Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = enhanced reduced inertial sensor system (RISS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3804 KiB  
Article
Implementation of Parallel Cascade Identification at Various Phases for Integrated Navigation System
by Umar Iqbal, Ashraf Abosekeen, Jacques Georgy, Areejah Umar, Aboelmagd Noureldin and Michael J. Korenberg
Future Internet 2021, 13(8), 191; https://doi.org/10.3390/fi13080191 - 26 Jul 2021
Cited by 9 | Viewed by 3961
Abstract
Global navigation satellite systems (GNSS) are widely used for the navigation of land vehicles. However, the positioning accuracy of GNSS, such as the global positioning system (GPS), deteriorates in urban areas due to signal blockage and multipath effects. GNSS can be integrated with [...] Read more.
Global navigation satellite systems (GNSS) are widely used for the navigation of land vehicles. However, the positioning accuracy of GNSS, such as the global positioning system (GPS), deteriorates in urban areas due to signal blockage and multipath effects. GNSS can be integrated with a micro-electro-mechanical system (MEMS)–based inertial navigation system (INS), such as a reduced inertial sensor system (RISS) using a Kalman filter (KF) to enhance the performance of the integrated navigation solution in GNSS challenging environments. The linearized KF cannot model the low-cost and small-size sensors due to relatively high noise levels and compound error characteristics. This paper reviews two approaches to employing parallel cascade identification (PCI), a non-linear system identification technique, augmented with KF to enhance the navigational solution. First, PCI models azimuth errors for a loosely coupled 2D RISS integrated system with GNSS to obtain a navigation solution. The experimental results demonstrated that PCI improved the integrated 2D RISS/GNSS performance by modeling linear, non-linear, and other residual azimuth errors. For the second scenario, PCI is utilized for modeling residual pseudorange correlated errors of a KF-based tightly coupled RISS/GNSS navigation solution. Experimental results have shown that PCI enhances the performance of the tightly coupled KF by modeling the non-linear pseudorange errors to provide an enhanced and more reliable solution. For the first algorithm, the results demonstrated that PCI can enhance the performance by 77% as compared to the KF solution during the GNSS outages. For the second algorithm, the performance improvement for the proposed PCI technique during the availability of three satellites was 39% compared to the KF solution. Full article
Show Figures

Figure 1

25 pages, 14750 KiB  
Article
LiDAR/RISS/GNSS Dynamic Integration for Land Vehicle Robust Positioning in Challenging GNSS Environments
by Ahmed Aboutaleb, Amr S. El-Wakeel, Haidy Elghamrawy and Aboelmagd Noureldin
Remote Sens. 2020, 12(14), 2323; https://doi.org/10.3390/rs12142323 - 19 Jul 2020
Cited by 26 | Viewed by 6129
Abstract
The autonomous vehicles (AV) industry has a growing demand for reliable, continuous, and accurate positioning information to ensure safe traffic and for other various applications. Global navigation satellite system (GNSS) receivers have been widely used for this purpose. However, GNSS positioning accuracy deteriorates [...] Read more.
The autonomous vehicles (AV) industry has a growing demand for reliable, continuous, and accurate positioning information to ensure safe traffic and for other various applications. Global navigation satellite system (GNSS) receivers have been widely used for this purpose. However, GNSS positioning accuracy deteriorates drastically in challenging environments such as urban environments and downtown cores. Therefore, inertial sensors are widely deployed inside the land vehicle for various purposes, including the integration with GNSS receivers to provide positioning information that can bridge potential GNSS failures. However, in dense urban areas and downtown cores where GNSS receivers may incur prolonged outages, the integrated positioning solution may become prone to severe drift resulting in substantial position errors. Therefore, it is becoming necessary to include other sensors and systems that can be available in future land vehicles to be integrated with both the GNSS receivers and inertial sensors to enhance the positioning performance in such challenging environments. This work aims to design and examine the performance of a multi-sensor system that fuses the GNSS receiver data with not only the three-dimensional reduced inertial sensor system (3D-RISS), but also with the three-dimensional point cloud of onboard light detection and ranging (LiDAR) system. In this paper, a comprehensive LiDAR processing and odometry method is developed to provide a continuous and reliable positioning solution. In addition, a multi-sensor Extended Kalman filtering (EKF)-based fusion is developed to integrate the LiDAR positioning information with both GNSS and 3D-RISS and utilize the LiDAR updates to limit the drift in the positioning solution, even in challenging or ultimately denied GNSS environment. The performance of the proposed positioning solution is examined using several road test trajectories in both Kingston and Toronto downtown areas involving different vehicle dynamics and driving scenarios. The proposed solution provided a performance improvement over the standalone inertial solution by 64%. Over a GNSS outage of 10 min and 2 km distance traveled, our solution achieved position errors less than 2% of the distance travelled. Full article
(This article belongs to the Special Issue Positioning and Navigation in Remote Sensing)
Show Figures

