Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = enterocyte differentiation markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3721 KiB  
Article
Administration of Spermidine and Eugenol Demonstrates Anti-Tumorigenic Efficacy on Metastatic SW620 and Primary Caco-2 Colorectal Cancer Spheroids
by Silvia Dilloo, Anne Whittaker, Xinyue Chang, Eros D’Amen, Enzo Spisni, Silvana Hrelia, Cristina Angeloni, Marco Malaguti, Giovanni Dinelli and Francesca Truzzi
Int. J. Mol. Sci. 2024, 25(24), 13362; https://doi.org/10.3390/ijms252413362 - 13 Dec 2024
Viewed by 1404
Abstract
The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM [...] Read more.
The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids. Compared to untreated controls, all treatments significantly reduced the vitality and spheroid area, increased the necrotic area, and induced apoptosis on both cell-type spheroids after 96 h, with a reduced migration evident in 2D (two-dimensional) cultures after 48 h. The comparable anti-CRC effects of the SPD+EUG and the SUPPL reflected a wide-range dose efficacy of SPD and EUG. It is of note that SPD+EUG induced a synergistic effect on the increased caspase-3 expression and reduced the migration percentage in SW620. In more physiologically relevant intestinal equivalents (healthy enterocytes [NCM460], fibroblasts [L929], and monocytes [U937]) containing embedded SW620/Caco-2 spheroids, SPD+EUG administration significantly reduced the spheroid CEA marker and proliferation, whilst simultaneously increasing occludin, autophagy LC3-II expression, and monocyte differentiation, compared to the control models. Exogenous SPD, alone and in combination with EUG, displayed an anti-CRC potential on tumor growth and metastasis, and warrants further investigation. Full article
Show Figures

Figure 1

21 pages, 3248 KiB  
Article
The Impact of Sea Buckthorn (Hippophae rhamnoides L.) and Cornelian Cherry (Cornus mas L.) Plant Extracts on the Physiology of Gastrointestinal Tract Cell In Vitro Model in the Context of Metabolic Diseases
by Maja Grabacka, Jana Lakatošová, Gabriela Waś, Anna Wydra, Karolina Jakubiec, Veronika Fialková, Ivana Speváková and Małgorzata Pierzchalska
Appl. Sci. 2024, 14(17), 7992; https://doi.org/10.3390/app14177992 - 6 Sep 2024
Cited by 1 | Viewed by 1649
Abstract
The aim of this study was to evaluate the impact of ethanol extracts from sea buckthorn and Cornelian cherry fruits and leaves on physiology of gastrointestinal tract cells. We used three cell lines relevant to the types of cells, which are exposed to [...] Read more.
The aim of this study was to evaluate the impact of ethanol extracts from sea buckthorn and Cornelian cherry fruits and leaves on physiology of gastrointestinal tract cells. We used three cell lines relevant to the types of cells, which are exposed to bioactive compounds after oral administration, namely intestinal absorptive cells (Caco-2/HT-29 MTX model), hepatocytes (HepG2 cells) and immunocompetent cells (RAW 264.7 and P388D1 monocytes). The contents of antioxidant and bioactive polyphenols, such as cinnamic, caffeic and p-coumaric acids, rutin, myricetin, resveratrol, quercetin, apigenin and kaempferol, were assessed in the extracts using HPLC chromatography. The application of the extracts to Caco-2/HT-29-MTX cultures increased enterocyte differentiation markers (alkaline phosphatase and villin1 level) and goblet cell markers (mucins) over a fortnight. The extracts reduced lipid droplet size in hepatocytes challenged with hyperglycaemic glucose concentration, insulin and palmitate. Sea buckthorn leaf, fruit and Cornelian cherry leaf extracts blocked oxidative burst in the PMA-stimulated monocytes, while the sea buckthorn leaf and Cornelian cherry fruit extracts downregulated lipopolysaccharide-induced NO and IL-1β, respectively. The results indicate that the tested extracts modulate the behaviour of cells in the gastrointestinal tract in a beneficial way, especially regarding lipid accumulation and innate immunity actions. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing)
Show Figures

