Importance of Technological Elements
3.2. REC Research Work Progress
3.2.1. Technological Elements Concern
3.2.2. REC Architecture Concern
3.3. Energy Management System (EMS)
3.4. Demand Side Management (DSM)
3.5. Data Monitoring and Analytics
3.6. Communication System
3.7. Modeling Tools/Software
4. Discussion and Future Perspective
- Technological components like EMS, DSM, energy monitoring, analytics, and communication systems are crucial for RECs. Moreover, precise system modeling is essential for effective planning and management. They enable operators and participants to analyze parameters, enhance systems, and plan effectively. Researchers and stakeholders should focus on these tools for planning, design, operation, and maintenance.
- Improving infrastructure adaptability and grid flexibility, governments and energy regulators can amend laws and regulations to allow for the community-level integration of RESs. This entails enabling DR programs, putting smart grid technologies in place and permitting bidirectional energy flow. The advantages connected with energy generation, sharing, and consumption should be the main points of emphasis, along with a thorough grasp of the process for doing so. In a very significant way, the IoT and SCADA facilitate the formation and connectivity of decentralized and transactional energy markets for real-time platforms to monitor the data. Although two-way energy exchanges between producers and consumers will probably be the most challenging in the future, based on their earlier studies, new technology should nevertheless be able to address this issue.
- To improve flexibility, utilities can also invest in changes to the grid infrastructure such as the installation of ESSs, the deployment of sophisticated metering equipment, and the use of distribution automation technologies.
- For more growth and advancement in the discussed technological elements for RECs, there must be the integration of new emerging technologies like AI, machine learning, IoT, and blockchain in energy systems like RECs to make the system reliable, efficient, cost-effective, sustainable, and user-friendly. These additional technologies will enable and foster more positive outcomes like gathering real-time data and monitoring, fault detection and analysis and its diagnostics, forecasting and analysis based on it, smart systems and automated control, optimum energy use and flow, and improving energy efficiencies.
- It is shown that there is not any common or unique REC architecture, model, or example following the literature, which confuses readers working on it. It is possible to create a new, improved, or uniform model or architecture that would lower planning and operating costs by considering the stochastic nature of integrated distributed generation in RECs, ESSs, EVs, or other components and following the constraints. This could be possible with the support of researchers, stakeholders, and policymakers.
- Community-based RE targets are examples of supportive policies and regulations that governments can introduce to encourage the development of RECs. Although the addition of the above-recommended technological elements, including software and tools, has a high cost, it is challenging for investors and community members to cover it. However, in this case, great support is required from the government, policymakers, researchers, and practitioners to foster the development and adoption of RECs.
- Policymakers play an important role by giving supportive policies through financial support (by giving loans or subsidies), regulatory frameworks, easy and fast processing, less documentary work and barriers, flexible permission procedures, and supportive legislation and standards, promoting the REC and the awareness of its benefits in public. Moreover, the researchers could also be the main part of the RECs, who contribute by giving innovative ideas and technological solutions in optimizing the energy flows and efficient operation using algorithms, carrying data and their analysis, forecasting, research collaboration to develop and enhance the current work, proper modeling, design, and simulation. All these are considered as the key pillars for reliable, efficient, economical, and sustainable options for the RECs. By considering both the policy and research as a priority, we see that they result in the fast adoption and development of RECs making resilient, efficient, reliable, and sustainable energy transition options.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
ANN | Artificial neural network |
ANSI | American National Standards Institute |
BSET | Battery Energy Storage Evaluation |
BESS | Battery energy storage system |
CEA | City Energy Analyst |
CitySIM | City simulation |
CEC | Citizen Energy Community |
DSO | Distribution system operator |
DCS | Distributed Control Systems |
DER-CAM | Distributed Energy Resources Customer Adoption Model |
DSM | Demand side management |
DR | Demand Response |
DREs | Distributed Renewable Energy resources |
DSS | distribution system simulator |
DGs | Distributed Generators |
ESS | Energy Storage System |
EES | Electrical energy system |
EC | Energy Community |
EMS | Energy Management System |
EE | Energy efficiency |
EU | European Union |
GHG | Greenhouse gases |
HAN | Home area network |
HOGA | Hybrid Optimization by Genetic Algorithms |
HMI | human-machine interaction |
HESET | Hydrogen Energy Storage Evaluation Tool |
HOMER | Hybrid Optimization of Multiple Energy Resources |
HMI | human-machine interaction |
H2RES | Hydrogen to Renewable Energy System |
ISO | International Organization for Standardization |
IEC | International Electrotechnical commission |
IEEE | Institute of Electrical and Electronics Engineers |
ITU | International Telecommunication Union |
MDT | Microgrid Design Toolkit |
MASCORE | Microgrid Asset Sizing considering Cost and Resilience |
PV | Photovoltaic |
PCM | phase change materials |
PSHET | Pumped-Storage Hydropower Evaluation |
PHS | Pumped Hydro storage |
P2P | peer-to-peer |
RE/RES/RESs | Renewable Energy/Renewable energy source/Renewable energy sources |
REC | Renewable Energy Community |
RED II | Renewable Energy Directive |
REopt | Renewable Energy Integration and Optimization |
RET | Renewable energy technology |
SAM | System advisory model |
SCADA | Supervisory Control and Data Acquisition |
SMES | Superconducting magnetic energy storage |
TIA | Telecommunications Industry Association |
ToU | Time of Use |
URBANopt | Urban Renewable Building and Neighborhood Optimization |
VBAT | Virtual Battery Assessment Tool |
WAN | Wide area network |
References
- Sperling, K.; Hvelplund, F.; Mathiesen, B.V. Centralisation and Decentralisation in Strategic Municipal Energy Planning in Denmark. Energy Policy 2011, 39, 1338–1351. [Google Scholar] [CrossRef]
- Gui, E.M.; MacGill, I. Typology of Future Clean Energy Communities: An Exploratory Structure, Opportunities, and Challenges. Energy Res. Soc. Sci. 2018, 35, 94–107. [Google Scholar] [CrossRef]
- Bhan, V.; Shaikh, S.A.; Khand, Z.H.; Ahmed, T.; Khan, L.A.; Chachar, F.A.; Shaikh, A.M. Performance Evaluation of Perturb and Observe Algorithm for MPPT with Buck–Boost Charge Controller in Photovoltaic Systems. J. Control Autom. Electr. Syst. 2021, 32, 1652–1662. [Google Scholar] [CrossRef]
- Shaikh, A.M.; Shaikh, M.F.; Shaikh, S.A.; Krichen, M.; Rahimoon, R.A.; Qadir, A. Comparative Analysis of Different MPPT Techniques Using Boost Converter for Photovoltaic Systems under Dynamic Shading Conditions. Sustain. Energy Technol. Assess. 2023, 57, 103259. [Google Scholar]
- Moradi, H.; Esfahanian, M.; Abtahi, A.; Zilouchian, A. Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties. Energies 2017, 10, 1430. [Google Scholar] [CrossRef]
- Prehoda, E.; Pearce, J.M.; Schelly, C. Policies to Overcome Barriers for Renewable Energy Distributed Generation: A Case Study of Utility Structure and Regulatory Regimes in Michigan. Energies 2019, 12, 674. [Google Scholar] [CrossRef]
- Cabana-Jiménez, K.; Candelo-Becerra, J.E.; Sousa Santos, V. Comprehensive Analysis of Microgrids Configurations and Topologies. Sustainability 2022, 14, 1056. [Google Scholar] [CrossRef]
- Kumar, Y.V.P.; Ravikumar, B. Integrating Renewable Energy Sources to an Urban Building in India: Challenges, Opportunities, and Techno-Economic Feasibility Simulation. Technol. Econ. Smart Grids Sustain. Energy 2016, 1, 1. [Google Scholar] [CrossRef]
- Shaikh, S.; Katyara, S.; Majeed, A.; Khand, Z.H.; Staszewski, L.; Shah, M.; Shaikh, M.F.; Bhan, V.; Memon, Q.; Majeed, U. Holistic and Scientific Perspectives of Energy Sector in Pakistan: Progression, Challenges and Opportunities. IEEE Access 2020, 8, 227232–227246. [Google Scholar] [CrossRef]
- Basak, P.; Chowdhury, S.; nee Dey, S.H.; Chowdhury, S.P. A Literature Review on Integration of Distributed Energy Resources in the Perspective of Control, Protection and Stability of Microgrid. Renew. Sustain. Energy Rev. 2012, 16, 5545–5556. [Google Scholar] [CrossRef]
- Eid, C.; Bollinger, L.A.; Koirala, B.; Scholten, D.; Facchinetti, E.; Lilliestam, J.; Hakvoort, R. Market Integration of Local Energy Systems: Is Local Energy Management Compatible with European Regulation for Retail Competition? Energy 2016, 114, 913–922. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Shaikh, A.M.; Shaikh, M.F.; Jiskani, S.A.; Memon, Q.A. Technical and Economical Evaluation of Solar PV System for Domestic Load in Pakistan: An Overlook Contributor to High Tariff and Load Shedding. Sir Syed Univ. Res. J. Eng. Technol. 2022, 12, 23–30. [Google Scholar] [CrossRef]
- Kyriakopoulos, G.L. Energy Communities Overview: Managerial Policies, Economic Aspects, Technologies, and Models. J. Risk Financ. Manag. 2022, 15, 521. [Google Scholar] [CrossRef]
- Mendes, G.; Ioakimidis, C.; Ferrão, P. On the Planning and Analysis of Integrated Community Energy Systems: A Review and Survey of Available Tools. Renew. Sustain. Energy Rev. 2011, 15, 4836–4854. [Google Scholar] [CrossRef]
- Koirala, B.P.; Chaves Ávila, J.P.; Gómez, T.; Hakvoort, R.A.; Herder, P.M. Local Alternative for Energy Supply: Performance Assessment of Integrated Community Energy Systems. Energies 2016, 9, 981. [Google Scholar] [CrossRef]
- Ahmed, S.; Ali, A. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations. Sustainability 2024, 16, 1749. [Google Scholar] [CrossRef]
- Gandhi, O.; Kumar, D.S.; Rodríguez-Gallegos, C.D.; Srinivasan, D. Review of Power System Impacts at High PV Penetration Part I: Factors Limiting PV Penetration. Sol. Energy 2020, 210, 181–201. [Google Scholar] [CrossRef]
- Müller, M.; Viernstein, L.; Truong, C.N.; Eiting, A.; Hesse, H.C.; Witzmann, R.; Jossen, A. Evaluation of Grid-Level Adaptability for Stationary Battery Energy Storage System Applications in Europe. J. Energy Storage 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 328, 82–209.