Figure 1

21 pages, 16037 KiB  
Article
An Efficient Ultra-Tight GPS/RISS Integrated System for Challenging Navigation Environments
by Malek Karaim, Mohamed Tamazin and Aboelmagd Noureldin
Appl. Sci. 2020, 10(10), 3613; https://doi.org/10.3390/app10103613 - 23 May 2020
Cited by 5 | Viewed by 3852
Abstract
The Global Positioning System (GPS) provides an accurate navigation solution in the open sky. However, in some environments such as urban areas or in the presence of signal jamming, GPS signals cannot be easily tracked since they could be harshly attenuated or entirely [...] Read more.
The Global Positioning System (GPS) provides an accurate navigation solution in the open sky. However, in some environments such as urban areas or in the presence of signal jamming, GPS signals cannot be easily tracked since they could be harshly attenuated or entirely blocked. This often requires the GPS receiver to go into a signal re-acquisition phase for the corresponding satellite. To avoid the intensive computations necessary for the signal re-lock in a GPS receiver, a robust signal-tracking mechanism that can hold and/or rapidly re-lock on the signals and keep track of their dynamics becomes a necessity. This paper augments a vector-based GPS signal tracking system with a Reduced Inertial Sensor System (RISS) to produce a new ultra-tight GPS/INS integrated system that enhances receivers’ tracking robustness and sensitivity in challenging navigation environments. The introduced system is simple, efficient, reliable, yet inexpensive. To challenge the proposed method with real jamming conditions, real experiment work was conducted inside the Anechoic Chamber room at the Royal Military College of Canada (RMC). The Spirent GSS6700 signal simulator was used to generate GPS signals, and an INS Simulator is used for simulating the inertial measurement unit (IMU) to generate the corresponding trajectory raw data. The NEAT jammer, by NovAtel, was used to generate real jamming signals. Results show a good performance of the proposed method under real signal jamming conditions. Full article
(This article belongs to the Special Issue Recent Advances in Electronic Warfare Networks and Scenarios)
Show Figures

Figure 1

19 pages, 7651 KiB  
Article
Vehicular Navigation Based on the Fusion of 3D-RISS and Machine Learning Enhanced Visual Data in Challenging Environments
by Yunlong Sun, Lianwu Guan, Menghao Wu, Yanbin Gao and Zhanyuan Chang
Electronics 2020, 9(1), 193; https://doi.org/10.3390/electronics9010193 - 20 Jan 2020
Cited by 10 | Viewed by 3069
Abstract
Based on the 3D Reduced Inertial Sensor System (3D-RISS) and the Machine Learning Enhanced Visual Data (MLEVD), an integrated vehicle navigation system is proposed in this paper. In demanding conditions such as outdoor satellite signal interference and indoor navigation, this work incorporates vehicle [...] Read more.
Based on the 3D Reduced Inertial Sensor System (3D-RISS) and the Machine Learning Enhanced Visual Data (MLEVD), an integrated vehicle navigation system is proposed in this paper. In demanding conditions such as outdoor satellite signal interference and indoor navigation, this work incorporates vehicle smooth navigation. Firstly, a landmark is set up and both of its size and position are accurately measured. Secondly, the image with the landmark information is captured quickly by using the machine learning. Thirdly, the template matching method and the Extended Kalman Filter (EKF) are then used to correct the errors of the Inertial Navigation System (INS), which employs the 3D-RISS to reduce the overall cost and ensuring the vehicular positioning accuracy simultaneously. Finally, both outdoor and indoor experiments are conducted to verify the performance of the 3D-RISS/MLEVD integrated navigation technology. Results reveal that the proposed method can effectively reduce the accumulated error of the INS with time while maintaining the positioning error within a few meters. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