Figure 1

23 pages, 8419 KiB  
Article
Hydrogel-Integrated Millifluidic Systems: Advancing the Fabrication of Mucus-Producing Human Intestinal Models
by Ahed Almalla, Nadra Alzain, Laura Elomaa, Fiona Richter, Johanna Scholz, Marcus Lindner, Britta Siegmund and Marie Weinhart
Cells 2024, 13(13), 1080; https://doi.org/10.3390/cells13131080 - 21 Jun 2024
Cited by 2 | Viewed by 2910
Abstract
The luminal surface of the intestinal epithelium is protected by a vital mucus layer, which is essential for lubrication, hydration, and fostering symbiotic bacterial relationships. Replicating and studying this complex mucus structure in vitro presents considerable challenges. To address this, we developed a [...] Read more.
The luminal surface of the intestinal epithelium is protected by a vital mucus layer, which is essential for lubrication, hydration, and fostering symbiotic bacterial relationships. Replicating and studying this complex mucus structure in vitro presents considerable challenges. To address this, we developed a hydrogel-integrated millifluidic tissue chamber capable of applying precise apical shear stress to intestinal models cultured on flat or 3D structured hydrogel scaffolds with adjustable stiffness. The chamber is designed to accommodate nine hydrogel scaffolds, 3D-printed as flat disks with a storage modulus matching the physiological range of intestinal tissue stiffness (~3.7 kPa) from bioactive decellularized and methacrylated small intestinal submucosa (dSIS-MA). Computational fluid dynamics simulations were conducted to confirm a laminar flow profile for both flat and 3D villi-comprising scaffolds in the physiologically relevant regime. The system was initially validated with HT29-MTX seeded hydrogel scaffolds, demonstrating accelerated differentiation, increased mucus production, and enhanced 3D organization under shear stress. These characteristic intestinal tissue features are essential for advanced in vitro models as they critically contribute to a functional barrier. Subsequently, the chamber was challenged with human intestinal stem cells (ISCs) from the terminal ileum. Our findings indicate that biomimicking hydrogel scaffolds, in combination with physiological shear stress, promote multi-lineage differentiation, as evidenced by a gene and protein expression analysis of basic markers and the 3D structural organization of ISCs in the absence of chemical differentiation triggers. The quantitative analysis of the alkaline phosphatase (ALP) activity and secreted mucus demonstrates the functional differentiation of the cells into enterocyte and goblet cell lineages. The millifluidic system, which has been developed and optimized for performance and cost efficiency, enables the creation and modulation of advanced intestinal models under biomimicking conditions, including tunable matrix stiffness and varying fluid shear stresses. Moreover, the readily accessible and scalable mucus-producing cellular tissue models permit comprehensive mucus analysis and the investigation of pathogen interactions and penetration, thereby offering the potential to advance our understanding of intestinal mucus in health and disease. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Graphical abstract

15 pages, 864 KiB  
Article
The Impact of Phenotype of Inflammatory Bowel Diseases, Inflammation Activity and Therapy on Mucosal Mature Cd83+ Dendritic Cell
by Bruna Rošić Despalatović, Marija Babić, Andre Bratanić, Ante Tonkić, Žarko Ardalić and Katarina Vilović
J. Clin. Med. 2024, 13(7), 2070; https://doi.org/10.3390/jcm13072070 - 3 Apr 2024
Cited by 1 | Viewed by 1327
Abstract
Background: Crohn’s disease (CD) and ulcerative colitis (UC) are well-defined phenotypes of chronic inflammatory bowel diseases (IBDs). A mechanism of inflammation in these diseases is partially controlled by the intestinal dendritic cell (DC). In this study, we observed a mature CD83+ DC [...] Read more.
Background: Crohn’s disease (CD) and ulcerative colitis (UC) are well-defined phenotypes of chronic inflammatory bowel diseases (IBDs). A mechanism of inflammation in these diseases is partially controlled by the intestinal dendritic cell (DC). In this study, we observed a mature CD83+ DC in colonic bioptic samples, and its correlation with disease phenotype and activity. Methods: The study included 219 subjects: 100 with UC, 44 with CD and 75 healthy subjects. Colonic biopsy specimens were incubated with the primary antibody Anti-CD83. Intraepithelial CD83+ DCs were counted per 100 enterocytes. The presence of CD83+ DC was analysed according to the type of IBD, histopathologic inflammation activity and treatment outcome. Results: The presence of mature CD83+ DCs (0, ≥1) differed according to disease types of IBD (p = 0.001), histologic inflammation activity (p = 0.049) and applied therapy (p = 0.001). The odds for CD83+ DC presence were 5.2 times higher in the CD group than in the control/UC group. The odds for CD83+ DC presence were 2.6 times higher in subjects without inflammation or chronic inflammation than with acute inflammation. They were also 3.7 times higher in subjects without therapy. The cut-off value 0.5 CD83+ DC (Rock analysis area = 0.699; SE 0.046; p < 0.001; 95% CI: 0.609–0.788) had been assessed as a differentiation marker between UC and CD. Conclusion: Presence of CD83+ DC could be used as a possible parameter in distinction between UC and CD, as well as a predictor of inflammation activity and treatment outcome. Full article
(This article belongs to the Special Issue Targeted Treatment in Inflammatory Bowel Diseases (IBD))
Show Figures

Figure 1

26 pages, 2172 KiB  
Article
Ellagic Acid Triggers the Necrosis of Differentiated Human Enterocytes Exposed to 3-Nitro-Tyrosine: An MS-Based Proteomic Study
by Silvia Díaz-Velasco, Josué Delgado, Fernando J. Peña and Mario Estévez
Antioxidants 2022, 11(12), 2485; https://doi.org/10.3390/antiox11122485 - 17 Dec 2022
Cited by 1 | Viewed by 2278
Abstract
To study the molecular basis of the toxicological effect of a dietary nitrosated amino acid, namely, 3-nitrotyrosine (3-NT), differentiated human enterocytes were exposed to dietary concentrations of this species (200 μM) and analyzed for flow cytometry, protein oxidation markers and MS-based proteomics. The [...] Read more.
To study the molecular basis of the toxicological effect of a dietary nitrosated amino acid, namely, 3-nitrotyrosine (3-NT), differentiated human enterocytes were exposed to dietary concentrations of this species (200 μM) and analyzed for flow cytometry, protein oxidation markers and MS-based proteomics. The possible protective role of a dietary phytochemical, ellagic acid (EA) (200 μM), was also tested. The results revealed that cell viability was significantly affected by exposure to 3-NT, with a concomitant significant increase in necrosis (p < 0.05). 3-NT affected several biological processes, such as histocompatibility complex class II (MHC class II), and pathways related to type 3 metabotropic glutamate receptors binding. Addition of EA to 3-NT-treated cells stimulated the toxicological effects of the latter by reducing the abundance of proteins involved in mitochondrial conformation. These results emphasize the impact of dietary nitrosated amino acids in intestinal cell physiology and warn about the potential negative effects of ellagic acid when combined with noxious metabolites. Full article
Show Figures

Graphical abstract

15 pages, 3642 KiB  
Article
Identification of SLC15A4/PHT1 Gene Products Upregulation Marking the Intestinal Epithelial Monolayer of Ulcerative Colitis Patients
by Aurora Mazzei, Grazia Serino, Alessandro Romano, Emanuele Piccinno, Viviana Scalavino, Anna Maria Valentini, Raffaele Armentano, Roberta Schiavone, Gianluigi Giannelli, Tiziano Verri and Amilcare Barca
Int. J. Mol. Sci. 2022, 23(21), 13170; https://doi.org/10.3390/ijms232113170 - 29 Oct 2022
Cited by 3 | Viewed by 2684
Abstract
SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of [...] Read more.
SLC15A4/PHT1 is an endolysosome-resident carrier of oligopeptides and histidine recently come into view as a key path marker of immune/autoimmune/inflammatory pathways in immune cells. Yet, its emerging role in inflammatory processes directly targeting the gastrointestinal epithelial layer, as in the multifactorial pathophysiology of inflammatory bowel disease (IBD), is poorly investigated. Here, the first identification of SLC15A4/PHT1 gene products in human colonic epithelium of ulcerative colitis (UC) patients is reported, showing protein primarily localized in intracellular vesicle-like compartments. Qualitative and quantitative immunohistochemical analyses of colon biopsies revealed overexpression of SLC15A4/PHT1 protein product in the epithelial layer of UC patients. Results were successfully mirrored in vitro, in spontaneously differentiated enterocyte-like monolayers of Caco-2 cells specifically exposed to DSS (dextran sodium sulphate) to mimic IBD inflammatory onsets. SLC15A4/PHT1 expression and cellular localization were characterized confirming its (dys)regulation traits in inflamed vs. healthy epithelia, strongly hinting the hypothesis of SLC15A4/PHT1 increased function associated with epithelial inflammation in IBD patients. Full article
(This article belongs to the Special Issue Focus on Gastrointestinal Diseases 2.0: Inflammation)
Show Figures

Figure 1

18 pages, 3340 KiB  
Article
Molecular Effects of Chronic Exposure to Palmitate in Intestinal Organoids: A New Model to Study Obesity and Diabetes
by Agnese Filippello, Stefania Di Mauro, Alessandra Scamporrino, Sebastiano Alfio Torrisi, Gian Marco Leggio, Antonino Di Pino, Roberto Scicali, Maurizio Di Marco, Roberta Malaguarnera, Francesco Purrello and Salvatore Piro
Int. J. Mol. Sci. 2022, 23(14), 7751; https://doi.org/10.3390/ijms23147751 - 13 Jul 2022
Cited by 6 | Viewed by 3143
Abstract
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim [...] Read more.
Intestinal cell dysfunctions involved in obesity and associated diabetes could be correlated with impaired intestinal cell development. To date, the molecular mechanisms underlying these dysfunctions have been poorly investigated because of the lack of a good model for studying obesity. The main aim of this study was to investigate the effects of lipotoxicity on intestinal cell differentiation in small intestinal organoid platforms, which are used to analyze the regulation of cell differentiation. Mouse intestinal organoids were grown in the presence/absence of high palmitate concentrations (0.5 mM) for 48 h to simulate lipotoxicity. Palmitate treatment altered the expression of markers involved in the differentiation of enterocytes and goblet cells in the early (Hes1) and late (Muc2) phases of their development, respectively, and it modified enterocytes and goblet cell numbers. Furthermore, the expression of enteroendocrine cell progenitors (Ngn3) and I cells (CCK) markers was also impaired, as well as CCK-positive cell numbers and CCK secretion. Our data indicate, for the first time, that lipotoxicity simultaneously influences the differentiation of specific intestinal cell types in the gut: enterocytes, goblet cells and CCK cells. Through this study, we identified novel targets associated with molecular mechanisms affected by lipotoxicity that could be important for obesity and diabetes therapy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 5496 KiB  
Article
Tumor Necrosis Factor Alpha Effects on the Porcine Intestinal Epithelial Barrier Include Enhanced Expression of TNF Receptor 1
by Linda Droessler, Valeria Cornelius, Alexander G. Markov and Salah Amasheh
Int. J. Mol. Sci. 2021, 22(16), 8746; https://doi.org/10.3390/ijms22168746 - 14 Aug 2021
Cited by 14 | Viewed by 3743
Abstract
Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal [...] Read more.
Tumor necrosis factor alpha (TNFα) has been shown to impair the intestinal barrier, inducing and maintaining inflammatory states of the intestine. The aim of the current study was to analyze functional, molecular and regulatory effects of TNFα in a newly established non-transformed jejunal enterocyte model, namely IPEC-J2 monolayers. Incubation with 1000 U/mL TNFα induced a marked decrease in transepithelial electrical resistance (TEER), and an increase in permeability for the paracellular flux marker [3H]-D-mannitol compared to controls. Immunoblots revealed a significant decrease in tight junction (TJ) proteins occludin, claudin-1 and claudin-3. Moreover, a dose-dependent increase in the TNF receptor (TNFR)-1 was detected, explaining the exponential nature of pro-inflammatory effects, while TNFR-2 remained unchanged. Recovery experiments revealed reversible effects after the removal of the cytokine, excluding apoptosis as a reason for the observed changes. Furthermore, TNFα signaling could be inhibited by the specific myosin light chain kinase (MLCK) blocker ML-7. Results of confocal laser scanning immunofluorescence microscopy were in accordance with all quantitative changes. This study explains the self-enhancing effects of TNFα mediated by MLCK, leading to a differential regulation of TJ proteins resulting in barrier impairment in the intestinal epithelium. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 3427 KiB  
Article
New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout (Oncorhynchus mykiss) Retain Several Properties Observed In Vivo
by Rolando Pasquariello, Nicole Verdile, Radmila Pavlovic, Sara Panseri, Kristin Schirmer, Tiziana A. L. Brevini and Fulvio Gandolfi
Cells 2021, 10(6), 1555; https://doi.org/10.3390/cells10061555 - 19 Jun 2021
Cited by 20 | Viewed by 7754
Abstract
We derived two novel cell lines from rainbow trout (RT) proximal (RTpi-MI) and distal intestine (RTdi-MI) and compared them with the previously established continuous cell line RTgutGC. Intestinal stem cells, differentiating and differentiated epithelial cells, and connective cells were found in all cell [...] Read more.
We derived two novel cell lines from rainbow trout (RT) proximal (RTpi-MI) and distal intestine (RTdi-MI) and compared them with the previously established continuous cell line RTgutGC. Intestinal stem cells, differentiating and differentiated epithelial cells, and connective cells were found in all cell lines. The cell lines formed a polarized barrier, which was not permeable to large molecules and absorbed proline and glucose. High seeding density induced their differentiation into more mature phenotypes, as indicated by the downregulation of intestinal stem cell-related genes (i.e., sox9, hopx and lgr5), whereas alkaline phosphatase activity was upregulated. Other enterocyte markers (i.e., sglt1 and pept1), however, were not regulated as expected. In all cell lines, the presence of a mixed population of epithelial and stromal cells was characterized for the first time. The expression by the stromal component of lgr5, a stem cell niche regulatory molecule, may explain why these lines proliferate stably in vitro. Although most parameters were conserved among the three cell lines, some significant differences were observed, suggesting that characteristics typical of each tract are partly conserved in vitro as well. Full article
Show Figures

Graphical abstract

29 pages, 8792 KiB  
Article
Advanced Microscopy for Liver and Gut Ultrastructural Pathology in Patients with MVID and PFIC Caused by MYO5B Mutations
by Michael W. Hess, Iris M. Krainer, Przemyslaw A. Filipek, Barbara Witting, Karin Gutleben, Ilja Vietor, Heinz Zoller, Denise Aldrian, Ekkehard Sturm, James R. Goldenring, Andreas R. Janecke, Thomas Müller, Lukas A. Huber and Georg F. Vogel
J. Clin. Med. 2021, 10(9), 1901; https://doi.org/10.3390/jcm10091901 - 28 Apr 2021
Cited by 12 | Viewed by 4344
Abstract
Mutations in the actin motor protein myosinVb (myo5b) cause aberrant apical cargo transport and the congenital enteropathy microvillus inclusion disease (MVID). Recently, missense mutations in myo5b were also associated with progressive familial intrahepatic cholestasis (MYO5B-PFIC). Here, we thoroughly characterized the ultrastructural and immuno-cytochemical [...] Read more.
Mutations in the actin motor protein myosinVb (myo5b) cause aberrant apical cargo transport and the congenital enteropathy microvillus inclusion disease (MVID). Recently, missense mutations in myo5b were also associated with progressive familial intrahepatic cholestasis (MYO5B-PFIC). Here, we thoroughly characterized the ultrastructural and immuno-cytochemical phenotype of hepatocytes and duodenal enterocytes from a unique case of an adult MYO5B-PFIC patient who showed constant hepatopathy but only periodic enteric symptoms. Selected data from two other patients supported the findings. Advanced methods such as cryo-fixation, freeze-substitution, immuno-gold labeling, electron tomography and immuno-fluorescence microscopy complemented the standard procedures. Liver biopsies showed mislocalization of Rab11 and bile canalicular membrane proteins. Rab11-positive vesicles clustered around bile canaliculi and resembled subapical clusters of aberrant recycling endosomes in enterocytes from MVID patients. The adult patient studied in detail showed a severe, MVID-specific enterocyte phenotype, despite only a mild clinical intestinal presentation. This included mislocalization of numerous proteins essential for apical cargo transport and morphological alterations. We characterized the heterogeneous population of large catabolic organelles regarding their complex ultrastructure and differential distribution of autophagic and lysosomal marker proteins. Finally, we generated duodenal organoids/enteroids from biopsies that recapitulated all MVID hallmarks, demonstrating the potential of this disease model for personalized medicine. Full article
Show Figures

Graphical abstract

15 pages, 4640 KiB  
Article
Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells
by Elena Naumovska, Germaine Aalderink, Christian Wong Valencia, Kinga Kosim, Arnaud Nicolas, Stephen Brown, Paul Vulto, Kai S. Erdmann and Dorota Kurek
Int. J. Mol. Sci. 2020, 21(14), 4964; https://doi.org/10.3390/ijms21144964 - 14 Jul 2020
Cited by 64 | Viewed by 10520
Abstract
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel [...] Read more.
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening. Full article
(This article belongs to the Special Issue Disease Modeling Using Human Induced Pluripotent Stem Cells 2.0)
Show Figures

Figure 1

19 pages, 775 KiB  
Review
Influence of Growth Hormone and Glutamine on Intestinal Stem Cells: A Narrative Review
by Yun Chen, Ya-Hui Tsai, Bor-Jiun Tseng and Sheng-Hong Tseng
Nutrients 2019, 11(8), 1941; https://doi.org/10.3390/nu11081941 - 17 Aug 2019
Cited by 30 | Viewed by 7835
Abstract
Growth hormone (GH) and glutamine (Gln) stimulate the growth of the intestinal mucosa. GH activates the proliferation of intestinal stem cells (ISCs), enhances the formation of crypt organoids, increases ISC stemness markers in the intestinal organoids, and drives the differentiation of ISCs into [...] Read more.
Growth hormone (GH) and glutamine (Gln) stimulate the growth of the intestinal mucosa. GH activates the proliferation of intestinal stem cells (ISCs), enhances the formation of crypt organoids, increases ISC stemness markers in the intestinal organoids, and drives the differentiation of ISCs into Paneth cells and enterocytes. Gln enhances the proliferation of ISCs and increases crypt organoid formation; however, it mainly acts on the post-proliferation activity of ISCs to maintain the stability of crypt organoids and the intestinal mucosa, as well as to stimulate the differentiation of ISCs into goblet cells and possibly Paneth cells and enteroendocrine cells. Since GH and Gln have differential effects on ISCs. Their use in combination may have synergistic effects on ISCs. In this review, we summarize the evidence of the actions of GH and/or Gln on crypt cells and ISCs in the literature. Overall, most studies demonstrated that GH and Gln in combination exerted synergistic effects to activate the proliferation of crypt cells and ISCs and enhance crypt organoid formation and mucosal growth. This treatment influenced the proliferation of ISCs to a similar degree as GH treatment alone and the differentiation of ISCs to a similar degree as Gln treatment alone. Full article
(This article belongs to the Special Issue Nutritional Management of Gastrointestinal Diseases and Disorders)
Show Figures

Figure 1

21 pages, 5528 KiB  
Article
Oleic Acid Uptake Reveals the Rescued Enterocyte Phenotype of Colon Cancer Caco-2 by HT29-MTX Cells in Co-Culture Mode
by Emmanuelle Berger, Merian Nassra, Claude Atgié, Pascale Plaisancié and Alain Géloën
Int. J. Mol. Sci. 2017, 18(7), 1573; https://doi.org/10.3390/ijms18071573 - 20 Jul 2017
Cited by 21 | Viewed by 8936
Abstract
Gastrointestinal epithelium is the unique route for nutrients and for many pharmaceuticals to enter the body. The present study aimed to analyze precisely whether co-culture of two colon cancer cell lines, mucus-producing cells HT29-MTX and enterocyte-like Caco-2 cells, ameliorate differentiation into an in [...] Read more.
Gastrointestinal epithelium is the unique route for nutrients and for many pharmaceuticals to enter the body. The present study aimed to analyze precisely whether co-culture of two colon cancer cell lines, mucus-producing cells HT29-MTX and enterocyte-like Caco-2 cells, ameliorate differentiation into an in vitro intestinal barrier model and the signaling pathways involved. Differentiated Caco-2 cells gene datasets were compared first to intestinal or cancer phenotypes and second to signaling pathway gene datasets. Experimental validations were performed in real-time experiments, immunochemistry, and gene expression analyses on Caco-2 versus co-cultures of Caco-2 and HT29-MTX (10%) cells. Partial maintenance of cancer-cell phenotype in differentiated Caco-2 cells was confirmed and fatty acids merged as potential regulators of cancer signaling pathways. HT29-MTX cells induced morphological changes in Caco-2 cells, slightly increased their proliferation rate and profoundly modified gene transcription of phenotype markers, fatty acid receptors, intracellular transporters, and lipid droplet components as well as functional responses to oleic acid. In vitro, enterocyte phenotype was rescued partially by co-culture of cancer cells with goblet cells and completed through oleic acid interaction with signaling pathways dysregulated in cancer cells. Full article
(This article belongs to the Special Issue Alterations to Signalling Pathways in Cancer Cells)
Show Figures

Graphical abstract

19 pages, 138 KiB  
Review
Seronegative Celiac Disease and Immunoglobulin Deficiency: Where to Look in the Submerged Iceberg?
by Floriana Giorgio, Mariabeatrice Principi, Giuseppe Losurdo, Domenico Piscitelli, Andrea Iannone, Michele Barone, Annacinzia Amoruso, Enzo Ierardi and Alfredo Di Leo
Nutrients 2015, 7(9), 7486-7504; https://doi.org/10.3390/nu7095350 - 8 Sep 2015
Cited by 29 | Viewed by 9050
Abstract
In the present narrative review, we analyzed the relationship between seronegative celiac disease (SNCD) and immunoglobulin deficiencies. For this purpose, we conducted a literature search on the main medical databases. SNCD poses a diagnostic dilemma. Villous blunting, intraepithelial lymphocytes (IELs) count and gluten [...] Read more.
In the present narrative review, we analyzed the relationship between seronegative celiac disease (SNCD) and immunoglobulin deficiencies. For this purpose, we conducted a literature search on the main medical databases. SNCD poses a diagnostic dilemma. Villous blunting, intraepithelial lymphocytes (IELs) count and gluten “challenge” are the most reliable markers. Immunohistochemistry/immunofluorescence tissue transglutaminase (tTG)-targeted mucosal immunoglobulin A (IgA) immune complexes in the intestinal mucosa of SNCD patients may be useful. In our experience, tTG-mRNA was similarly increased in seropositive celiac disease (CD) and suspected SNCD, and strongly correlated with the IELs count. This increase is found even in the IELs’ range of 15–25/100 enterocytes, suggesting that there may be a “grey zone” of gluten-related disorders. An immune deregulation (severely lacking B-cell differentiation) underlies the association of SNCD with immunoglobulin deficiencies. Therefore, CD may be linked to autoimmune disorders and immune deficits (common variable immunodeficiency (CVID)/IgA selective deficiency). CVID is a heterogeneous group of antibodies dysfunction, whose association with CD is demonstrated only by the response to a gluten-free diet (GFD). We hypothesized a familial inheritance between CD and CVID. Selective IgA deficiency, commonly associated with CD, accounts for IgA-tTG seronegativity. Selective IgM deficiency (sIgMD) is rare (<300 cases) and associated to CD in 5% of cases. We diagnosed SNCD in a patient affected by sIgMD using the tTG-mRNA assay. One-year GFD induced IgM restoration. This evidence, supporting a link between SNCD and immunoglobulin deficiencies, suggests that we should take a closer look at this association. Full article
(This article belongs to the Special Issue Gluten Related Disorders: People Shall not Live on Bread Alone)
21 pages, 1084 KiB  
Article
Sub-Emetic Toxicity of Bacillus cereus Toxin Cereulide on Cultured Human Enterocyte-Like Caco-2 Cells
by Andreja Rajkovic, Charlotte Grootaert, Ana Butorac, Tatiana Cucu, Bruno De Meulenaer, John Van Camp, Marc Bracke, Mieke Uyttendaele, Višnja Bačun-Družina and Mario Cindrić
Toxins 2014, 6(8), 2270-2290; https://doi.org/10.3390/toxins6082270 - 4 Aug 2014
Cited by 26 | Viewed by 8669
Abstract
Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied [...] Read more.
Cereulide (CER) intoxication occurs at relatively high doses of 8 µg/kg body weight. Recent research demonstrated a wide prevalence of low concentrations of CER in rice and pasta dishes. However, the impact of exposure to low doses of CER has not been studied before. In this research, we investigated the effect of low concentrations of CER on the behavior of intestinal cells using the Caco-2 cell line. The MTT (mitochondrial 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and the SRB (sulforhodamine B) reactions were used to measure the mitochondrial activity and cellular protein content, respectively. Both assays showed that differentiated Caco-2 cells were sensitive to low concentrations of CER (in a MTT reaction of 1 ng/mL after three days of treatment; in an SRB reaction of 0.125 ng/mL after three days of treatment). Cell counts revealed that cells were released from the differentiated monolayer at 0.5 ng/mL of CER. Additionally, 0.5 and 2 ng/mL of CER increased the lactate presence in the cell culture medium. Proteomic data showed that CER at a concentration of 1 ng/mL led to a significant decrease in energy managing and H2O2 detoxification proteins and to an increase in cell death markers. This is amongst the first reports to describe the influence of sub-emetic concentrations of CER on a differentiated intestinal monolayer model showing that low doses may induce an altered enterocyte metabolism and membrane integrity. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

Back to TopTop