- Council, M.; Community, E.; Establishing, T.; Community, E.; Treaty, E.C.; Community, E.; Community, E.; Treaty, E.C.; Decisions, M.C.; Directive, T.; et al. DIRECTIVE (EU) 2019/944 of 5 June 2019 on Common Rules for the Internal Market for Electricity < … > CHAPTER I. Off. J. Eur. Union 2022, 158, 125–199. [Google Scholar]
- Friman, H.; Banner, I.; Sitbon, Y.; Einav, Y.; Shaked, N. Preparing the Public Opinion in the Community to Accept Distributed Energy Systems and Renewable Energy. Energies 2022, 15, 4226. [Google Scholar] [CrossRef]
- Belmar, F.; Baptista, P.; Neves, D. Modelling Renewable Energy Communities: Assessing the Impact of Different Configurations, Technologies and Types of Participants. Energy Sustain. Soc. 2023, 13, 18. [Google Scholar] [CrossRef]
- Azarova, V.; Cohen, J.; Friedl, C.; Reichl, J. Designing Local Renewable Energy Communities to Increase Social Acceptance: Evidence from a Choice Experiment in Austria, Germany, Italy, and Switzerland. Energy Policy 2019, 132, 1176–1183. [Google Scholar] [CrossRef]
- De Grève, Z.; Bottieau, J.; Vangulick, D.; Wautier, A.; Dapoz, P.-D.; Arrigo, A.; Toubeau, J.-F.; Vallée, F. Machine Learning Techniques for Improving Self-Consumption in Renewable Energy Communities. Energies 2020, 13, 4892. [Google Scholar] [CrossRef]
- Kallis, G.; Stephanides, P.; Bailey, E.; Devine-Wright, P.; Chalvatzis, K.; Bailey, I. The Challenges of Engaging Island Communities: Lessons on Renewable Energy from a Review of 17 Case Studies. Energy Res. Soc. Sci. 2021, 81, 102257. [Google Scholar] [CrossRef]
- Bashi, M.H.; De Tommasi, L.; Le Cam, A.; Relaño, L.S.; Lyons, P.; Mundó, J.; Pandelieva-Dimova, I.; Schapp, H.; Loth-Babut, K.; Egger, C. A Review and Mapping Exercise of Energy Community Regulatory Challenges in European Member States Based on a Survey of Collective Energy Actors. Renew. Sustain. Energy Rev. 2023, 172, 113055. [Google Scholar] [CrossRef]
- Kazmi, H.; Munné-Collado, Í.; Mehmood, F.; Syed, T.A.; Driesen, J. Towards Data-Driven Energy Communities: A Review of Open-Source Datasets, Models and Tools. Renew. Sustain. Energy Rev. 2021, 148, 111290. [Google Scholar] [CrossRef]
- Kubli, M.; Puranik, S. A Typology of Business Models for Energy Communities: Current and Emerging Design Options. Renew. Sustain. Energy Rev. 2023, 176, 113165. [Google Scholar] [CrossRef]
- Heldeweg, M.A.; Saintier, S. Renewable Energy Communities as ‘Socio-Legal Institutions’: A Normative Frame for Energy Decentralization? Renew. Sustain. Energy Rev. 2020, 119, 109518. [Google Scholar] [CrossRef]
- Tatti, A.; Ferroni, S.; Ferrando, M.; Motta, M.; Causone, F. The Emerging Trends of Renewable Energy Communities’ Development in Italy. Sustainability 2023, 15, 6792. [Google Scholar] [CrossRef]
- Inês, C.; Guilherme, P.L.; Esther, M.-G.; Swantje, G.; Stephen, H.; Lars, H. Regulatory Challenges and Opportunities for Collective Renewable Energy Prosumers in the EU. Energy Policy 2020, 138, 111212. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Cundeva, S.; Georghiou, G.E. Social Arrangements, Technical Designs and Impacts of Energy Communities: A Review. Renew. Energy 2021, 169, 1138–1156. [Google Scholar] [CrossRef]
- Lode, M.L.; Te Boveldt, G.; Coosemans, T.; Camargo, L.R. A Transition Perspective on Energy Communities: A Systematic Literature Review and Research Agenda. Renew. Sustain. Energy Rev. 2022, 163, 112479. [Google Scholar] [CrossRef]
- Hoicka, C.E.; Lowitzsch, J.; Brisbois, M.C.; Kumar, A.; Camargo, L.R. Implementing a Just Renewable Energy Transition: Policy Advice for Transposing the New European Rules for Renewable Energy Communities. Energy Policy 2021, 156, 112435. [Google Scholar] [CrossRef]
- Reis, I.F.G.; Gonçalves, I.; Lopes, M.A.R.; Antunes, C.H. Business Models for Energy Communities: A Review of Key Issues and Trends. Renew. Sustain. Energy Rev. 2021, 144, 111013. [Google Scholar] [CrossRef]
- Hanke, F.; Guyet, R.; Feenstra, M. Do Renewable Energy Communities Deliver Energy Justice? Exploring Insights from 71 European Cases. Energy Res. Soc. Sci. 2021, 80, 102244. [Google Scholar] [CrossRef]
- Hewitt, R.J.; Bradley, N.; Baggio Compagnucci, A.; Barlagne, C.; Ceglarz, A.; Cremades, R.; McKeen, M.; Otto, I.M.; Slee, B. Social Innovation in Community Energy in Europe: A Review of the Evidence. Front. Energy Res. 2019, 7, 31. [Google Scholar] [CrossRef]
- Cuenca, J.J.; Jamil, E.; Hayes, B. State of the Art in Energy Communities and Sharing Economy Concepts in the Electricity Sector. IEEE Trans. Ind. Appl. 2021, 57, 5737–5746. [Google Scholar] [CrossRef]
- Zhou, Y.; Lund, P.D. Peer-to-Peer Energy Sharing and Trading of Renewable Energy in Smart Communities—Trading Pricing Models, Decision-Making and Agent-Based Collaboration. Renew. Energy 2023, 207, 177–193. [Google Scholar] [CrossRef]
- Roberts, J.; Frieden, D.; D’Herbemont, S. COMPILE Project—Energy Community Definitions. Compil. May 2019. Available online: https://main.compile-project.eu/wp-content/uploads/Explanatory-note-on-energy-community-definitions.pdf (accessed on 14 July 2023).
- Energy Communities. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/energy-communities_en (accessed on 14 July 2023).
- Ceglia, F.; Esposito, P.; Marrasso, E.; Sasso, M. From Smart Energy Community to Smart Energy Municipalities: Literature Review, Agendas and Pathways. J. Clean. Prod. 2020, 254, 120118. [Google Scholar] [CrossRef]
- What Is an Energy Community?—European Commission. Available online: https://rural-energy-community-hub.ec.europa.eu/energy-communities/what-energy-community_en#the-differences-between-the-two-communities (accessed on 17 February 2024).
- Blasch, J.; van der Grijp, N.M.; Petrovics, D.; Palm, J.; Bocken, N.; Darby, S.J.; Barnes, J.; Hansen, P.; Kamin, T.; Golob, U. New Clean Energy Communities in Polycentric Settings: Four Avenues for Future Research. Energy Res. Soc. Sci. 2021, 82, 102276. [Google Scholar] [CrossRef]
- Tricarico, L. Is Community Earning Enough? Reflections on Engagement Processes and Drivers in Two Italian Energy Communities. Energy Res. Soc. Sci. 2021, 72, 101899. [Google Scholar] [CrossRef]
- Chaudhry, S.; Surmann, A.; Kühnbach, M.; Pierie, F. Renewable Energy Communities as Modes of Collective Prosumership: A Multi-Disciplinary Assessment Part II—Case Study. Energies 2022, 15, 8936. [Google Scholar] [CrossRef]
- Franco, J.F.; Macedo, L.H.; Arias, N.B.; Tabares, A.; Romero, R.; Soares, J. Mathematical Models and Optimization Techniques to Support Local Electricity Markets. In Local Electricity Markets; Elsevier: Amsterdam, The Netherlands, 2021; pp. 259–276. [Google Scholar]
- Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R. Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization. IEEE Trans. Power Syst. 2009, 25, 360–370. [Google Scholar] [CrossRef]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed Generation: Definition, Benefits and Issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Söder, L. Distributed Generation: A Definition. Electr. Power Syst. Res. 2001, 57, 195–204. [Google Scholar] [CrossRef]
- Bayod-Rújula, A.A. Future Development of the Electricity Systems with Distributed Generation. Energy 2009, 34, 377–383. [Google Scholar] [CrossRef]
- Ackermann, T.; Andersson, G.; Soder, L. Electricity Market Regulations and Their Impact on Distributed Generation. In Proceedings of the DRPT2000. International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, London, UK, 4–7 April 2000; Proceedings (Cat. No. 00EX382). pp. 608–613. [Google Scholar]
- Kishinevsky, Y.; Zelingher, S. Coming Clean with Fuel Cells. IEEE Power Energy Mag. 2003, 1, 20–25. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, H.; Margolis, R.; Su, J. Analysis of Distributed-Generation Photovoltaic Deployment, Installation Time and Cost, Market Barriers, and Policies in China. Energy Policy 2015, 81, 43–55. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzella, S.; Minelli, F.; Minichiello, F. Obtaining the NZEB Target by Using Photovoltaic Systems on the Roof for Multi-Storey Buildings. Energy Build. 2022, 267, 112147. [Google Scholar] [CrossRef]
- Sarasa-Maestro, C.J.; Dufo-López, R.; Bernal-Agustín, J.L. Photovoltaic Remuneration Policies in the European Union. Energy Policy 2013, 55, 317–328. [Google Scholar] [CrossRef]
- Paliwal, P.; Patidar, N.P.; Nema, R.K. Planning of Grid Integrated Distributed Generators: A Review of Technology, Objectives and Techniques. Renew. Sustain. Energy Rev. 2014, 40, 557–570. [Google Scholar] [CrossRef]
- Kotilainen, K. Perspectives on the Prosumer Role in the Sustainable Energy System; Tampere University: Tampere, Finland, 2020; ISBN 9520315764. [Google Scholar]
- Algarvio, H. The Role of Local Citizen Energy Communities in the Road to Carbon-Neutral Power Systems: Outcomes from a Case Study in Portugal. Smart Cities 2021, 4, 840–863. [Google Scholar] [CrossRef]
- Alifia, T.; Fraser, K. Achieving Renewable Energy Targets: The Impact of Residential Solar PV Prosumers in Indonesia. Int. J. Sustain. Energy Plan. Manag. 2021, 32, 111–124. [Google Scholar]
- Hu, J.-L.; Chuang, M.-Y. The Importance of Energy Prosumers for Affordable and Clean Energy Development: A Review of the Literature from the Viewpoints of Management and Policy. Energies 2023, 16, 6270. [Google Scholar] [CrossRef]
- Kästel, P.; Gilroy-Scott, B. Economics of Pooling Small Local Electricity Prosumers—LCOE & Self-Consumption. Renew. Sustain. Energy Rev. 2015, 51, 718–729. [Google Scholar]
- Rathnayaka, A.J.D.; Potdar, V.M.; Dillon, T.S.; Hussain, O.K.; Chang, E. A Methodology to Find Influential Prosumers in Prosumer Community Groups. IEEE Trans. Ind. Inform. 2013, 10, 706–713. [Google Scholar] [CrossRef]
- Yildiz, Ö.; Gotchev, B.; Holstenkamp, L.; Müller, J.R.; Radtke, J.; Welle, L. Consumer (Co-) Ownership in Renewables in Germany. Energy Transit. Financ. Consum. Co-Ownersh. Renew. 2019, 271–293. Available online: https://link.springer.com/chapter/10.1007/978-3-319-93518-8_13 (accessed on 5 May 2024).
- Lowitzsch, J.; Hoicka, C.E.; van Tulder, F.J. Renewable Energy Communities under the 2019 European Clean Energy Package–Governance Model for the Energy Clusters of the Future? Renew. Sustain. Energy Rev. 2020, 122, 109489. [Google Scholar] [CrossRef]
- EEA. Energy Prosumers in Europe: Citizen Participation in the Energy Transition; 2022. ISBN 978-92-9480-472-3. Available online: https://www.qualenergia.it/wp-content/uploads/2022/09/TH_AL_22_007_EN_N_Energy-Prosumers-in-Europe.pdf (accessed on 5 May 2024).
- Gallego-Castillo, C.; Heleno, M.; Victoria, M. Self-Consumption for Energy Communities in Spain: A Regional Analysis under the New Legal Framework. Energy Policy 2021, 150, 112144. [Google Scholar] [CrossRef]
- Franzoi, N.; Prada, A.; Verones, S.; Baggio, P. Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates. Energies 2021, 14, 4165. [Google Scholar] [CrossRef]
- Mustika, A.D.; Rigo-Mariani, R.; Debusschere, V.; Pachurka, A. A Two-Stage Management Strategy for the Optimal Operation and Billing in an Energy Community with Collective Self-Consumption. Appl. Energy 2022, 310, 118484. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Jordehi, A.R.; Hasanien, H.M.; Khosravi, N.; Mansouri, S.A.; Jurado, F. On Different Collective Storage Schemes in Energy Communities with Internal Market. J. Energy Storage 2024, 75, 109699. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ilinca, A.; Perron, J. Energy Storage Systems—Characteristics and Comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [Google Scholar] [CrossRef]
- Ibrahim, H.; Beguenane, R.; Merabet, A. Technical and Financial Benefits of Electrical Energy Storage. In Proceedings of the 2012 IEEE Electrical Power and Energy Conference, London, ON, Canada, 10–12 October 2012; pp. 86–91. [Google Scholar]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy Storage Systems: A Review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Schoenung, S.M.; Eyer, J.M.; Iannucci, J.J.; Horgan, S.A. Energy Storage for a Competitive Power Market. Annu. Rev. Energy Environ. 1996, 21, 347–370. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Hannan, M.A.; Wali, S.B.; Ker, P.J.; Abd Rahman, M.S.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.M.; Mahlia, T.M.I.; Dong, Z.Y. Battery Energy-Storage System: A Review of Technologies, Optimization Objectives, Constraints, Approaches, and Outstanding Issues. J. Energy Storage 2021, 42, 103023. [Google Scholar] [CrossRef]
- Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garcia, C.; Luchetta, A. Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities. Energies 2021, 14, 8480. [Google Scholar] [CrossRef]
- Bartolini, A.; Carducci, F.; Muñoz, C.B.; Comodi, G. Energy Storage and Multi Energy Systems in Local Energy Communities with High Renewable Energy Penetration. Renew. Energy 2020, 159, 595–609. [Google Scholar] [CrossRef]
- Guedes, W.; Deotti, L.; Dias, B.; Soares, T.; de Oliveira, L.W. Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications. Energies 2022, 15, 7714. [Google Scholar] [CrossRef]
- Ye, G.; Li, G.; Wu, D.; Chen, X.; Zhou, Y. Towards Cost Minimization with Renewable Energy Sharing in Cooperative Residential Communities. IEEE Access 2017, 5, 11688–11699. [Google Scholar] [CrossRef]
- Herenčić, L.; Kirac, M.; Keko, H.; Kuzle, I.; Rajšl, I. Automated Energy Sharing in MV and LV Distribution Grids within an Energy Community: A Case for Croatian City of Križevci with a Hybrid Renewable System. Renew. Energy 2022, 191, 176–194. [Google Scholar] [CrossRef]
- Gjorgievski, V.Z.; Velkovski, B.; Minuto, F.D.; Cundeva, S.; Markovska, N. Energy Sharing in European Renewable Energy Communities: Impact of Regulated Charges. Energy 2023, 281, 128333. [Google Scholar] [CrossRef]
- Minelli, F.; Ciriello, I.; Minichiello, F.; D’Agostino, D. From Net Zero Energy Buildings to an Energy Sharing Model-The Role of NZEBs in Renewable Energy Communities. Renew. Energy 2024, 223, 120110. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Rotondo, S.; Araneo, R.; Petrone, G.; Martirano, L. Innovative Power-Sharing Model for Buildings and Energy Communities. Renew. Energy 2021, 172, 1087–1102. [Google Scholar] [CrossRef]
- Martirano, L.; Rotondo, S.; Kermani, M.; Massarella, F.; Gravina, R. Power Sharing Model for Energy Communities of Buildings. IEEE Trans. Ind. Appl. 2020, 57, 170–178. [Google Scholar] [CrossRef]
- Fina, B.; Auer, H.; Friedl, W. Profitability of PV Sharing in Energy Communities: Use Cases for Different Settlement Patterns. Energy 2019, 189, 116148. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Martirano, L.; Araneo, R.; Cappello, L.; Mingoli, G.; Ermellino, F. Democratic Power Sharing in Renewable Energy Communities: Engaging Citizens for Sustainable Energy Transition. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Bari, Italy, 7–10 September 2021; pp. 1–6. [Google Scholar]
- Mota, B.; Faria, P.; Vale, Z. Energy Cost Optimization through Load Shifting in a Photovoltaic Energy-Sharing Household Community. Renew. Energy 2024, 221, 119812. [Google Scholar] [CrossRef]
- Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of Electric Vehicles in Smart Grid: A Review on Vehicle to Grid Technologies and Optimization Techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar] [CrossRef]
- Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric Vehicles Standards, Charging Infrastructure, and Impact on Grid Integration: A Technological Review. Renew. Sustain. Energy Rev. 2020, 120, 109618. [Google Scholar] [CrossRef]
- Nasir, T.; Raza, S.; Abrar, M.; Muqeet, H.A.; Jamil, H.; Qayyum, F.; Cheikhrouhou, O.; Alassery, F.; Hamam, H. Optimal Scheduling of Campus Microgrid Considering the Electric Vehicle Integration in Smart Grid. Sensors 2021, 21, 7133. [Google Scholar] [CrossRef]
- Beyazıt, M.A.; Taşcıkaraoğlu, A.; Catalão, J.P.S. Cost Optimization of a Microgrid Considering Vehicle-to-Grid Technology and Demand Response. Sustain. Energy Grids Netw. 2022, 32, 100924. [Google Scholar] [CrossRef]
- Van Der Kam, M.; van Sark, W. Smart Charging of Electric Vehicles with Photovoltaic Power and Vehicle-to-Grid Technology in a Microgrid; a Case Study. Appl. Energy 2015, 152, 20–30. [Google Scholar] [CrossRef]
- Mathur, D.; Kanwar, N.; Goyal, S.K. Impact of Electric Vehicles on Community Microgrid. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2020; Volume 2294. [Google Scholar]
- Menniti, D.; Pinnarelli, A.; Sorrentino, N.; Vizza, P.; Barone, G.; Brusco, G.; Mendicino, S.; Mendicino, L.; Polizzi, G. Enabling Technologies for Energy Communities: Some Experimental Use Cases. Energies 2022, 15, 6374. [Google Scholar] [CrossRef]
- Aprà, F.M.; Sterling, R.; Farrukh, F.; Kiljander, J.; Cuneo, A.; Comodi, G.; David, A.; di Somma, M.; Dimitriadou, I.; Zikos, S. Enabling Technologies for Wide-Scale Implementation of Energy Communities’ Projects. Environ. Sci. Proc. 2021, 11, 14. [Google Scholar] [CrossRef]
- Oliveira, F.; Nogueira, P.; Casquiço, M. Energy Agencies and Renewable Energy Communities: A New Path for Energy Decentralization; European Energy Network: Strasbourg, France, 2022; Volume 57. [Google Scholar]
- Genus, A.; Iskandarova, M. Transforming the Energy System? Technology and Organisational Legitimacy and the Institutionalisation of Community Renewable Energy. Renew. Sustain. Energy Rev. 2020, 125, 109795. [Google Scholar] [CrossRef]
- Exploring the Main Barriers and Action Drivers for the Uptake of Energy Communities: Take-Aways from Our Policy Workshop—European Commission. Available online: https://energy-communities-repository.ec.europa.eu/energy-communities-repository-news-and-events/energy-communities-repository-news/exploring-main-barriers-and-action-drivers-uptake-energy-communities-take-aways-our-policy-workshop-2023-06-05_en (accessed on 9 June 2024).
- Caliano, M.; Buonanno, A.; Di Somma, M.; Graditi, G.; Papadimitriou, C.; Charalambous, C.; Dopierała, P.; Bronk, L. Enabling Conditions for the Deployment of Integrated Local Energy Communities in Europe. In Proceedings of the 2022 Workshop on Blockchain for Renewables Integration (BLORIN), Palermo, Italy, 2–3 September 2022; pp. 144–148. [Google Scholar]
- Tuerk, A.; Frieden, D.; Neumann, C.; Latanis, K.; Tsitsanis, A.; Kousouris, S.; Llorente, J.; Heimonen, I.; Reda, F.; Ala-Juusela, M. Integrating plus Energy Buildings and Districts with the EU Energy Community Framework: Regulatory Opportunities, Barriers and Technological Solutions. Buildings 2021, 11, 468. [Google Scholar] [CrossRef]
- de São José, D.; Faria, P.; Vale, Z. Smart Energy Community: A Systematic Review with Metanalysis. Energy Strateg. Rev. 2021, 36, 100678. [Google Scholar] [CrossRef]
- Tian, P.; Xiao, X.; Wang, K.; Ding, R. A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation. IEEE Trans. Smart Grid 2015, 7, 2230–2241. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Ye, B.; Wang, X.; Yin, C.; Cong, H. Optimal Operation Analysis of Integrated Community Energy System Considering the Uncertainty of Demand Response. IEEE Trans. Power Syst. 2021, 36, 3681–3691. [Google Scholar] [CrossRef]
- Dóci, G.; Vasileiadou, E.; Petersen, A.C. Exploring the Transition Potential of Renewable Energy Communities. Futures 2015, 66, 85–95. [Google Scholar] [CrossRef]
- Sousa, J.; Lagarto, J.; Camus, C.; Viveiros, C.; Barata, F.; Silva, P.; Alegria, R.; Paraíba, O. Renewable Energy Communities Optimal Design Supported by an Optimization Model for Investment in PV/Wind Capacity and Renewable Electricity Sharing. Energy 2023, 283, 128464. [Google Scholar] [CrossRef]
- Bianchi, F.R.; Bosio, B.; Conte, F.; Massucco, S.; Mosaico, G.; Natrella, G.; Saviozzi, M. Modelling and Optimal Management of Renewable Energy Communities Using Reversible Solid Oxide Cells. Appl. Energy 2023, 334, 120657. [Google Scholar] [CrossRef]
- Cutore, E.; Volpe, R.; Sgroi, R.; Fichera, A. Energy Management and Sustainability Assessment of Renewable Energy Communities: The Italian Context. Energy Convers. Manag. 2023, 278, 116713. [Google Scholar] [CrossRef]
- Raimondi, G.; Spazzafumo, G. Exploring Renewable Energy Communities Integration through a Hydrogen Power-to-Power System in Italy. Renew. Energy 2023, 206, 710–721. [Google Scholar] [CrossRef]
- Lazzari, F.; Mor, G.; Cipriano, J.; Solsona, F.; Chemisana, D.; Guericke, D. Optimizing Planning and Operation of Renewable Energy Communities with Genetic Algorithms. Appl. Energy 2023, 338, 120906. [Google Scholar] [CrossRef]
- Gribiss, H.; Aghelinejad, M.M.; Yalaoui, F. Configuration Selection for Renewable Energy Community Using MCDM Methods. Energies 2023, 16, 2632. [Google Scholar] [CrossRef]
- Ahmadifar, A.; Ginocchi, M.; Golla, M.S.; Ponci, F.; Monti, A. Development of an Energy Management System for a Renewable Energy Community and Performance Analysis via Global Sensitivity Analysis. IEEE Access 2023, 11, 4131–4154. [Google Scholar] [CrossRef]
- Spazzafumo, G.; Raimondi, G. Economic Assessment of Hydrogen Production in a Renewable Energy Community in Italy. e-Prime-Adv. Electr. Eng. Electron. Energy 2023, 4, 100131. [Google Scholar] [CrossRef]
- Aittahar, S.; de Villena, M.M.; Derval, G.; Castronovo, M.; Boukas, I.; Gemine, Q.; Ernst, D. Optimal Control of Renewable Energy Communities with Controllable Assets. Front. Energy Res. 2023, 11, 879041. [Google Scholar] [CrossRef]
- Faraji, J.; De Grève, Z.; Vallée, F. Hierarchical Energy Sharing Management for a Renewable Energy Community with Heterogeneous End-Users. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; pp. 1–8. [Google Scholar]
- Pasqui, M.; Felice, A.; Messagie, M.; Coosemans, T.; Bastianello, T.T.; Baldi, D.; Lubello, P.; Carcasci, C. A New Smart Batteries Management for Renewable Energy Communities. Sustain. Energy Grids Netw. 2023, 34, 101043. [Google Scholar] [CrossRef]
- Ceglia, F.; Esposito, P.; Faraudello, A.; Marrasso, E.; Rossi, P.; Sasso, M. An Energy, Environmental, Management and Economic Analysis of Energy Efficient System towards Renewable Energy Community: The Case Study of Multi-Purpose Energy Community. J. Clean. Prod. 2022, 369, 133269. [Google Scholar] [CrossRef]
- Pastore, L.M.; Lo Basso, G.; Ricciardi, G.; de Santoli, L. Synergies between Power-to-Heat and Power-to-Gas in Renewable Energy Communities. Renew. Energy 2022, 198, 1383–1397. [Google Scholar] [CrossRef]
- Casalicchio, V.; Manzolini, G.; Prina, M.G.; Moser, D. From Investment Optimization to Fair Benefit Distribution in Renewable Energy Community Modelling. Appl. Energy 2022, 310, 118447. [Google Scholar] [CrossRef]
- Ancona, M.A.; Baldi, F.; Branchini, L.; De Pascale, A.; Gianaroli, F.; Melino, F.; Ricci, M. Comparative Analysis of Renewable Energy Community Designs for District Heating Networks: Case Study of Corticella (Italy). Energies 2022, 15, 5248. [Google Scholar] [CrossRef]
- Sudhoff, R.; Schreck, S.; Thiem, S.; Niessen, S. Operating Renewable Energy Communities to Reduce Power Peaks in the Distribution Grid: An Analysis on Grid-Friendliness, Different Shares of Participants, and Economic Benefits. Energies 2022, 15, 5468. [Google Scholar] [CrossRef]
- Conte, F.; D’Antoni, F.; Natrella, G.; Merone, M. A New Hybrid AI Optimal Management Method for Renewable Energy Communities. Energy AI 2022, 10, 100197. [Google Scholar] [CrossRef]
- Felice, A.; Rakocevic, L.; Peeters, L.; Messagie, M.; Coosemans, T.; Camargo, L.R. Renewable Energy Communities: Do They Have a Business Case in Flanders? Appl. Energy 2022, 322, 119419. [Google Scholar] [CrossRef]
- Minuto, F.D.; Lanzini, A. Energy-Sharing Mechanisms for Energy Community Members under Different Asset Ownership Schemes and User Demand Profiles. Renew. Sustain. Energy Rev. 2022, 168, 112859. [Google Scholar] [CrossRef]
- Fina, B.; Monsberger, C.; Auer, H. Simulation or Estimation?—Two Approaches to Calculate Financial Benefits of Energy Communities. J. Clean. Prod. 2022, 330, 129733. [Google Scholar] [CrossRef]
- Cosic, A.; Stadler, M.; Mansoor, M.; Zellinger, M. Mixed-Integer Linear Programming Based Optimization Strategies for Renewable Energy Communities. Energy 2021, 237, 121559. [Google Scholar] [CrossRef]
- Cielo, A.; Margiaria, P.; Lazzeroni, P.; Mariuzzo, I.; Repetto, M. Renewable Energy Communities Business Models under the 2020 Italian Regulation. J. Clean. Prod. 2021, 316, 128217. [Google Scholar] [CrossRef]
- Yoldaş, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, I.; Hinsch, A.; Rothballer, C.; Kittel, J. Renewable Energy Communities—Are We Nearly There? Renew. Sustain. Energy Rev. 2017, 72, 205–214. [Google Scholar] [CrossRef]
- Zulianello, M.; Angelucci, V.; Moneta, D. Energy Community and Collective Self Consumption in Italy. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Turin, Italy, 1–4 September 2020; pp. 1–5. [Google Scholar]
- Li, N.; Okur, Ö. Economic Analysis of Energy Communities: Investment Options and Cost Allocation. Appl. Energy 2023, 336, 120706. [Google Scholar] [CrossRef]
- Khaleel, M.M.; Ahmed, A.A.; Alsharif, A. Energy Management System Strategies in Microgrids: A Review. N. Afr. J. Sci. Publ. 2023, 1–8. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Energy+Management+System+Strategies+in+Microgrids%3A+A+Review&btnG= (accessed on 5 May 2024).
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of Optimization Techniques in Microgrid Energy Management Systems—A Review. Energy Strategy Rev. 2022, 43, 100899. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids Energy Management Systems: A Critical Review on Methods, Solutions, and Prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Wieczorek, A. Community Energy 2.0 A Support Tool for Advisers and Process Moderators. Available online: https://research.tue.nl/en/publications/community-energy-20-a-support-tool-for-advisers-and-process-moder (accessed on 5 May 2024).
- Venayagamoorthy, G.K.; Sharma, R.K.; Gautam, P.K.; Ahmadi, A. Dynamic Energy Management System for a Smart Microgrid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1643–1656. [Google Scholar] [CrossRef]
- Morstyn, T.; McCulloch, M.D. Multiclass Energy Management for Peer-to-Peer Energy Trading Driven by Prosumer Preferences. IEEE Trans. Power Syst. 2018, 34, 4005–4014. [Google Scholar] [CrossRef]
- TC 57—Power Systems Management and Associated Information Exchange. 2024. Available online: https://webstore.iec.ch/publication/61167 (accessed on 5 May 2024).
- Santodomingo, R.; Uslar, M.; Specht, M.; Rohjans, S.; Taylor, G.; Pantea, S.; Bradley, M.; McMorran, A. IEC 61970 for Energy Management System Integration. Smart Grid Handb. 2016, 3, 375. [Google Scholar] [CrossRef]
- Michel, A.N. Stability and Control of Dynamical Systems with Applications: A Tribute to Anthony N. Michel; Springer Science & Business Media: Berlin, Germany, 2003; ISBN 0817632336. [Google Scholar]
- Banna, H.U.; Verma, V.; Solanki, S.K.; Solanki, J. Proactive Anomaly Source Identification Using Novel Ensemble Learning with Adaptive Mitigation Measures for Microgrids. Electr. Power Syst. Res. 2023, 218, 109157. [Google Scholar] [CrossRef]
- Vuddanti, S.; Salkuti, S.R. Review of Energy Management System Approaches in Microgrids. Energies 2021, 14, 5459. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Shahidehpour, M.; Li, J.; Long, C. Data-Driven Distributionally Robust Scheduling of Community Integrated Energy Systems with Uncertain Renewable Generations Considering Integrated Demand Response. Appl. Energy 2023, 335, 120749. [Google Scholar] [CrossRef]
- Huy, T.H.B.; Dinh, H.T.; Kim, D. Multi-Objective Framework for a Home Energy Management System with the Integration of Solar Energy and an Electric Vehicle Using an Augmented ε-Constraint Method and Lexicographic Optimization. Sustain. Cities Soc. 2023, 88, 104289. [Google Scholar] [CrossRef]
- Su, W.; Wang, J. Energy Management Systems in Microgrid Operations. Electr. J. 2012, 25, 45–60. [Google Scholar] [CrossRef]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart Energy Management System for Optimal Microgrid Economic Operation. IET Renew. Power Gener. 2011, 5, 258–267. [Google Scholar] [CrossRef]
- Jimeno, J.; Anduaga, J.; Oyarzabal, J.; de Muro, A.G. Architecture of a Microgrid Energy Management System. Eur. Trans. Electr. Power 2011, 21, 1142–1158. [Google Scholar] [CrossRef]
- Chen, Y.-K.; Wu, Y.-C.; Song, C.-C.; Chen, Y.-S. Design and Implementation of Energy Management System with Fuzzy Control for DC Microgrid Systems. IEEE Trans. Power Electron. 2012, 28, 1563–1570. [Google Scholar] [CrossRef]
- Lee, E.-K.; Shi, W.; Gadh, R.; Kim, W. Design and Implementation of a Microgrid Energy Management System. Sustainability 2016, 8, 1143. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Gellings, C.W.; Chamberlin, J.H. Demand-Side Management: Concepts and Methods. 1987. Available online: https://www.osti.gov/biblio/5275778 (accessed on 25 April 2024).
- Gellings, C.W. The Concept of Demand-Side Management for Electric Utilities. Proc. IEEE 1985, 73, 1468–1470. [Google Scholar] [CrossRef]
- Ofgem, U.K. Energy Companies Obligations (ECO): Guidance for Suppliers; UK Ofgem: London, UK, 2013. [Google Scholar]
- Sioshansi, F.; Vojdani, A. What Could Possibly Be Better than Real-Time Pricing? Demand Response. Electr. J. 2001, 14, 39–50. [Google Scholar] [CrossRef]
- Strbac, G. Demand Side Management: Benefits and Challenges. Energy Policy 2008, 36, 4419–4426. [Google Scholar] [CrossRef]
- Warren, P. A Review of Demand-Side Management Policy in the UK. Renew. Sustain. Energy Rev. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Bakare, M.S.; Abdulkarim, A.; Zeeshan, M.; Shuaibu, A.N. A Comprehensive Overview on Demand Side Energy Management towards Smart Grids: Challenges, Solutions, and Future Direction. Energy Inform. 2023, 6, 4. [Google Scholar] [CrossRef]
- Behrangrad, M. A Review of Demand Side Management Business Models in the Electricity Market. Renew. Sustain. Energy Rev. 2015, 47, 270–283. [Google Scholar] [CrossRef]
- Pang, C.; Dutta, P.; Kezunovic, M. BEVs/PHEVs as Dispersed Energy Storage for V2B Uses in the Smart Grid. IEEE Trans. Smart Grid 2011, 3, 473–482. [Google Scholar] [CrossRef]
- Boshell, F.; Veloza, O.P. Review of Developed Demand Side Management Programs Including Different Concepts and Their Results. In Proceedings of the 2008 IEEE/PES transmission and distribution conference and exposition: Latin America, Bogota, Colombia, 13–15 August 2008; pp. 1–7. [Google Scholar]
- Atzeni, I.; Ordóñez, L.G.; Scutari, G.; Palomar, D.P.; Fonollosa, J.R. Demand-Side Management via Distributed Energy Generation and Storage Optimization. IEEE Trans. Smart Grid 2012, 4, 866–876. [Google Scholar] [CrossRef]
- Kanakadhurga, D.; Prabaharan, N. Demand Side Management in Microgrid: A Critical Review of Key Issues and Recent Trends. Renew. Sustain. Energy Rev. 2022, 156, 111915. [Google Scholar] [CrossRef]
- Noor, S.; Yang, W.; Guo, M.; van Dam, K.H.; Wang, X. Energy Demand Side Management within Micro-Grid Networks Enhanced by Blockchain. Appl. Energy 2018, 228, 1385–1398. [Google Scholar] [CrossRef]
- Jin, X.; Wu, J.; Mu, Y.; Wang, M.; Xu, X.; Jia, H. Hierarchical Microgrid Energy Management in an Office Building. Appl. Energy 2017, 208, 480–494. [Google Scholar] [CrossRef]
- Livengood, D.; Larson, R. The Energy Box: Locally Automated Optimal Control of Residential Electricity Usage. Serv. Sci. 2009, 1, 1–16. [Google Scholar] [CrossRef]
- Niknam, T.; Azizipanah-Abarghooee, R.; Narimani, M.R. An Efficient Scenario-Based Stochastic Programming Framework for Multi-Objective Optimal Micro-Grid Operation. Appl. Energy 2012, 99, 455–470. [Google Scholar] [CrossRef]
- Afzal, M.; Huang, Q.; Amin, W.; Umer, K.; Raza, A.; Naeem, M. Blockchain Enabled Distributed Demand Side Management in Community Energy System with Smart Homes. IEEE Access 2020, 8, 37428–37439. [Google Scholar] [CrossRef]
- Philipo, G.H.; Kakande, J.N.; Krauter, S. Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping. Energies 2022, 15, 5215. [Google Scholar] [CrossRef]
- Dal Cin, E.; Carraro, G.; Volpato, G.; Lazzaretto, A.; Danieli, P. A Multi-Criteria Approach to Optimize the Design-Operation of Energy Communities Considering Economic-Environmental Objectives and Demand Side Management. Energy Convers. Manag. 2022, 263, 115677. [Google Scholar] [CrossRef]
- Gagliardelli, L.; Zecchini, L.; Beneventano, D.; Simonini, G.; Bergamaschi, S.; Orsini, M.; Luca, M.; Emma, M.; Andrea, L.; Nicola, G. ECDP: A Big Data Platform for the Smart Monitoring of Local Energy Communities. In Proceedings of the CEUR Workshop Proceedings, Trier, Germany, 19 September 2022; Volume 3135. [Google Scholar]
- Piselli, C.; Colladon, A.F.; Segneri, L.; Pisello, A.L. Evaluating and Improving Social Awareness of Energy Communities through Semantic Network Analysis of Online News. Renew. Sustain. Energy Rev. 2022, 167, 112792. [Google Scholar] [CrossRef]
- Sănduleac, M.; Ciornei, I.; Toma, L.; Plămnescu, R.; Dumitrescu, A.-M.; Albu, M.M. High Reporting Rate Smart Metering Data for Enhanced Grid Monitoring and Services for Energy Communities. IEEE Trans. Ind. Inform. 2021, 18, 4039–4048. [Google Scholar] [CrossRef]
- Patil, S.M.; Vijayalashmi, M.; Tapaskar, R. IoT Based Solar Energy Monitoring System. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 1574–1579. [Google Scholar]
- Hernandez-Matheus, A.; Löschenbrand, M.; Berg, K.; Fuchs, I.; Aragüés-Peñalba, M.; Bullich-Massagué, E.; Sumper, A. A Systematic Review of Machine Learning Techniques Related to Local Energy Communities. Renew. Sustain. Energy Rev. 2022, 170, 112651. [Google Scholar] [CrossRef]
- Goncalves, C.; Barreto, R.; Faria, P.; Gomes, L.; Vale, Z. Energy Community Consumption and Generation Dataset with Appliance Allocation. IFAC-PapersOnLine 2022, 55, 285–290. [Google Scholar] [CrossRef]
- Albarakati, A.J.; Boujoudar, Y.; Azeroual, M.; Eliysaouy, L.; Kotb, H.; Aljarbouh, A.; Khalid Alkahtani, H.; Mostafa, S.M.; Tassaddiq, A.; Pupkov, A. Microgrid Energy Management and Monitoring Systems: A Comprehensive Review. Front. Energy Res. 2022, 10, 1097858. [Google Scholar] [CrossRef]
- Marinakis, V.; Doukas, H. An Advanced IoT-Based System for Intelligent Energy Management in Buildings. Sensors 2018, 18, 610. [Google Scholar] [CrossRef] [PubMed]
- Gungor, V.C.; Lambert, F.C. A Survey on Communication Networks for Electric System Automation. Comput. Netw. 2006, 50, 877–897. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid Technologies: Communication Technologies and Standards. IEEE Trans. Ind. Inform. 2011, 7, 529–539. [Google Scholar] [CrossRef]
- Abbasi, M.; Abbasi, E.; Li, L.; Aguilera, R.P.; Lu, D.; Wang, F. Review on the Microgrid Concept, Structures, Components, Communication Systems, and Control Methods. Energies 2023, 16, 484. [Google Scholar] [CrossRef]
- Rahimi, F.; Ipakchi, A. Overview of Demand Response under the Smart Grid and Market Paradigms. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010; pp. 1–7. [Google Scholar]
- Serban, I.; Cespedes, S.; Marinescu, C.; Azurdia-Meza, C.A.; Gomez, J.S.; Hueichapan, D.S. Communication Requirements in Microgrids: A Practical Survey. IEEE Access 2020, 8, 47694–47712. [Google Scholar] [CrossRef]
- Kumar, S.; Islam, S.; Jolfaei, A. Microgrid Communications—Protocols and Standards. Var. Scalability Stab. Microgrids 2019, 139, 291–326. [Google Scholar]
- Reddy, G.P.; Kumar, Y.V.P.; Chakravarthi, M.K. Communication Technologies for Interoperable Smart Microgrids in Urban Energy Community: A Broad Review of the State of the Art, Challenges, and Research Perspectives. Sensors 2022, 22, 5881. [Google Scholar] [CrossRef] [PubMed]
- Chavan, P.D.; Devi, R.J. Survey of Communication System for DG’s and Microgrid in Electrical Power Grid. Int. Res. J. Eng. Technol. 2016, 3, 1155–1164. [Google Scholar]
- McGranaghan, M.; Goodman, F. Technical and System Requirements for Advanced Distribution Automation. In Proceedings of the CIRED 2005-18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–5. [Google Scholar]
- Saleh, M.; Esa, Y.; El Hariri, M.; Mohamed, A. Impact of Information and Communication Technology Limitations on Microgrid Operation. Energies 2019, 12, 2926. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergüt, S. Smart Grid Communications and Networking. Turk Telecom 2011. Available online: https://ieeexplore.ieee.org/document/6011696 (accessed on 5 May 2024).
- Williams, B.; Gahagan, M.; Costin, K. Using Microgrids to Integrate Distributed Renewables into the Grid. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 11–13 October 2010; pp. 1–5. [Google Scholar]
- Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges. IEEE Commun. Surv. Tutor. 2012, 15, 5–20. [Google Scholar] [CrossRef]
- Subramanian, A.S.R.; Gundersen, T.; Adams, T.A. Modeling and Simulation of Energy Systems: A Review. Processes 2018, 6, 238. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of Software Tools for Hybrid Renewable Energy Systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Ringkjøb, H.K.; Haugan, P.M.; Solbrekke, I.M. A Review of Modelling Tools for Energy and Electricity Systems with Large Shares of Variable Renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Byrne, R.H. Software Tools for Energy Storage Valuation and Design. Curr. Sustain. Energy Rep. 2021, 8, 156–163. [Google Scholar] [CrossRef]
- Vecchi, F.; Stasi, R.; Berardi, U. Modelling Tools for the Assessment of Renewable Energy Communities. Energy Rep. 2024, 11, 3941–3962. [Google Scholar] [CrossRef]
- HOMER—Hybrid Renewable and Distributed Generation System Design Software. Available online: https://www.homerenergy.com/ (accessed on 5 October 2023).
- INSEL—Homepage—INSEL En. Available online: https://www.insel.eu/en/home_en.html (accessed on 6 October 2023).
- RETScreen. Available online: https://natural-resources.canada.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465 (accessed on 5 October 2023).
- PVsyst—Photovoltaic Software. Available online: https://www.pvsyst.com/ (accessed on 11 November 2023).
- Lund, H. Renewable Energy Systems: The Choice and Modeling of 100% Renewable Solutions; Academic Press: Cambridge, MA, USA, 2009; ISBN 0080962998. [Google Scholar]
- EnergyPLAN|Advanced Energy Systems Analysis Computer Model. Available online: https://www.energyplan.eu/ (accessed on 5 October 2023).
- Robinson, D.; Campbell, N.; Gaiser, W.; Kabel, K.; Le-Mouel, A.; Morel, N.; Page, J.; Stankovic, S.; Stone, A. SUNtool–A New Modelling Paradigm for Simulating and Optimising Urban Sustainability. Sol. Energy 2007, 81, 1196–1211. [Google Scholar] [CrossRef]
- Hybrid2|Wind Energy Center. Available online: https://www.umass.edu/windenergy/research/topics/tools/software/hybrid2 (accessed on 5 October 2023).
- IHOGA/MHOGA—Simulation and Optimization of Stand-Alone and Grid-Connected Hybrid Renewable Systems. Available online: https://ihoga.unizar.es/en/ (accessed on 5 October 2023).
- DER-CAM|Grid Integration Group. Available online: https://gridintegration.lbl.gov/der-cam (accessed on 6 October 2023).
- Dugan, R.C.; McDermott, T.E. An Open Source Platform for Collaborating on Smart Grid Research. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar] [CrossRef]
- OpenDSS. Available online: https://www.epri.com/pages/sa/opendss (accessed on 5 October 2023).
- Chassin, D.P.; Schneider, K.; Gerkensmeyer, C. GridLAB-D: An Open-Source Power Systems Modeling and Simulation Environment. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–5. [Google Scholar] [CrossRef]
- GridLAB-D Simulation Software. Available online: https://www.gridlabd.org/ (accessed on 5 October 2023).
- Welcome|TRNSYS: Transient System Simulation Tool. Available online: https://www.trnsys.com/ (accessed on 6 October 2023).
- Energy Storage Evaluation Tool. Available online: https://eset.pnnl.gov/ (accessed on 6 October 2023).
- Download Sandia’s Microgrid Design Toolkit (MDT): Sandia Energy. Available online: https://energy.sandia.gov/download-sandias-microgrid-design-toolkit-mdt/ (accessed on 6 October 2023).
- REopt Energy Integration & Optimization Home|NREL. Available online: https://reopt.nrel.gov/ (accessed on 6 October 2023).
- A Brief History of MATLAB—MATLAB & Simulink. Available online: https://www.mathworks.com/company/technical-articles/a-brief-history-of-matlab.html (accessed on 27 February 2024).
- Welcome to Python.Org. Available online: https://www.python.org/ (accessed on 27 February 2024).
- Home—System Advisor Model—SAM. Available online: https://sam.nrel.gov/ (accessed on 11 May 2024).
- H2RES—Energy System Modelling Software. Available online: https://h2res.org/ (accessed on 11 May 2024).
- URBANopt Advanced Analytics Platform|Buildings|NREL. Available online: https://www.nrel.gov/buildings/urbanopt.html (accessed on 11 May 2024).
- City Energy Analyst (CEA). Available online: https://www.cityenergyanalyst.com/ (accessed on 11 May 2024).
- SimStadt Documentation. Available online: https://simstadt.hft-stuttgart.de/ (accessed on 11 May 2024).
- CitySim Software—LESO-PB—EPFL. Available online: https://www.epfl.ch/labs/leso/transfer/software/citysim/ (accessed on 11 May 2024).
S No. | Reference | EC and REC Paper Titles |
---|---|---|
1 | G. Kallis et al. [25] | The challenges of engaging island communities: Lessons on renewable energy from a review of 17 case studies |
2 | M.H. Bashi et al. [26] | A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors |
3 | H. Kazmi et al. [27] | Toward data-driven energy communities: A review of open-source datasets, models, and tools |
4 | M. Kubli et al. [28] | A typology of business models for energy communities: Current and emerging design options |
5 | M.A. Heldeweg et al. [29] | Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy decentralization? |
6 | A. Tatti et al. [30] | The Emerging Trends of Renewable Energy Communities’ Development in Italy |
7 | C. Inês et al. [31] | Regulatory challenges and opportunities for collective renewable energy prosumers in the EU |
8 | V.Z. Gjorgievski et al. [32] | Social arrangements, technical designs and impacts of energy communities: A review |
9 | M.L. Lode et al. [33] | A transition perspective on Energy Communities: A systematic literature review and research agenda |
10 | C.E. Hoicka et al. [34] | Implementing a just renewable energy transition: Policy advice for transposing the new European rules for renewable energy communities |
11 | I.F.G. Reis et al. [35] | Business models for energy communities: A review of key issues and trends |
12 | F. Hanke et al. [36] | Do renewable energy communities deliver energy justice? Exploring insights from 71 European cases |
13 | R.J. Hewitt et al. [37] | Social innovation in community energy in Europe: A review of the evidence |
14 | J.J. Cuenca et al. [38] | State of the Art in Energy Communities and Sharing Economy Concepts in the Electricity Sector |
15 | Y. Zhou et al. [39] | Peer-to-peer energy sharing and trading of renewable energy in smart communities—trading pricing models, decision-making and agent-based collaboration |
Energy Communities | ||
---|---|---|
Renewable Energy Communities (RECs) /RE Cover | Citizen Energy Communities (CECs) /Electricity Cover | |
Directive | Directive 2018/2001 | Directive 2019/944 |
Purpose | Generating social and environmental benefits instead of focusing on financial profits. | |
Members/ Participants | Restricted Membership, Open and voluntary by natural persons, local authorities (including municipalities), micro, small, and medium enterprises (MSMEs), but their involvement or membership is not their main economic part. | No restrictions, any actor can participate, Nevertheless, decision-making is not possible for those engaging in large-scale commercial activity where energy is the main economic activity. |
Technological Activities | Aggregation, Energy generation and consumption, Distribution, Energy storage, Energy sharing, Energy supply, and Energy related service provision | |
Ownership and Control | Both ECs place a strong focus on involvement and effective control by citizens, smaller businesses, and local authorities having no key economic interest in the energy sector. | |
Generation Plants | PV systems are included, but also any type of RES can include wind, hydroelectric, solid biomass, biogas, etc. | Operate in the electricity sector and are technology-neutral (fossil fuel source or RE) |
Reference | Technology | Cons:/Self-Consumption | Optimization | Sensitivity Analysis | Simulation | EMS/DSM | Modelling/Operation | Energy Sharing | Economic Concern | Environmental Concern | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solar | Wind | Other | ESS | Sizing | Allocation | Management | Investment Options | Other | |||||||||
J. Sousa et al. [108] | √ | √ | √ | √ | √ | √ | |||||||||||
F.R. Bianchi et al. [109] | √ | √ | √ | √ | |||||||||||||
E. Cutore et al. [110] | √ | √ | √ | √ | |||||||||||||
G. Raimondi et al. [111] | √ | √ | √ | √ | |||||||||||||
F Lazzari et al. [112] | √ | √ | √ | √ | √ | ||||||||||||
H Gribiss et al. [113] | √ | √ | √ | √ | √ | ||||||||||||
A. Ahmadifar et al. [114] | √ | √ | √ | ||||||||||||||
G. Spazzafumo et al. [115] | √ | √ | |||||||||||||||
S. Aittahar et al. [116] | √ | √ | |||||||||||||||
J. Faraji et al. [117] | √ | √ | √ | ||||||||||||||
M. Pasqui et al. [118] | √ | √ | √ | √ | |||||||||||||
F. Ceglia et al. [119] | √ | √ | √ | √ | √ | ||||||||||||
L.M. Pastore et al. [120] | √ | √ | √ | √ | √ | ||||||||||||
V. Casalicchio et al. [121] | √ | √ | √ | √ | |||||||||||||
M.A. Ancona et al. [122] | √ | √ | √ | √ | √ | ||||||||||||
R. Sudhoff et al. [123] | √ | √ | √ | ||||||||||||||
F. Conte et al. [124] | √ | √ | √ | √ | |||||||||||||
A. Felice et al. [125] | √ | √ | |||||||||||||||
F.D. Minuto et al. [126] | √ | √ | √ | ||||||||||||||
B. Fina et al. [127] | √ | √ | |||||||||||||||
A. Cosic et al. [128] | √ | √ | √ | √ | |||||||||||||
A. Cielo et al. [129] | √ | √ | √ | √ | √ | √ | √ |
Different Types of Architecture for EC | |||
---|---|---|---|
Reference | Characteristics | Components | Functions/Activities |
Type-01 [131] | RES Utilization, ESS as a positive role in REC, social, economic, and environmental factors | Transformers and Grid, RES generation (PV and wind or other), Participants (Prosumer and Consumer), MV-LV substation | REC concept highlighting the RES and ESS integration and associated energy sharing with the incentives. |
Type-02 [132] | RES, ESS, Grid-connected operation mode, electricity consumption, sizing of DRESs, economic analysis, Energy transition | EC with several households and DRESs (solar PV and ESS), Grid | The EC considered in this architecture aims to meet the load demand by using RESs, which contribute to the energy transition. |
Type-03 [119] | Only RES power plants, MT/LT Network, no possibility of direct private connection from plant to final users, the shareholders or participants or members must near the facilities of RES plant, energy exchanges | RES Plants, Grid, Load for Hotel, church, and mall | Production; sale; sharing; energy exchange within the EC is virtual; access to all electricity markets, directly or via aggregation; supply of energy; aggregation and other commercial energy services. |
Type-04 [108] | REC, investment in RES plants, optimal investment decision, self-consumption motivation, selling excess energy, economic benefits | REC Members, MV Grid, RES generation (Wind and PV) | The architecture illustrated as per the study of the three REC members (REC 1, 2, and 3) connected to the grid. From them, REC-1 (the investing member) can invest in RES generation for self-consumption (for both individual and collective), and the surplus would be sold to the grid. |
Software | Developed By | MG | RES/DRES/RET | ESS | Economic/ Financial/Cost | Environmental | Grid System | EPS/Other | Purpose/Applications |
---|---|---|---|---|---|---|---|---|---|
HOMER [193,197] | NREL USA | √ |
| ||||||
INSEL [198] | University of Oldenburg, Germany | √ |
| ||||||
RETScreen [199] | Ministry of Natural Resources, Canada | √ | √ | √ |
| ||||
PVsys [200] | - | √ | √ |
| |||||
EnergyPLAN [201,202] | Aalborg University, Denmark | √ |
| ||||||
SUNtool [203] | - | √ |
| ||||||
Hybrid2 [204] | University of Massachusetts Amherst | √ | √ | √ | √ |
| |||
iHOGA/MHOGA [205] | researchers of the University of Zaragoza (Spain) | √ | √ |
| |||||
DER-CAM [206] | Lawrence Berkeley National Laboratory (Berkeley Lab) | √ | √ |
| |||||
OpenDSS [207,208] | developed in 1997 | √ | √ |
| |||||
GridLab-D [209,210] | Power distribution system simulation and analysis tool | √ |
| ||||||
TRNSYS [211] | University of Wisconsin System and University of Colorado | √ | √ |
| |||||
BSET [212] | PNNL | √ | √ |
| |||||
VBAT [212] | PNNL | √ | √ |
| |||||
MDT [213] | Sandia National Laboratories (SNL) | √ | √ | √ |
| ||||
REopt [214] | NREL | √ | √ |
| |||||
MATLAB [215] | - | √ | √ | √ | √ | √ | √ | √ |
|
Python [216] | - | √ | √ | √ | √ | √ | √ | √ |
|
SAM [217] | NREL | √ | √ | √ | √ | √ |
| ||
H2RES [218] | - | √ | √ |
| |||||
URBANopt [219] | NREL | √ | √ | √ |
| ||||
CEA [220] | - | √ | √ |
| |||||
SimStadt [221] | √ | √ |
| ||||||
CitySIM [222] | √ | √ |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.; Ali, A.; Ciocia, A.; D’Angola, A. Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview. Energies 2024, 17, 3100. https://doi.org/10.3390/en17133100
Ahmed S, Ali A, Ciocia A, D’Angola A. Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview. Energies. 2024; 17(13):3100. https://doi.org/10.3390/en17133100
Chicago/Turabian StyleAhmed, Shoaib, Amjad Ali, Alessandro Ciocia, and Antonio D’Angola. 2024. "Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview" Energies 17, no. 13: 3100. https://doi.org/10.3390/en17133100
APA StyleAhmed, S., Ali, A., Ciocia, A., & D’Angola, A. (2024). Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview. Energies, 17(13), 3100. https://doi.org/10.3390/en17133100