16 pages, 6520 KiB  
Article
A Low Cost Civil Vehicular Seamless Navigation Technology Based on Enhanced RISS/GPS between the Outdoors and an Underground Garage
by Ningbo Li, Lianwu Guan, Yanbin Gao, Zhejun Liu, Ye Wang and Hanxiao Rong
Electronics 2020, 9(1), 120; https://doi.org/10.3390/electronics9010120 - 8 Jan 2020
Cited by 6 | Viewed by 2976
Abstract
Vehicles have to rely on satellite navigation in an open environment. However, satellite navigation cannot obtain accurate positioning information for vehicles in the interior of underground parking lots, as they comprise a semi-enclosed navigation space. Therefore, vehicular navigation needs to take into consideration [...] Read more.
Vehicles have to rely on satellite navigation in an open environment. However, satellite navigation cannot obtain accurate positioning information for vehicles in the interior of underground parking lots, as they comprise a semi-enclosed navigation space. Therefore, vehicular navigation needs to take into consideration both outdoor and indoor environments. Actually, outdoor navigation and indoor navigation require different positioning methods, and it is of great importance to choose a reasonable navigation and positioning algorithm solution for vehicles. Fortunately, the integrated navigation of the Global Positioning System (GPS) and the Micro-Electro-Mechanical System (MEMS) inertial navigation system could solve the problem of switching navigation algorithms in the entrance and exit of underground parking lots. This paper proposes a low cost vehicular seamless navigation technology based on the reduced inertial sensor system (RISS)/GPS between the outdoors and an underground garage. Specifically, the enhanced RISS is a positioning algorithm based on three inertial sensors and one odometer, which could achieve a similar location effect as the full model integrated navigation, reduce the costs greatly, and improve the efficiency of each sensor. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

28 pages, 2431 KiB  
Article
An Enhanced Error Model for EKF-Based Tightly-Coupled Integration of GPS and Land Vehicle’s Motion Sensors
by Tashfeen B. Karamat, Mohamed M. Atia and Aboelmagd Noureldin
Sensors 2015, 15(9), 24269-24296; https://doi.org/10.3390/s150924269 - 22 Sep 2015
Cited by 18 | Viewed by 7300
Abstract
Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based [...] Read more.
Reduced inertial sensor systems (RISS) have been introduced by many researchers as a low-cost, low-complexity sensor assembly that can be integrated with GPS to provide a robust integrated navigation system for land vehicles. In earlier works, the developed error models were simplified based on the assumption that the vehicle is mostly moving on a flat horizontal plane. Another limitation is the simplified estimation of the horizontal tilt angles, which is based on simple averaging of the accelerometers’ measurements without modelling their errors or tilt angle errors. In this paper, a new error model is developed for RISS that accounts for the effect of tilt angle errors and the accelerometer’s errors. Additionally, it also includes important terms in the system dynamic error model, which were ignored during the linearization process in earlier works. An augmented extended Kalman filter (EKF) is designed to incorporate tilt angle errors and transversal accelerometer errors. The new error model and the augmented EKF design are developed in a tightly-coupled RISS/GPS integrated navigation system. The proposed system was tested on real trajectories’ data under degraded GPS environments, and the results were compared to earlier works on RISS/GPS systems. The findings demonstrated that the proposed enhanced system introduced significant improvements in navigational performance. Full article
(This article belongs to the Special Issue Advances on Resources Management for Multi-Platform Infrastructures)
Show Figures

Figure 1

33 pages, 6698 KiB  
Article
Tightly Coupled Low Cost 3D RISS/GPS Integration Using a Mixture Particle Filter for Vehicular Navigation
by Jacques Georgy and Aboelmagd Noureldin
Sensors 2011, 11(4), 4244-4276; https://doi.org/10.3390/s110404244 - 8 Apr 2011
Cited by 15 | Viewed by 11414
Abstract
Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated [...] Read more.
Satellite navigation systems such as the global positioning system (GPS) are currently the most common technique used for land vehicle positioning. However, in GPS-denied environments, there is an interruption in the positioning information. Low-cost micro-electro mechanical system (MEMS)-based inertial sensors can be integrated with GPS and enhance the performance in denied GPS environments. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of low-cost MEMS inertial sensors and their large stochastic drifts, KF, with its linearized models, has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate for arbitrary inertial sensor characteristics, motion dynamics and noise distributions. An enhanced version of PF called the Mixture PF is utilized in this study to perform tightly coupled integration of a three dimensional (3D) reduced inertial sensors system (RISS) with GPS. In this work, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle’s odometer to obtain 3D navigation states. These sensors are then integrated with GPS in a tightly coupled scheme. In loosely-coupled integration, at least four satellites are needed to provide acceptable GPS position and velocity updates for the integration filter. The advantage of the tightly-coupled integration is that it can provide GPS measurement update(s) even when the number of visible satellites is three or lower, thereby improving the operation of the navigation system in environments with partial blockages by providing continuous aiding to the inertial sensors even during limited GPS satellite availability. To effectively exploit the capabilities of PF, advanced modeling for the stochastic drift of the vertically aligned gyroscope is used. In order to benefit from measurement updates for such drift, which are loosely-coupled updates, a hybrid loosely/tightly coupled solution is proposed. This solution is suitable for downtown environments because of the long natural outages or degradation of GPS. The performance of the proposed 3D Navigation solution using Mixture PF for 3D RISS/GPS integration is examined by road test trajectories in a land vehicle and compared to the KF counterpart. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop